
A (very) brief introduction to symmetric spaces

Yassine El Maazouz

Abstract. This text consists of reading notes that aim to in-
troduce the theory of symmetric spaces and their relation to Lie
groups. The goal is to give intuition and focus on the geometric
aspect as much as possible .

1. Introduction and notation

There are many approaches to the concept of geometry. Perhaps one
of the most insightful ones is the approach suggested by Felix Klein: con-
sidering a spaceM with a group of transformations G. This conception
provides striking links between algebra and geometry.

The theory symmetric spaces falls into this paradigm and is a meeting
points of many branches in mathematics namely differential geometry
[Hel01], number theory [JLR93] , harmonic analysis [Ion00, vdBS99] and
statistics [SM21] to name a few.

The literature on the topic is very vast and these few pages will
certainly not give it justice. So our focus will be to present the main
ideas and exhibit some examples where one might have encountered
symmetric spaces without knowing so. Our hope is that these notes
will grow with time with a view towards the non-archimedean side of
the theory (Bruhat-Tits buildings and Berkhovic spaces) which is more
prominent in arithmetic geometry and number theory. But for the present
notes, we stick to the setting of Riemannian geometry.
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Our main object of interest throughout this text is a Riemannian
C∞ manifold (M, q) together with its metric q. We denote by I(M) its
isometry group. We endow this group with the compact-open topology. If
C,U are respectively compact and open inM and

W (C,U) := {g ∈ I(M) : g.C ⊂ U},

the compact-open topology is the smallest topology for which all such
sets W (C,U) are open. It is not so hard to check that, endowed with this
topology, the group I(M) is a Hausdorff space. The connected component
containing the identity will be denoted by I0(M). Moreover, we have the
following (non-trivial) theorem:

Theorem 1.1. — The group I(M), endowed with the compact-open
topology, is a locally compact topological group.

The notes are organized as follows. In section 2 we present the first
definitions and preliminaries. Section 3 is dedicated to the description of
symmetric spaces as quotients of Lie groups. In section 4, we go through
a couple of examples to illustrate the theory. In section 5, we talk about
Gelfand pairs (or symmetric pairs) and shift gears to geodesics, curvature
and type of a symmetric space.

2. Preliminaries

Throughout this text, we assume a basic level of familiarity with
concepts from differential and mainly Riemannian geometry. Of the many
sources in the literature, we refer the reader for example to [Hel01, Zil10].

Definition 2.1. — Let (M, q) be a Riemannian manifold.

(1) The manifoldM is called symmetric if for all p ∈M there exists
an isometry sp :M→M such that sp(p) = p and dp(sp) = − Id

on the tangent space TpM. In this case we also say that M is
globally symmetric.

(2) We say that M is locally symmetric if for any point p ∈ M
there exists r > 0 and an isometry sp : B(p, r) → B(p, r) of
the ball B(r, p) of radius r around p such that sp(p) = p and
dp(sp) = − Id on TpM.

Let us now examine some immediate properties of symmetric spaces.
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Proposition 2.2. — Let (M, g) be a symmetric space. Then the
following properties hold

(a) If γ : (−a, a) → M is a geodesic and γ(0) = p then we have
sp(γ(t)) = γ(−t) i.e. sp reverses the direction of geodesics pass-
ing through p ∈M.

(b) M is complete i.e. geodesics are defined for all t ∈ R (equiva-
lently, also as a metric space).

(c) M is a homogeneous space i.e. for any p, q ∈M there exists an
isometry f :M→M such that f(p) = q.

Proof. — We refer the reader to [Zil10] for a proof. �

Lemma 2.1. — Let (M, q) be a Riemannian manifold. Then ifM is
homogeneous and there exists a symmetry in a point p then the spaceM
is symmetric.

Proof. — Let p ∈M with involution sp and q 6= p ∈M another point.
SinceM is homogeneous, there exists an isometry ϕ ∈ I(M) such that
ϕ(p) = q. Then the isometry sq := ϕ ◦ sp ◦ ϕ−1 is an involution as q
(check that dq(sq) = − Id). n �

Remark 2.3. — A basic fact on symmetric spaces is that if (M, p) is
a symmetric space and p ∈M a point then the symmetry sp is unique.
Also notice that s2p = IdM.

To get a taste of what symmetric spaces are, let us examine a couple
of simple examples.

Example 2.4. — (1) Let n > 2 be an integer and let Sn−1 ⊂ Rn
be the unit sphere of dimension n− 1. We can easily make Sn−1

into a Riemannian manifold using the usual Riemannian metric
q. For each point x ∈ Sn−1 we define the symmetry

sx(y) := 2〈x, y〉x− y.

Where 〈·, ·〉 is the usual scalar product on Rn. The reader can
check that inded sx is a smooth isometry of the sphere, that
sx(x) = x and that dx(sx) = − Id.

(2) Let G be a Lie group and let q a bi-invariant metric on G. Then
the Riemannian manifold (G, q) is a symmetric space. To see
why first notice that the map se : g 7→ g−1 is a symmetry around
the identity this is because naturally

se(e) = e and de(se) = − Id .
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The fact that se is an isometry stems from q being bi-invariant.
For a general point g ∈ G it is not hard to see that the map
sg : h→ (gh)−1 = h−1g−1.

