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Abstract

Essays on Causal Inference in Randomized Experiments

by

Winston Lin

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Jasjeet S. Sekhon, Co-chair

Professor Terence P. Speed, Co-chair

This dissertation explores methodological topics in the analysis of randomized
experiments, with a focus on weakening the assumptions of conventional models.

Chapter 1 gives an overview of the dissertation, emphasizing connections with
other areas of statistics (such as survey sampling) and other fields (such as econo-
metrics and psychometrics).

Chapter 2 reexamines Freedman’s critique of ordinary least squares regression
adjustment in randomized experiments. Using Neyman’s model for randomization
inference, Freedman argued that adjustment can lead to worsened asymptotic pre-
cision, invalid measures of precision, and small-sample bias. This chapter shows
that in sufficiently large samples, those problems are minor or easily fixed. OLS
adjustment cannot hurt asymptotic precision when a full set of treatment–covariate
interactions is included. Asymptotically valid confidence intervals can be con-
structed with the Huber–White sandwich standard error estimator. Checks on the
asymptotic approximations are illustrated with data from a randomized evaluation
of strategies to improve college students’ achievement. The strongest reasons to
support Freedman’s preference for unadjusted estimates are transparency and the
dangers of specification search.

Chapter 3 extends the discussion and analysis of the small-sample bias of OLS
adjustment. The leading term in the bias of adjustment for multiple covariates is
derived and can be estimated empirically, as was done in Chapter 2 for the single-
covariate case. Possible implications for choosing a regression specification are
discussed.

Chapter 4 explores and modifies an approach suggested by Rosenbaum for anal-
ysis of treatment effects when the outcome is censored by death. The chapter is
motivated by a randomized trial that studied the effects of an intensive care unit
staffing intervention on length of stay in the ICU. The proposed approach esti-
mates effects on the distribution of a composite outcome measure based on ICU
mortality and survivors’ length of stay, addressing concerns about selection bias by
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comparing the entire treatment group with the entire control group. Strengths and
weaknesses of possible primary significance tests (including the Wilcoxon–Mann–
Whitney rank sum test and a heteroskedasticity-robust variant due to Brunner and
Munzel) are discussed and illustrated.
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Chapter 1

Overview

The essays in this dissertation are about the statistics of causal inference in
randomized experiments, but they draw on ideas from other branches of statistics
and other fields. In presentations to public policy researchers, I’ve mentioned an
excellent essay by the economist Joshua Angrist (2004) on the rise of randomized
experiments in education research. Commenting on the roles of outsiders from
economics, psychology, and other fields in this quiet revolution, Angrist writes that
“education research is too important to be left entirely to professional education
researchers.” Those may be fighting words, but I like to draw a conciliatory lesson:
Almost any community can benefit from an outside perspective. Statistics is too
important to be left entirely to statisticians, and causal inference is too important
to be left entirely to causal inference researchers.

1.1 Regression adjustment
David Freedman was a great statistician and probabilist, but he argued for more

humility about what statistics can accomplish. One of his many insightful es-
says is a critique of the use of regression for causal inference in observational
studies [Freedman (1991)]. Four of his final publications extend his critique to or-
dinary least squares regression adjustment in randomized experiments [Freedman
(2008ab)], logistic and probit regression in experiments [Freedman (2008d)], and
proportional hazards regression in experiments and observational studies [Freed-
man (2010)]. Chapter 2 of this dissertation responds to Freedman (2008ab) on
OLS adjustment.1

Random assignment is intended to create comparable treatment and control
groups, reducing the need for dubious statistical models. Nevertheless, researchers
often use linear regression models to “adjust” for random treatment–control differ-

1I largely agree with the other papers in Freedman’s quartet. Some of the issues with logits and
probits are also discussed in Firth and Bennett (1998), Lin (1999), Gelman and Pardoe (2007), and
pp. 323–324 of my Appendix D to Bloom et al. (1993).
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ences in baseline characteristics. The classic rationale, which assumes the regres-
sion model is true, is that adjustment tends to improve precision if the covariates
are correlated with the outcome and the sample size is much larger than the number
of covariates [e.g., Cox and McCullagh (1982)]. In contrast, Freedman (2008ab)
uses Neyman’s (1923) potential outcomes framework for randomization inference,
avoiding dubious assumptions about functional forms, error terms, and homoge-
neous treatment effects. He shows that (i) adjustment can actually hurt asymptotic
precision; (ii) the conventional OLS standard error estimator is inconsistent; and
(iii) the adjusted treatment effect estimator has a small-sample bias. He writes,
“The reason for the breakdown is not hard to find: randomization does not justify
the assumptions behind the OLS model.”

Chapter 2 argues that in sufficiently large samples, the problems Freedman
raised are minor or easily fixed. Under the Neyman model with Freedman’s reg-
ularity conditions, I show that (i) OLS adjustment cannot hurt asymptotic preci-
sion when a full set of treatment × covariate interactions is included, and (ii) the
Huber–White sandwich standard error estimator is consistent or asymptotically
conservative. I briefly discuss the small-sample bias issue, and I give an empirical
example to illustrate methods for estimating the bias and checking the validity of
confidence intervals.

