Theoretical Statistics. Lecture 1.

Peter Bartlett

1. Organizational issues.
2. Overview.
3. Stochastic convergence.

Organizational Issues

- Lectures: Tue/Thu 11am-12:30pm, 332 Evans.
- Peter Bartlett. bartlett@stat. Office hours: Tue 1-2pm, Wed 1:30-2:30pm (Evans 399).
- GSI: Siqi Wu. siqi@stat. Office hours: Mon 3:30-4:30pm, Tue 3:30-4:30pm (Evans 307).
- http://www.stat.berkeley.edu/~bartlett/courses/210b-spring2013/ Check it for announcements, homework assignments, ...
- Texts:

Asymptotic Statistics, Aad van der Vaart. Cambridge. 1998.
Convergence of Stochastic Processes, David Pollard. Springer. 1984. Available on-line at
http://www.stat.yale.edu/~pollard/1984book/

Organizational Issues

- Assessment:

Homework Assignments (60%): posted on the website.
Final Exam (40\%): scheduled for Thursday, 5/16/13, 8-11am.

- Required background:

Stat 210A, and either Stat 205A or Stat 204.

Asymptotics: Why?

Example: We have a sample of size n from a density p_{θ}. Some estimator gives $\hat{\theta}_{n}$.

- Consistent? i.e., $\hat{\theta}_{n} \rightarrow \theta$? Stochastic convergence.
- Rate? Is it optimal? Often no finite sample optimality results. Asymptotically optimal?
- Variance of estimate? Optimal? Asymptotically?
- Distribution of estimate? Confidence region. Asymptotically?

Asymptotics: Approximate confidence regions

Example: We have a sample of size n from a density p_{θ}. Maximum likelihood estimator gives $\hat{\theta}_{n}$.

Under mild conditions, $\sqrt{n}\left(\hat{\theta}_{n}-\theta\right)$ is asymptotically $N\left(0, I_{\theta}^{-1}\right)$. Thus

$$
\sqrt{n} I_{\theta}^{1 / 2}\left(\hat{\theta}_{n}-\theta\right) \sim N(0, I), \text { and } n\left(\hat{\theta}_{n}-\theta\right)^{T} I_{\theta}\left(\hat{\theta}_{n}-\theta\right) \sim \chi^{2}(k)
$$

So we have an approximate $1-\alpha$ confidence region for θ :

$$
\left\{\theta:\left(\theta-\hat{\theta}_{n}\right)^{T} I_{\hat{\theta}_{n}}\left(\theta-\hat{\theta}_{n}\right) \leq \frac{\chi_{k, \alpha}^{2}}{n}\right\}
$$

Overview of the Course

1. Tools for consistency, rates, asymptotic distributions:

- Stochastic convergence.
- Concentration inequalities.
- Projections.
- U-statistics.
- Delta method.

2. Tools for richer settings (eg: function space vs \mathbb{R}^{k})

- Uniform laws of large numbers.
- Empirical process theory.
- Metric entropy.
- Functional delta method.

3. Tools for asymptotics of likelihood ratios:

- Contiguity.
- Local asymptotic normality.

4. Asymptotic optimality:

- Efficiency of estimators.
- Efficiency of tests.

5. Applications:

- Nonparametric regression.
- Nonparametric density estimation.
- M-estimators.
- Bootstrap estimators.

Convergence in Distribution

X_{1}, X_{2}, \ldots, X are random vectors,

Definition: $\quad X_{n}$ converges in distribution (or weakly converges) to X (written $X_{n} \rightsquigarrow X$) means that their distribution functions satisfy $F_{n}(x) \rightarrow$ $F(x)$ at all continuity points of F.

Review: Other Types of Convergence

d is a distance on \mathbb{R}^{k} (for which the Borel σ-algebra is the usual one).

Definition: X_{n} converges almost surely to X (written $X_{n} \xrightarrow{\text { as }} X$) means that $d\left(X_{n}, X\right) \rightarrow 0$ a.s.

Definition: X_{n} converges in probability to $X\left(\right.$ written $X_{n} \xrightarrow{P} X$) means that, for all $\epsilon>0$,

$$
P\left(d\left(X_{n}, X\right)>\epsilon\right) \rightarrow 0
$$

Review: Other Types of Convergence

Theorem:

$$
\begin{aligned}
& X_{n} \xrightarrow{a s} \\
& \\
& X_{n} \xrightarrow{P} c \Longleftrightarrow X_{n} \xrightarrow{P} X \Longrightarrow X_{n} \rightsquigarrow \rightsquigarrow .
\end{aligned}
$$

NB: For $X_{n} \xrightarrow{\text { as }} X$ and $X_{n} \xrightarrow{P} X, X_{n}$ and X must be functions on the sample space of the same probability space. But not convergence in distribution.