Let us now introduce one-parameter families of isometries which will
be of key importance later on: transvections.

Definition 2.5 (transvections). — Let (M, q) be a symmetric space
and γ : R→M. The transvection T γt is the isometry defined as follows

T γt := sγ(t/2) ◦ sγ(0).

Proposition 2.6. — Let (M, q) be a symmetric space and γ : R→
M be a geodesic. Then the following hold:

(i) T γt (γ(s)) = γ(t + s) i.e. T γt acts as a translation along the
geodesic γ.

(ii) (T γt )t∈R is a one parameter subgroup of I(M).

Proof. — The proof is not so hard, we refer the reader to [Zil10] for a
detailed proof. �

Remark 2.7. — Part (ii) is the previous proposition means that
geodesics onM are images of one-parametrer groups of isometries ofM.
Also, notice that if p 6= q ∈M, then there exists a geodesic γ such that
γ(0) = p and γ(1) = q. So we have

T γ1 (p) = T γ1 (γ(0)) = γ(1) = q.

So, since T γ1 ∈ I0(M) we deduce that I0(M) acts transitively onM.

Example 2.8. — An important example to keep in mind is that of
the hyperbolic plane which we choose to model by the Poincare upper-
half plane H = {z ∈ C : Im(z) > 0} with arc-length dα(z) = 1

Im(z)dz.
Geodesics in H are circle arcs. For the point i the involution si is given by
si : z → −1

z . For a general z ∈ H, we get the involution sz by conjugating
the involution si with the isometry (it is a Möbeius transformation)
w → w−Re(z)

Im(z) .

Transvections, as 1-parameter groups of isometries, are open half
circles (since geodesics are). As we shall see in section 3, we can also
describe H as a quotient of a Lie group.
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3. Group quotients and Cartan involutions

In this section we discuss symmetric spaces as quotients of their
isometry group by a compact subgroup fixing a point. This shall allow
us to introduce the notion of Cartan involutions.

Throughout this section we consider a symmetric space (M, q) and we
fix a point p ∈M. We denote by G = I0(M) and K the stabilizer of the
point p. We can then see that there is a one to one map betweenM and
the quotient G/K. We start with the following fundamental theorem:

Theorem 3.1. — The following hold

(i) The group K is compact,
(ii) The quotient G/K is analytically diffeomorphic toM under the

map gK 7→ g · p0 where gK ∈ G/K,
(iii) The mapping σ : G −→ G, g 7→ sp ◦g ◦sp is an involutive automor-

phism of G. Moreover, if Gσ is the closed group of fixed points
of σ and Gσ◦ its connected components then Gσ◦ ⊂ K ⊂ Gσ.

Proof. —

For the sake of brevity, we omit the proof of (i) and (ii). We refer the
interested reader to [Hel01]. For (iii), the fact that σ is an involution stems
from the fact that s2p = IdM. Let h ∈ K, then σ(h)(p) = sp ◦ h ◦ sp(p) =
h(p) = p. So we deduce that K ⊂ Gσ. Let (gt) be a 1-parameter subgroup
of Gσ◦ . We have σ(gt) = gt, so sp ◦ gt ◦ sp = gt. Applying this to p yields
sp(gt(p)) = gt(p) for all t. But p is isolated as a fixed point of sp and
gt(p) tends to p as t → 0. So gt(p) = p for all t. Hence gt ∈ K. Hence
Gσ◦ ⊂ K.

�

Definition 3.1. — The involution σ is called a Cartan involution
of the symmetric spaceM∼= G/K.

Let dσ be the differential of the involution σ at e ∈ G. Since σ is an
involution the differential dσ is also an involution on the tangent space
g = TeG. Let k, p the +1 and −1 eigenspaces of dσ respectively. We have
the following

Proposition 3.2. — The space k is the Lie algebra of K and we
have

g = k⊕ p, [p, p] ⊂ k.

Furthermore , AdK(p) ⊂ p, in particular [k, p] ⊂ p.
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Proof. — Since [k, k] then k is a subalgebra of g and since Gσ◦ ⊂ K ⊂
Gσ we deduce that K and Gσ have the same Lie algebra which is the +1

eigenspace of dσ i.e. it is k. Sine dσ is a Lie algebra homomorphism we
deduce that [p, p] = k.. Notice that we have dσ ◦Ad(g) = Ad(σ(g)) ◦ dσ.
So if h ∈ K and x ∈ p i.e. σ(h) = h and dσ(x) = −x, this means that
dσ(Ad(h)(x)) = Ad(σ(h))(dσ(x)) = −Ad(σ(h))(x) = −Ad(h)(x). So
Ad(h)(x) ∈ p by definition of p. �

Such a decomposition g = k⊕ p is called a Cartan decomposition .
We now give a converse of theorem 3.1.

Proposition 3.3. — Let G be a connected Lie group and σ : G→ G

an involutive automorhism of G such that Gσ◦ is compact. Then for any
compact subgroup K with Gσ◦ ⊂ K ⊂ Gσ, the homogeneous space G/K,
equipped with any G-invariant metric, is a symmetric space, and such
metrics exist.