The theorems in Chapter 2 are not its only goal.2 The chapter also offers in-
tuition and perspective on Freedman’s and my results, borrowing insights from
econometrics and survey sampling. In econometrics, regression is sometimes stud-
ied and taught from an “agnostic” view that assumes random sampling from an
infinite population but does not assume a regression model. As Goldberger (1991,
p. xvi) writes, “Whether a regression specification is ‘right’ or ‘wrong’ . . . one
can consider whether or not the population feature that [least squares] does con-
sistently estimate is an interesting one.” Moreover, the sandwich standard error
estimator remains consistent [Chamberlain (1982, pp. 17–19)]. This view of re-
gression is not often taught in statistics, although Buja et al. (2012) and Berk et al.
(2013) are notable recent exceptions.

In survey sampling, the design-based, model-assisted approach studies regres-
sion-adjusted estimators of population means in a similar spirit [Cochran (1977);
Särndal, Swennson, and Wretman (1992); Fuller (2002)]. Adjustment may achieve
greater precision improvement when the regression model fits well, but as Särndal
et al. write (p. 227): “The basic properties (approximate unbiasedness, validity of
the variance formulas, etc.) . . . are not dependent on whether the model ξ holds or
not. Our procedures are thus model assisted, but they are not model dependent.”

2The mathematician William Thurston argued against overemphasis on “theorem-credits,” writ-
ing that “we would be much better off recognizing and valuing a far broader range of activity”
[Thurston (1994)]. Rereading math textbooks after the field had “come alive” for him, he “was
stunned by how well their formalism and indirection hid the motivation, the intuition and the mul-
tiple ways to think about their subjects: they were unwelcoming to the full human mind” [Thurston
(2006)].
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I argue that the parallels between regression adjustment in experiments and re-
gression estimators in sampling are underexplored and that the sampling analogy
naturally suggests adjustment with treatment × covariate interactions.3

Chapter 2 is not designed to serve as a guide to practice, although I hope it gives
some helpful input for future guides to practice. It focuses on putting Freedman’s
critique in perspective and responding to the specific theoretical issues he raised.
I give a bit more discussion of practical implications in a companion blog essay
[Lin (2012ab)].

Chapter 3 gives additional results on the small-sample bias of OLS adjustment,
which received less attention in Chapter 2 than Freedman’s other two issues. In
Chapter 2, I showed how to estimate the leading term in the bias of OLS adjust-
ment for a single covariate (with and without the treatment × covariate interac-
tion), using the sample analogs of asymptotic formulas from Cochran (1977) and
Freedman (2008b). Chapter 3 derives and discusses the leading term in the bias
of adjustment for multiple covariates, which turns out to involve the diagonal el-
ements of the hat matrix [Hoaglin and Welsch (1978)] and can be estimated from
the data. The theoretical expression for the leading term may also be relevant to
choosing a regression specification when the sample is small.

As Efron and Tibshirani (1993, p. 138) write in the bootstrap literature, “Bias
estimation is usually interesting and worthwhile, but the exact use of a bias esti-
mate is often problematic.” Using a bias estimate to “correct” the original esti-
mator can do more harm than good: the reduction in bias is often outweighed by
an increase in variance. Thus, I am only suggesting bias estimation for a ballpark
idea of whether small-sample bias is a serious problem.

1.2 Censoring by death and the nonparametric
Behrens–Fisher problem

Chapter 4 is motivated by a specific application, but focuses on methodologi-
cal issues that may be of broader interest. The SUNSET-ICU trial [Kerlin et al.
(2013)] studied the effectiveness of 24-hour staffing by intensivist physicians in an
intensive care unit, compared to having intensivists available in person during the
day and by phone at night. The primary outcome was length of stay in the ICU.
(Longer ICU stays are associated with increased stress and discomfort for patients
and their families, as well as increased costs for patients, hospitals, and society.)
A significant proportion of patients die in the ICU, and there are no reliable ways
to disentangle an intervention’s effects on length of stay from its effects on mor-
tality. Conventional approaches (e.g., analyzing only survivors, pooling survivors

3Fienberg and Tanur (1987, 1996) discuss many parallels between experiments and sampling and
argue that the two fields drifted apart because of the rift between R. A. Fisher and Jerzy Neyman.
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and non-survivors, or proportional hazards modeling) depend on assumptions that
are often unstated and difficult to interpret or check.

Chapter 4 explores an approach adapted from Rosenbaum (2006) that avoids
selection bias and makes its assumptions explicit. In our context, the approach
requires a “placement of death” relative to survivors’ possible lengths of stay, such
as “Death in the ICU is the worst possible outcome” or “Death in the ICU and a
survivor’s 100-day ICU stay are considered equally undesirable.” Given a place-
ment of death, we can compare the entire treatment group with the entire control
group to estimate the intervention’s effects on the median outcome and other quan-
tiles. As researchers, we cannot decide the appropriate placement of death, but we
can show how the results vary over a range of placements.