Convergence in Distribution: Equivalent Definitions

Theorem: [Portmanteau] The following are equivalent:

1. $P\left(X_{n} \leq x\right) \rightarrow P(X \leq x)$ for all continuity points x of $P(X \leq \cdot)$.
2. $\mathbf{E} f\left(X_{n}\right) \rightarrow \mathbf{E} f(X)$ for all bounded, continuous f.
3. $\mathbf{E} f\left(X_{n}\right) \rightarrow \mathbf{E} f(X)$ for all bounded, Lipschitz f.
4. $\mathbf{E} e^{i t^{T}} X_{n} \rightarrow \mathbf{E} e^{i t^{T}} X$ for all $t \in \mathbb{R}^{k}$. (Lévy's Continuity Theorem)
5. for all $t \in \mathbb{R}^{k}, t^{T} X_{n} \rightsquigarrow t^{T} X$. (Cramér-Wold Device)
6. $\lim \inf \mathbf{E} f\left(X_{n}\right) \geq \mathbf{E} f(X)$ for all nonnegative, continuous f.
7. $\lim \inf P\left(X_{n} \in U\right) \geq P(X \in U)$ for all open U.
8. $\lim \sup P\left(X_{n} \in F\right) \leq P(X \in F)$ for all closed F.
9. $P\left(X_{n} \in B\right) \rightarrow P(X \in B)$ for all continuity sets B (i.e., $P(X \in \partial B)=0)$.

Convergence in Distribution: Equivalent Definitions

Example: [Why do we need continuity?]
Consider $f(x)=1[x>0], X_{n}=1 / n$. Then $X_{n} \rightarrow 0, f(x) \rightarrow 1$, but $f(0)=0$.
[Why do we need boundedness?]
Consider $f(x)=x$,

$$
X_{n}= \begin{cases}n & \text { w.p. } 1 / n \\ 0 & \text { w.p. } 1-1 / n\end{cases}
$$

Then $X_{n} \rightsquigarrow 0, \mathbf{E} f\left(X_{n}\right) \rightarrow 1$, but $f(0)=0$.

Relating Convergence Properties

Theorem:

$$
\begin{aligned}
& X_{n} \rightsquigarrow \\
& X \text { and } d\left(X_{n}, Y_{n}\right) \xrightarrow{P} 0 \Longrightarrow Y_{n} \rightsquigarrow X, \\
& X_{n} \rightsquigarrow X \text { and } Y_{n} \rightsquigarrow c \Longrightarrow\left(X_{n}, Y_{n}\right) \rightsquigarrow(X, c), \\
& X_{n} \xrightarrow{P} X \text { and } Y_{n} \xrightarrow{P} Y \Longrightarrow\left(X_{n}, Y_{n}\right) \xrightarrow{P}(X, Y) .
\end{aligned}
$$

Relating Convergence Properties

Example: NB: NOT $X_{n} \rightsquigarrow X$ and $Y_{n} \rightsquigarrow Y \Longrightarrow\left(X_{n}, Y_{n}\right) \rightsquigarrow(X, Y)$. (joint convergence versus marginal convergence in distribution) Consider X, Y independent $N(0,1), X_{n} \sim N(0,1), Y_{n}=-X_{n}$. Then $X_{n} \rightsquigarrow X, Y_{n} \rightsquigarrow Y$, but $\left(X_{n}, Y_{n}\right) \rightsquigarrow(X,-X)$, which has a very different distribution from that of (X, Y).

Relating Convergence Properties: Continuous Mapping

Suppose $f: \mathbb{R}^{k} \rightarrow \mathbb{R}^{m}$ is "almost surely continuous"
(i.e., for some S with $P(X \in S)=1, f$ is continuous on S).

Theorem: [Continuous mapping]

$$
\begin{aligned}
& X_{n} \rightsquigarrow X \Longrightarrow f\left(X_{n}\right) \rightsquigarrow f(X) . \\
& X_{n} \xrightarrow{P} X \Longrightarrow f\left(X_{n}\right) \xrightarrow{P} f(X) . \\
& X_{n} \xrightarrow{\text { as }} X \Longrightarrow f\left(X_{n}\right) \xrightarrow{\text { as }} f(X) .
\end{aligned}
$$

Relating Convergence Properties: Continuous Mapping

Example: For X_{1}, \ldots, X_{n} i.i.d. mean μ, variance σ^{2}, we have

$$
\frac{\sqrt{n}}{\sigma}\left(\bar{X}_{n}-\mu\right) \rightsquigarrow N(0,1) .
$$