Proof. — Let g = k + p be the Cartan decomposition from above.
Homogeneous metrics on the quotient G/K are given by AdK-invariant
inner products on p. Since K is compact, such inner product do indeed
exist. Next, we show that any such metric is actually symmetric. Since
G/K is homogeneous, we only need to find an involution in one point. It it
not so hard to see that the induced map σ : G/K → G/K, gK → σ(g)K

is an involution fixing the point eK ∈ G/K.

�

Proposition 3.4. — Let g be a Lie algebra and g = k + p be a
decomposition (as vector spaces) satisfying

[k, k] ⊂ k, [k, p] ⊂ p and [p, p] ⊂ k, .

Then, if G is a simple connected Lie group such that Lie(G) = g and
K ⊂ G the connected subgroup of G with Lie algebra k, we have:

(1) There exists an involution σ : G→ G such that K = Gσ◦ ,

(2) If K is compact, then every G-invariant metric on G/K is a
symmetric space..

Proof. — For the sake of brevity the proof (which is not too hard:
linear algebra) is omitted.

�

Proposition 3.5. — The following hold:
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(1) IfM is a symmetric space and N ⊂M is a submanifold such
that for any p ∈ M we have sp(N ) = N then N is totally
geodesic and symmetric.

(2) Let σ : G → G be an involutive automorphism and M = G/K

the corresponding symmetric space. If H ⊂ G with σ(H) ⊂ H,
then H/(H ∩K) is a symmetric space such that H/(H ∩K) is
totally geodesic in G/K.

Proof. —

(1) By definition N ⊂M is totally geodesic if every geodesic in N
is also a geodesic inM. This follows because the involution sp
preserves the tangent space TpN inside TpM for all p ∈ N .

(2) This follows immediately from (1).

�

4. Some fundamental examples

TIn this section we go through some fundamental example that one
should keep in mind to gain intuition. We try to focus on the geomet-
ric aspect of things and keep technical details under the rug (we give
references whenever necessary).

4.1. The positive definite cone

Let n > 2 be an integer andMn the cone of positive definite matrices
i.e.

Mn := {A ∈ Rn×n : 〈x,Ax〉 > 0, for all non-zero x ∈ Rn}.

The spaeMn is an open set in Rn×n and is thus a Riemannian manifold
equipped with the metric 〈·, ·〉A defined by

〈X,Y 〉A := Tr(A−1XA−1Y ).

The Lie group GLn(R) acts on Mn transitively by g.A = gAgT and
it is not very hard to see that this action is an isometry of Mn. The
stabilizer of the identity Idn ∈Mn is the orthogonal group On(R) and
henceMn = GLn(R)/On(R). In terms of connected Lie groups one has

Mn := GL+
n (R)/SOn(R).

In the cartan decomposition g = k + p, the space k is the space of
skew symmetric matrices (Lie algebra of SOn(R)) and p is the space of
symmetric matrices.
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4.2. Symplectic geometry: Lagrangian subspaces of R2n

Let V be a vector space over R of dimension 2n and ω a symplectic form
on V . We call a subspace L of V Lagrangian if dim(L) = n and ω|L = 0.
There exists a symmplectic basis (or Darboux basis) p1, . . . , pn, q1, . . . , qn
such that ω =

∑n
i=1 pi ∧ qi. Thus there exists a scalar product 〈·, ·〉

together with a complex structure J ∈ End(V ) (i.e. J2 = − Id) such that
ω(x, y) = 〈x, Jy〉. So L is a lagrangian space if and ony if L ⊥ JL.

The set M of Lagrangian spaces in V can be equipped with the
structure of a symmetric space as follows. To simplify the matter we
identify (V, ω, J) with (R2n, ω0, J0) via a Darboux basis. The symplectic
group Spn(R) (leaving the form ω invariant) takes Lagrangian spaces to
Lagrangian spaces. We can see without much difficulty that the group
Un(C) is a subgroup of Spn(R) (actually Un(C) = Spn(R) ∩ O2n(R)).
Moreover, Un(C) acts transitively on M and, if L0 = Rn is the space
spanned by the first n vectors in the Darboux basis then the stabilizer of
L0 in Un(C) is the group On(R) (embedded diagonally in Spn(R)). We
then deduce thatM = Spn(R)/On(R). Or in terms of connected groups

M◦ = Un(C)/SOn(R).

There is not shortage of example and situations where symmetric
spaces arise and are relevant. We refer the reader to [Hel01] for more
examples.

5. Symmetric pairs

After having described symmetric spaces as quotients of groups, it is
relevant to give the following definition

Definition 5.1. — A symmetric pair (G,K) is a pair consisting of
a Lie group G, a compact subgroup K together with an involution σ of G
suh that Gσ◦ ⊂ K ⊂ Gσ and G acts almost effectively on G/K.

I did not finish this part due to lack of time. I am also
interested in studying non-archimeadean symmetric spaces
and p-adic Lie groups which I hope to add to these notes as

they grow.
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