Rosenbaum’s original proposal appeared in a comment on Rubin (2006a) and
has not been used in empirical studies (to my knowledge). Rosenbaum derives
exact, randomization-based confidence intervals for a nonstandard estimand; as
Rubin (2006b) notes, the proposal is “deep and creative” but may be “difficult to
convey to consumers.” Chapter 4 discusses ways to construct approximate confi-
dence intervals for more familiar estimands (treatment effects on quantiles of the
outcome distribution or on proportions of patients with outcomes better than var-
ious cutoff values). Simulation evidence on the validity of bootstrap confidence
intervals for quantile treatment effects is presented.

Recommended practice for analysis of clinical trials includes pre-specification
of a primary outcome measure. As stated in the CONSORT explanation and elabo-
ration document, “Having several primary outcomes . . . incurs the problems of in-
terpretation associated with multiplicity of analyses . . . and is not recommended”
[Moher et al. (2010, p. 7)]. In the approach of Chapter 4, the same principle
may suggest designating one quantile as primary. The median may seem a natural
choice, but some interventions may be intended to shorten long ICU stays without
necessarily reducing the median. It may be difficult to predict which points in the
outcome distribution are likely to be affected.

An alternative strategy is to pre-specify that the primary significance test is a
rank test with some sensitivity to effects throughout the outcome distribution.4

Rubin (2006b) comments that the Wilcoxon–Mann–Whitney rank sum test could
be combined with Rosenbaum’s approach. More broadly, the econometricians
Guido Imbens and Jeffrey Wooldridge (2009, pp. 21–23) suggest the Wilcoxon
test as an omnibus test for “establishing whether the treatment has any effect” in
randomized experiments. Imbens has explained his views in presentations and in
blog comments that merit quoting at length:

• “Why then do I think it is useful to do the randomization test using average
ranks as the statistic instead of doing a t-test? I think rather than being in-

4In general I agree with the notion that confidence intervals should be preferred to tests. In
Chapter 4’s empirical example, I report Brunner and Munzel’s (2000) test together with a confi-
dence interval for the associated estimand.
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terested very specifically in the question whether the average effect differs
from zero, one is typically interested in the question whether there is evi-
dence that there is a positive (or negative) effect of the treatment. That is a
little vague, but more general than simply a non-zero average effect. If we
can’t tell whether the average effect differs from zero, but we can be confi-
dent that the lower tail of the distribution moves up, that would be informa-
tive. I think this vaguer null is well captured by looking at the difference in
average ranks: do the treated have higher ranks on average than the controls.
I would interpret that as implying that the treated have typically higher out-
comes than the controls (not necessarily on average, but typically).” [Imbens
(2011a)]

• “Back to the randomization tests. Why do I like them? I think they are a
good place to start an analysis. If you have a randomized experiment, and
you find that using a randomization test based on ranks that there is little
evidence of any effect of the treatment, I would be unlikely to be impressed
by any model-based analysis that claimed to find precise non-zero effects of
the treatment. It is possible, and the treatment could affect the dispersion
and not the location, but in most cases if you don’t find any evidence of
any effects based on that single randomization based test, I think you can
stop right there. I see the test not so much as answering whether in the
population the effects are all zero (not so interesting), rather as answering
the question whether the data are rich enough to make precise inferences
about the effects.” [Imbens (2011b)]

I think Imbens’s advice is very well thought out, but I would prefer a different
test. Chapter 4 discusses the properties of the Wilcoxon test and a heterosked-
asticity-robust variant due to Brunner and Munzel (2000). The Wilcoxon test is
valid for the strong null hypothesis that treatment has no effect on any patient, but
whether researchers should be satisfied with a test of the strong null is debatable.
The Mann–Whitney form of the test statistic naturally suggests the weaker null hy-
pothesis that if we sample the treated and untreated potential outcome distributions
independently, a random outcome under treatment is equally likely to be better or
worse than a random outcome in the absence of treatment. There is an interesting,
somewhat neglected literature on the “nonparametric Behrens–Fisher problem” of
testing the weak null, extending from Pratt (1964) to recent work by the econome-
trician EunYi Chung and the statistician Joseph Romano [Romano (2009); Chung
and Romano (2011)].5

The chapter gives simulations that illustrate and support Pratt’s (1964) asymp-
totic analysis. The Wilcoxon test is not a valid test of the weak null, even when the

5This literature is not explicitly causal. An example of a descriptive application is the null hy-
pothesis that a random Australian is equally likely to be taller or shorter than a random Canadian.
The psychometrician Andrew Ho (2009) gives a helpful discussion of a related literature on non-
parametric methods for comparing test score distributions, trends, and gaps.
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design is balanced. It is valid for the strong null, but it is sensitive to certain kinds
of departures from the strong null and not others. These properties complicate the
test’s interpretation and are probably not well-known to most of its users. In con-
trast, the Brunner–Munzel test is an approximately valid test of the weak null in
sufficiently large samples.6 In simulations based on the SUNSET-ICU trial data,
the two tests have approximately equal power.

An illustrative example reanalyzes the SUNSET-ICU data. I find no evidence
that the intervention affected the distribution of patients’ outcomes, regardless of
whether death is considered the worst possible outcome or placed as comparable
to a length of stay as short as 30 days. Since there was little difference in ICU
mortality between the treatment and control groups, it is not surprising that this
conclusion is similar to the original findings of Kerlin et al. (2013).