So

$$
\frac{n}{\sigma^{2}}\left(\bar{X}_{n}-\mu\right)^{2} \rightsquigarrow(N(0,1))^{2}=\chi_{1}^{2}
$$

Example: We also have $\bar{X}_{n}-\mu \rightsquigarrow 0$ hence $\left(\bar{X}_{n}-\mu\right)^{2} \rightsquigarrow 0$. Consider $f(x)=1[x>0]$. Then $f\left(\left(\bar{X}_{n}-\mu\right)^{2}\right) \rightsquigarrow 1 \neq f(0)$.
(The problem is that f is not continuous at 0 , and $P_{X}(0)>0$, for X satisfying $\left(\bar{X}_{n}-\mu\right)^{2} \rightsquigarrow X$.)

Relating Convergence Properties: Slutsky's Lemma

Theorem: $X_{n} \rightsquigarrow X$ and $Y_{n} \rightsquigarrow c$ imply

$$
\begin{aligned}
X_{n}+Y_{n} & \rightsquigarrow X+c, \\
Y_{n} X_{n} & \rightsquigarrow c X, \\
Y_{n}^{-1} X_{n} & \rightsquigarrow c^{-1} X .
\end{aligned}
$$

(Why does $X_{n} \rightsquigarrow X$ and $Y_{n} \rightsquigarrow Y$ not imply $X_{n}+Y_{n} \rightsquigarrow X+Y$?)

Relating Convergence Properties: Examples

Theorem: For i.i.d. Y_{t} with $\mathbf{E} Y_{1}=\mu, \mathbf{E} Y_{1}^{2}=\sigma^{2}<\infty$,

$$
\sqrt{n} \frac{\bar{Y}_{n}-\mu}{S_{n}} \rightsquigarrow N(0,1)
$$

where

$$
\begin{aligned}
\bar{Y}_{n} & =n^{-1} \sum_{i=1}^{n} Y_{i} \\
S_{n}^{2} & =(n-1)^{-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{n}\right)^{2}
\end{aligned}
$$

Proof:

$$
\begin{aligned}
S_{n}^{2} & =\underbrace{\frac{n}{n-1}}_{P_{\rightarrow}}(\underbrace{\frac{1}{n} \sum_{i=1}^{n} Y_{i}^{2}}_{{ }_{P}^{P} \mathbf{E} Y_{1}^{2}}-(\underbrace{\bar{Y}_{n}}_{{ }_{\rightarrow}^{P} \mathbf{E} Y_{1}})^{2}) \\
& \quad \text { (weak law of large numbers) } \\
& \xrightarrow{P} \mathbf{E} Y_{1}^{2}-\left(\mathbf{E} Y_{1}\right)^{2} \\
\quad & \quad \text { (continuous mapping theorem, Slutsky's Lemma) } \\
& =\sigma^{2} .
\end{aligned}
$$

Also

$$
\underbrace{\sqrt{n}\left(\bar{Y}_{n}-\mu\right)}_{\rightsquigarrow N\left(0, \sigma^{2}\right)} \underbrace{\frac{1}{S_{n}}}_{\substack{P \\ \rightarrow \\ S_{n} \\ \hline}}
$$

(central limit theorem)
$\rightsquigarrow N(0,1)$
(continuous mapping theorem, Slutsky's Lemma)

Showing Convergence in Distribution

Recall that the characteristic function demonstrates weak convergence:
$X_{n} \rightsquigarrow X \Longleftrightarrow \mathbf{E} e^{i t^{T} X_{n}} \rightarrow \mathbf{E} e^{i t^{T} X}$ for all $t \in \mathbb{R}^{k}$.

Theorem: [Lévy's Continuity Theorem]
If $\mathbf{E} e^{i t^{T} X_{n}} \rightarrow \phi(t)$ for all t in \mathbb{R}^{k}, and $\phi: \mathbb{R}^{k} \rightarrow \mathbb{C}$ is continuous at 0 , then $X_{n} \rightsquigarrow X$, where $\mathbf{E} e^{i t^{T} X}=\phi(t)$.

Special case: $X_{n}=Y$. So X, Y have same distribution iff $\phi_{X}=\phi_{Y}$.