It should be noted that Chapter 4’s placement-of-death approach does not es-
timate treatment effects on ICU length of stay per se. Instead, it estimates ef-
fects on the distribution of a composite outcome measure based on ICU mortality
and survivors’ lengths of stay. Researchers may understandably want to disen-
tangle effects on length of stay from effects on mortality, but opinions may differ
on whether this can be done persuasively, since stronger assumptions would be
needed. Thus, the placement-of-death approach does not answer all relevant ques-
tions, but it may be a useful starting point. It addresses concerns about selection
bias by comparing the entire treatment group with the entire control group, and it
can provide evidence of an overall beneficial or harmful effect.

6Neubert and Brunner (2007) propose a permutation test based on the Brunner–Munzel statistic.
Their test is exact for the strong null and asymptotically valid for the weak null.
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Chapter 2

Agnostic notes on regression
adjustments to experimental data:
Reexamining Freedman’s critique

2.1 Introduction
One of the attractions of randomized experiments is that, ideally, the strength

of the design reduces the need for statistical modeling. Simple comparisons of
means can be used to estimate the average effects of assigning subjects to treat-
ment. Nevertheless, many researchers use linear regression models to adjust for
random differences between the baseline characteristics of the treatment groups.
The usual rationale is that adjustment tends to improve precision if the sample is
large enough and the covariates are correlated with the outcome; this argument,
which assumes that the regression model is correct, stems from Fisher (1932) and
is taught to applied researchers in many fields. At research firms that conduct
randomized experiments to evaluate social programs, adjustment is standard prac-
tice.1

In an important and influential critique, Freedman (2008ab) analyzes the be-
havior of ordinary least squares regression-adjusted estimates without assuming a
regression model. He uses Neyman’s (1923) model for randomization inference:
treatment effects can vary across subjects, linearity is not assumed, and random as-
signment is the source of variability in estimated average treatment effects. Freed-
man shows that (i) adjustment can actually worsen asymptotic precision, (ii) the
conventional OLS standard error estimator is inconsistent, and (iii) the adjusted
treatment effect estimator has a small-sample bias. He writes [Freedman (2008a)],
“The reason for the breakdown is not hard to find: randomization does not justify

1Cochran (1957), Cox and McCullagh (1982), Raudenbush (1997), and Klar and Darlington
(2004) discuss precision improvement. Greenberg and Shroder (2004) document the use of regres-
sion adjustment in many randomized social experiments.
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the assumptions behind the OLS model.”
This chapter offers an alternative perspective. Although I agree with Freed-

man’s (2008b) general advice (“Regression estimates . . . should be deferred until
rates and averages have been presented”), I argue that in sufficiently large samples,
the statistical problems he raised are either minor or easily fixed. Under the Ney-
man model with Freedman’s regularity conditions, I show that (i) OLS adjustment
cannot hurt asymptotic precision when a full set of treatment × covariate interac-
tions is included, and (ii) the Huber–White sandwich standard error estimator is
consistent or asymptotically conservative (regardless of whether the interactions
are included). I also briefly discuss the small-sample bias issue and the distinction
between unconditional and conditional unbiasedness.

Even the traditional OLS adjustment has benign large-sample properties when
subjects are randomly assigned to two groups of equal size. Freedman (2008a)
shows that in this case, adjustment (without interactions) improves or does not hurt
asymptotic precision, and the conventional standard error estimator is consistent
or asymptotically conservative. However, Freedman and many excellent applied
statisticians in the social sciences have summarized his papers in terms that omit
these results and emphasize the dangers of adjustment. For example, Berk et al.
(2010) write: “Random assignment does not justify any form of regression with
covariates. If regression adjustments are introduced nevertheless, there is likely to
be bias in any estimates of treatment effects and badly biased standard errors.”

One aim of this chapter is to show that such a negative view is not always
warranted. A second aim is to help provide a more intuitive understanding of
the properties of OLS adjustment when the regression model is incorrect. An
“agnostic” view of regression [Angrist and Imbens (2002); Angrist and Pischke
(2009, ch. 3)] is adopted here: without taking the regression model literally, we can
still make use of properties of OLS that do not depend on the model assumptions.

Precedents
Similar results on the asymptotic precision of OLS adjustment with interactions

are proved in interesting and useful papers by Yang and Tsiatis (2001), Tsiatis et al.
(2008), and Schochet (2010), under the assumption that the subjects are a random
sample from an infinite superpopulation.2 These results are not widely known, and
Freedman was apparently unaware of them. He did not analyze adjustment with
interactions, but conjectured, “Treatment by covariate interactions can probably be
accommodated too” [Freedman (2008b, p. 186)].

Like Freedman, I use the Neyman model, in which random assignment of a fi-
nite population is the sole source of randomness; for a thoughtful philosophical

2Although Tsiatis et al. write that OLS adjustment without interactions “is generally more precise
than . . . the difference in sample means” (p. 4661), Yang and Tsiatis’s asymptotic variance formula
correctly implies that this adjustment may help or hurt precision.
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discussion of finite- vs. infinite-population inference, see Reichardt and Gollob
(1999, pp. 125–127). My purpose is not to advocate finite-population inference,
but to show just how little needs to be changed to address Freedman’s major con-
cerns. The results may help researchers understand why and when OLS adjustment
can backfire. In large samples, the essential problem is omission of treatment ×
covariate interactions, not the linear model. With a balanced two-group design,
even that problem disappears asymptotically, because two wrongs make a right
(underadjustment of one group mean cancels out overadjustment of the other).

Neglected parallels between regression adjustment in experiments and regres-
sion estimators in survey sampling turn out to be very helpful for intuition.

2.2 Basic framework
For simplicity, the main results in this chapter assume a completely random-

ized experiment with two treatment groups (or a treatment group and a control
group), as in Freedman (2008a). Results for designs with more than two groups
are discussed informally.

The Neyman model with covariates
The notation is adapted from Freedman (2008b). There are n subjects, indexed

by i = 1, . . . ,n. We assign a simple random sample of fixed size nA to treatment
A and the remaining n−nA subjects to treatment B. For each subject, we observe
an outcome Yi and a row vector of covariates zi = (zi1, . . . ,ziK), where 1 ≤ K <
min(nA,n−nA)−1. Treatment does not affect the covariates.

Assume that each subject has two potential outcomes [Neyman (1923); Rubin
(1974, 2005); Holland (1986)], ai and bi, which would be observed under treat-
ments A and B, respectively.3 Thus, the observed outcome is Yi = aiTi+bi(1−Ti),
where Ti is a dummy variable for treatment A.

Random assignment is the sole source of randomness in this model. The n
subjects are the population of interest; they are not assumed to be randomly drawn
from a superpopulation. For each subject, ai, bi, and zi are fixed, but Ti and thus Yi
are random.

Let a, aA, and aB denote the means of ai over the population, treatment group
A, and treatment group B:

a =
1
n

n

∑
i=1

ai, aA =
1

nA
∑
i∈A

ai, aB =
1

n−nA
∑
i∈B

ai.

Use similar notation for the means of bi, Yi, zi, and other variables.
3Most authors use notation such as Yi(1) and Yi(0), or Y1i and Y0i, for potential outcomes. Freed-

man’s (2008b) choice of ai and bi helps make the finite-population asymptotics more readable.
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Our goal is to estimate the average treatment effect of A relative to B:

ATE = a−b.

Estimators of average treatment effect
The unadjusted or difference-in-means estimator of ATE is

ÂTEunadj = Y A−Y B = aA−bB.

The usual OLS-adjusted estimator of ATE is the estimated coefficient on Ti in
the OLS regression of Yi on Ti and zi. (All regressions described in this chapter
include intercepts.) Let ÂTEadj denote this estimator.

A third estimator, ÂTEinteract, can be computed as the estimated coefficient on
Ti in the OLS regression of Yi on Ti, zi, and Ti(zi− z). Section 2.3 motivates this
estimator by analogy with regression estimators in survey sampling. In the context
of observational studies, Imbens and Wooldridge (2009, pp. 28–30) give a theoret-
ical analysis of ÂTEinteract, and a related method is known as the Peters–Belson or
Oaxaca–Blinder estimator.4 When zi is a set of indicators for the values of a cat-
egorical variable, ÂTEinteract is equivalent to subclassification or poststratification
[Miratrix, Sekhon, and Yu (2013)].

2.3 Connections with sampling
Cochran (1977, ch. 7) gives a very readable discussion of regression estimators

in sampling.5 In one example [Watson (1937)], the goal was to estimate y, the
average surface area of the leaves on a plant. Measuring a leaf’s area is time-
consuming, but its weight can be found quickly. So the researcher weighed all the
leaves, but measured area for only a small sample. In simple random sampling,
the sample mean area yS is an unbiased estimator of y. But yS ignores the auxiliary
data on leaf weights. The sample and population mean weights (zS and z) are
both known, and if z > zS, then we expect that y > yS. This motivates a “linear
regression estimator”

ŷreg = yS +q(z− zS) (2.3.1)

where q is an adjustment factor. One way to choose q is to regress leaf area on leaf
weight in the sample.

Regression adjustment in randomized experiments can be motivated analogously
under the Neyman model. The potential outcome ai is measured for only a sim-
ple random sample (treatment group A), but the covariates zi are measured for the

4See Cochran (1969), Rubin (1984), and Kline (2011). Hansen and Bowers (2009) analyze a
randomized experiment with a variant of the Peters–Belson estimator derived from logistic regres-
sion.

5See also Fuller (2002, 2009).

10



whole population (the n subjects). The sample mean aA is an unbiased estimator
of a, but it ignores the auxiliary data on zi. If the covariates are of some help in
predicting ai, then another estimator to consider is

âreg = aA +(z− zA)qa (2.3.2)

where qa is a K×1 vector of adjustment factors. Similarly, we can consider using

b̂reg = bB +(z− zB)qb (2.3.3)

to estimate b and then âreg− b̂reg to estimate ATE = a−b.
The analogy suggests deriving qa and qb from OLS regressions of ai on zi in

treatment group A and bi on zi in treatment group B—in other words, separate
regressions of Yi on zi in the two treatment groups. The estimator âreg− b̂reg is
then just ÂTEinteract. If, instead, we use a pooled regression of Yi on Ti and zi to
derive a single vector qa = qb, then we get ÂTEadj.