Showing Convergence in Distribution

Theorem: [Weak law of large numbers]
Suppose X_{1}, \ldots, X_{n} are i.i.d. Then $\bar{X}_{n} \xrightarrow{P} \mu$ iff $\phi_{X_{1}}^{\prime}(0)=i \mu$.
Proof:
We'll show that $\phi_{X_{1}}^{\prime}(0)=i \mu$ implies $\bar{X}_{n} \xrightarrow{P} \mu$. Indeed,

$$
\begin{aligned}
\mathbf{E} e^{i t \bar{X}_{n}} & =\phi^{n}(t / n) \\
& =(1+t i \mu / n+o(1 / n))^{n} \\
& \rightarrow \underbrace{e^{i t \mu}}_{\phi_{\mu}(t)} .
\end{aligned}
$$

Lévy’s Theorem implies $\bar{X}_{n} \rightsquigarrow \mu$, hence $\bar{X}_{n} \xrightarrow{P} \mu$.

Showing Convergence in Distribution

e.g., $X \sim N(\mu, \Sigma)$ has characteristic function

$$
\phi_{X}(t)=\mathbf{E} e^{i t^{T} X}=e^{i t^{T} \mu-t^{T} \Sigma t / 2}
$$

Theorem: [Central limit theorem]
Suppose X_{1}, \ldots, X_{n} are i.i.d., $\mathbf{E} X_{1}=0, \mathbf{E} X_{1}^{2}=1$. Then $\sqrt{n} \bar{X}_{n} \rightsquigarrow$ $N(0,1)$.

Proof: $\phi_{X_{1}}(0)=1, \phi_{X_{1}}^{\prime}(0)=i \mathbf{E} X_{1}=0, \phi_{X_{1}}^{\prime \prime}(0)=i^{2} \mathbf{E} X_{1}^{2}=-1$.

$$
\begin{aligned}
\mathbf{E} e^{i t \sqrt{n} \bar{X}_{n}} & =\phi^{n}(t / \sqrt{n}) \\
& =\left(1+0-t^{2} \mathbf{E} Y^{2} /(2 n)+o(1 / n)\right)^{n} \\
& \rightarrow e^{-t^{2} / 2} \\
& =\phi_{N(0,1)}(t)
\end{aligned}
$$

Uniformly tight

Definition:

X is tight means that for all $\epsilon>0$ there is an M for which

$$
P(\|X\|>M)<\epsilon
$$

$\left\{X_{n}\right\}$ is uniformly tight (or bounded in probability) means that for all $\epsilon>0$ there is an M for which

$$
\sup _{n} P\left(\left\|X_{n}\right\|>M\right)<\epsilon
$$

(so there is a compact set that contains each X_{n} with high probability.)

Notation: Uniformly tight

Theorem: [Prohorov's Theorem]

1. $X_{n} \rightsquigarrow X$ implies $\left\{X_{n}\right\}$ is uniformly tight.
2. $\left\{X_{n}\right\}$ uniformly tight implies that for some X and some subsequence, $X_{n_{j}} \rightsquigarrow X$.

Notation for rates: o_{P}, O_{P}

Definition:

$$
\begin{aligned}
X_{n}=o_{P}(1) & \Longleftrightarrow X_{n} \xrightarrow{P} 0 \\
X_{n}=o_{P}\left(R_{n}\right) & \Longleftrightarrow X_{n}=Y_{n} R_{n} \text { and } Y_{n}=o_{P}(1) \\
X_{n}=O_{P}(1) & \Longleftrightarrow X_{n} \text { uniformly tight } \\
X_{n}=O_{P}\left(R_{n}\right) & \Longleftrightarrow X_{n}=Y_{n} R_{n} \text { and } Y_{n}=O_{P}(1)
\end{aligned}
$$

(i.e., o_{P}, O_{P} specify rates of growth of a sequence. o_{P} means strictly slower (sequence Y_{n} converges in probability to zero). O_{P} means within some constant (sequence Y_{n} lies in a ball).

Relations between rates

$$
\begin{aligned}
o_{P}(1)+o_{P}(1) & =o_{P}(1) . \\
o_{P}(1)+O_{P}(1) & =O_{P}(1) . \\
o_{P}(1) O_{P}(1) & =o_{P}(1) . \\
\left(1+o_{P}(1)\right)^{-1} & =O_{P}(1) . \\
o_{P}\left(O_{P}(1)\right) & =o_{P}(1) . \\
X_{n} \xrightarrow{P} 0, R(h)=o\left(\|h\|^{p}\right) & \Longrightarrow R\left(X_{n}\right)=o_{P}\left(\left\|X_{n}\right\|^{p}\right) . \\
X_{n} \xrightarrow{P} 0, R(h)=O\left(\|h\|^{p}\right) & \Longrightarrow R\left(X_{n}\right)=O_{P}\left(\left\|X_{n}\right\|^{p}\right) .
\end{aligned}
$$