Connections between regression adjustment in experiments and regression esti-
mators in sampling have been noted but remain underexplored.6 All three of the
issues that Freedman raised have parallels in the sampling literature. Under sim-
ple random sampling, when the regression model is incorrect, OLS adjustment of
the estimated mean still improves or does not hurt asymptotic precision [Cochran
(1977)], consistent standard error estimators are available [Fuller (1975)], and the
adjusted estimator of the mean has a small-sample bias [Cochran (1942)].

2.4 Asymptotic precision

Precision improvement in sampling
This subsection gives an informal argument, adapted from Cochran (1977), to

show that in simple random sampling, OLS adjustment of the sample mean im-
proves or does not hurt asymptotic precision, even when the regression model is
incorrect. Regularity conditions and other technical details are omitted; the pur-
pose is to motivate the results on completely randomized experiments in the next
subsection.

First imagine using a “fixed-slope” regression estimator, where q in Eq. (2.3.1)
is fixed at some value q0 before sampling:

ŷ f = yS +q0(z− zS).

6Connections are noted by Fienberg and Tanur (1987), Hansen and Bowers (2009), and Middle-
ton and Aronow (2012) but are not mentioned by Cochran despite his important contributions to
both literatures. He takes a design-based (agnostic) approach in much of his work on sampling, but
assumes a regression model in his classic overview of regression adjustment in experiments and
observational studies [Cochran (1957)].
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If q0 = 0, ŷ f is just yS. More generally, ŷ f is the sample mean of yi−q0(zi− z), so
its variance follows the usual formula with a finite-population correction:

var
(

ŷ f

)
=

N−n
N−1

1
n

1
N

N

∑
i=1

[(yi− y)−q0(zi− z)]2

where N is the population size and n is the sample size.
Thus, choosing q0 to minimize the variance of ŷ f is equivalent to running an

OLS regression of yi on zi in the population. The solution is the “population least
squares” slope,

qPLS =
∑

N
i=1(zi− z)(yi− y)

∑
N
i=1(zi− z)2

,

and the minimum-variance fixed-slope regression estimator is

ŷPLS = yS +qPLS(z− zS).

Since the sample mean yS is a fixed-slope regression estimator, it follows that
ŷPLS has lower variance than the sample mean, unless qPLS = 0 (in which case
ŷPLS = yS).

The actual OLS regression estimator is almost as precise as ŷPLS in sufficiently
large samples. The difference between the two estimators is

ŷOLS− ŷPLS = (q̂OLS−qPLS)(z− zS)

where q̂OLS is the estimated slope from a regression of yi on zi in the sample. The
estimation errors q̂OLS−qPLS, zS−z, and ŷPLS−y are of order 1/

√
n in probability.

Thus, the difference ŷOLS− ŷPLS is of order 1/n, which is negligible compared to
the estimation error in ŷPLS when n is large enough.

In sum, in large enough samples,

var
(

ŷOLS

)
≈ var

(
ŷPLS

)
≤ var(yS)

and the inequality is strict unless yi and zi are uncorrelated in the population.

Precision improvement in experiments
The sampling result naturally leads to the conjecture that in a completely ran-

domized experiment, OLS adjustment with a full set of treatment× covariate inter-
actions improves or does not hurt asymptotic precision, even when the regression
model is incorrect. The adjusted estimator ÂTEinteract is just the difference be-
tween two OLS regression estimators from sampling theory, while ÂTEunadj is the
difference between two sample means.

The conjecture is confirmed below. To summarize the results:
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1. ÂTEinteract is consistent and asymptotically normal (as are ÂTEunadj and
ÂTEadj, from Freedman’s results).

2. Asymptotically, ÂTEinteract is at least as efficient as ÂTEunadj, and more effi-
cient unless the covariates are uncorrelated with the weighted average

n−nA

n
ai +

nA

n
bi.

3. Asymptotically, ÂTEinteract is at least as efficient as ÂTEadj, and more effi-
cient unless (a) the two treatment groups have equal size or (b) the covariates
are uncorrelated with the treatment effect ai−bi.

Assumptions for asymptotics

Finite-population asymptotic results are statements about randomized experi-
ments on (or random samples from) an imaginary infinite sequence of finite popu-
lations, with increasing n. The regularity conditions (assumptions on the limiting
behavior of the sequence) may seem vacuous, since one can always construct a
sequence that contains the actual population and still satisfies the conditions. But
it may be useful to ask whether a sequence that preserves any relevant “irregular-
ities” (such as the influence of gross outliers) would violate the regularity condi-
tions. See also Lumley (2010, pp. 217–218).

The asymptotic results in this chapter assume Freedman’s (2008b) regularity
conditions, generalized to allow multiple covariates; the number of covariates K
is constant as n grows. One practical interpretation of these conditions is that in
order for the results to be applicable, the size of each treatment group should be
sufficiently large (and much larger than the number of covariates), the influence of
outliers should be small, and near-collinearity in the covariates should be avoided.

As Freedman (2008a) notes, in principle, there should be an extra subscript to
index the sequence of populations: for example, in the population with n subjects,
the ith subject has potential outcomes ai,n and bi,n, and the average treatment effect
is ATEn. Like Freedman, I drop the extra subscripts.

Condition 1. There is a bound L <∞ such that for all n= 1,2, . . . and k = 1, . . . ,K,

1
n

n

∑
i=1

a4
i < L,

1
n

n

∑
i=1

b4
i < L,

1
n

n

∑
i=1

z4
ik < L.

Condition 2. Let Z be the n×(K+1) matrix whose ith row is (1,zi). Then n−1Z′Z
converges to a finite, invertible matrix. Also, the population means of ai, bi, a2

i ,
b2

i , aibi, aizi, and bizi converge to finite limits. For example, limn→∞ n−1
∑

n
i=1 aizi

exists and is a finite vector.

Condition 3. The proportion nA/n converges to a limit pA, with 0 < pA < 1.
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Asymptotic results

Let Qa denote the limit of the vector of slope coefficients in the population least
squares regression of ai on zi. That is,

Qa = lim
n→∞

( n

∑
i=1

(zi− z)′(zi− z)

)−1 n

∑
i=1

(zi− z)′(ai−a)

 .
Define Qb analogously.

Now define the prediction errors

a∗i = (ai−a)− (zi− z)Qa, b∗i = (bi−b)− (zi− z)Qb

for i = 1, . . . ,n.
For any variables xi and yi, let σ2

x and σx,y denote the population variance of xi
and the population covariance of xi and yi. For example,

σa∗,b∗ =
1
n

n

∑
i=1

(
a∗i −a∗

)(
b∗i −b∗

)
=

1
n

n

∑
i=1

a∗i b∗i .

Theorem 2.1 and its corollaries are proved in Appendix A.

Theorem 2.1. Assume Conditions 1–3. Then
√

n(ÂTEinteract−ATE) converges in
distribution to a Gaussian random variable with mean 0 and variance

1− pA

pA
lim
n→∞

σ
2
a∗+

pA

1− pA
lim
n→∞

σ
2
b∗+2 lim

n→∞
σa∗,b∗.

Corollary 2.1.1. Assume Conditions 1–3. Then ÂTEunadj has at least as much
asymptotic variance as ÂTEinteract. The difference is

1
npA(1− pA)

lim
n→∞

σ
2
E

where Ei = (zi−z)QE and QE = (1− pA)Qa + pAQb. Therefore, adjustment with
ÂTEinteract helps asymptotic precision if QE 6= 0 and is neutral if QE = 0.

Remarks. (i) QE can be thought of as a weighted average of Qa and Qb, or as the
limit of the vector of slope coefficients in the population least squares regression
of (1− pA)ai + pAbi on zi.

(ii) The weights may seem counterintuitive at first, but the sampling analogy
and Eqs. (2.3.2–2.3.3) can help. Other things being equal, adjustment has a larger
effect on the estimated mean from the smaller treatment group, because its mean
covariate values are further away from the population mean. The adjustment added
to aA is

(z− zA)Q̂a =
n−nA

n
(zB− zA)Q̂a
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while the adjustment added to bB is

(z− zB)Q̂b =−
nA

n
(zB− zA)Q̂b,

where Q̂a and Q̂b are OLS estimates that converge to Qa and Qb.
(iii) If the covariates’ associations with ai and bi go in opposite directions, it is

possible for adjustment with ÂTEinteract to have no effect on asymptotic precision.
Specifically, if (1− pA)Qa =−pAQb, the adjustments to aA and bB tend to cancel
each other out.

(iv) In designs with more than two treatment groups, estimators analogous to
ÂTEinteract can be derived from a separate regression in each treatment group, or
equivalently a single regression with the appropriate treatment dummies, covari-
ates, and interactions. The resulting estimator of (for example) a−b is at least as
efficient as Y A−Y B, and more efficient unless the covariates are uncorrelated with
both ai and bi. Appendix A gives a proof.

Corollary 2.1.2. Assume Conditions 1–3. Then ÂTEadj has at least as much
asymptotic variance as ÂTEinteract. The difference is

(2pA−1)2

npA(1− pA)
lim
n→∞

σ
2
D

where Di = (zi− z)(Qa−Qb). Therefore, the two estimators have equal asymp-
totic precision if pA = 1/2 or Qa = Qb. Otherwise, ÂTEinteract is asymptotically
more efficient.

Remarks. (i) Qa−Qb is the limit of the vector of slope coefficients in the popu-
lation least squares regression of the treatment effect ai−bi on zi.

(ii) For intuition about the behavior of ÂTEadj, suppose there is a single covari-
ate, zi, and the population least squares slopes are Qa = 10 and Qb = 2. Let Q̂
denote the estimated coefficient on zi from a pooled OLS regression of Yi on Ti
and zi. In sufficiently large samples, Q̂ tends to fall close to pAQa +(1− pA)Qb.
Consider two cases:

• If the two treatment groups have equal size, then z− zB = −(z− zA), so
when z−zA = 1, the ideal linear adjustment would add 10 to aA and subtract
2 from bB. Instead, ÂTEadj uses the pooled slope estimate Q̂≈ 6, so it tends
to underadjust aA (adding about 6) and overadjust bB (subtracting about 6).
Two wrongs make a right: the adjustment adds about 12 to aA−bB, just as
ÂTEinteract would have done.

• If group A is 9 times larger than group B, then z− zB =−9(z− zA), so when
z− zA = 1, the ideal linear adjustment adds 10 to aA and subtracts 9 ·2 = 18
from bB, thus adding 28 to the estimate of ATE. In contrast, the pooled
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adjustment adds Q̂≈ 9.2 to aA and subtracts 9Q̂≈ 82.8 from bB, thus adding
about 92 to the estimate of ATE. The problem is that the pooled regression
has more observations of ai than of bi, but the adjustment has a larger effect
on the estimate of b than on that of a, since group B’s mean covariate value
is further away from the population mean.

(iii) The example above suggests an alternative regression adjustment: when
group A has nine-tenths of the subjects, give group B nine-tenths of the weight.
More generally, let p̃A = nA/n. Run a weighted least squares regression of Yi on
Ti and zi, with weights of (1− p̃A)/p̃A on each observation from group A and
p̃A/(1− p̃A) on each observation from group B. This “tyranny of the minority”
estimator is asymptotically equivalent to ÂTEinteract (Appendix A outlines a proof).
It is equal to ÂTEadj when p̃A = 1/2.

(iv) The tyranny estimator can also be seen as a one-step variant of Rubin and
van der Laan’s (2011) two-step “targeted ANCOVA.” Their estimator is equivalent
to the difference in means of the residuals from a weighted least squares regression
of Yi on zi, with the same weights as in remark (iii).

(v) When is the usual adjustment worse than no adjustment? Eq. (23) in Freed-
man (2008a) implies that with a single covariate zi, for ÂTEadj to have higher
asymptotic variance than ÂTEunadj, a necessary (but not sufficient) condition is
that either the design must be so imbalanced that more than three-quarters of the
subjects are assigned to one group, or zi must have a larger covariance with the
treatment effect ai− bi than with the expected outcome pAai +(1− pA)bi. With
multiple covariates, a similar condition can be derived from Eq. (14) in Schochet
(2010).

(vi) With more than two treatment groups, the usual adjustment can be worse
than no adjustment even when the design is balanced [Freedman (2008b)]. All the
groups are pooled in a single regression without treatment× covariate interactions,
so group B’s data can affect the contrast between A and C.

Example

This simulation illustrates some of the key ideas.

1. For n = 1,000 subjects, a covariate zi was drawn from the uniform distribu-
tion on [−4,4]. The potential outcomes were then generated as

ai =
exp(zi)+ exp(zi/2)

4
+νi,

bi =
−exp(zi)+ exp(zi/2)

4
+ εi

with νi and εi drawn independently from the standard normal distribution.
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Table 2.1: Simulation (1,000 subjects; 40,000 replications)

Estimator Proportion assigned to treatment A
0.75 0.6 0.5 0.4 0.25

SD (asymptotic) × 1,000
Unadjusted 93 49 52 78 143
Usual OLS-adjusted 171 72 46 79 180
OLS with interaction 80 49 46 58 98
Tyranny of the minority 80 49 46 58 98

SD (empirical) × 1,000
Unadjusted 93 49 53 78 142
Usual OLS-adjusted 171 73 47 80 180
OLS with interaction 81 50 47 59 99
Tyranny of the minority 81 50 47 59 99

Bias (estimated) × 1,000
Unadjusted 0 0 0 0 −2
Usual OLS-adjusted −3 −3 −3 −3 −5
OLS with interaction −5 −3 −3 −4 −6
Tyranny of the minority −5 −3 −3 −4 −6

2. A completely randomized experiment was simulated 40,000 times, assign-
ing nA = 750 subjects to treatment A and the remainder to treatment B.

3. Step 2 was repeated for four other values of nA (600, 500, 400, and 250).

These are adverse conditions for regression adjustment: zi covaries much more
with the treatment effect ai−bi than with the potential outcomes, and the popula-
tion least squares slopes Qa = 1.06 and Qb =−0.73 are of opposite signs.

Table 2.1 compares ÂTEunadj, ÂTEadj, ÂTEinteract, and the “tyranny of the mi-
nority” estimator from remark (iii) after Corollary 2.1.2. The first panel shows
the asymptotic standard errors derived from Freedman’s (2008b) Theorems 1 and
2 and this chapter’s Theorem 2.1 (with limits replaced by actual population val-
ues). The second and third panels show the empirical standard deviations and bias
estimates from the Monte Carlo simulation.

The empirical standard deviations are very close to the asymptotic predictions,
and the estimated biases are small in comparison. The usual adjustment hurts pre-
cision except when nA/n = 0.5. In contrast, ÂTEinteract and the tyranny estimator
improve precision except when nA/n = 0.6. [This is approximately the value of
pA where ÂTEinteract and ÂTEunadj have equal asymptotic variance; see remark (iii)
after Corollary 2.1.1.]
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Randomization does not “justify” the regression model of ÂTEinteract, and the
linearity assumption is far from accurate in this example, but the estimator solves
Freedman’s asymptotic precision problem.

2.5 Variance estimation
Eicker (1967) and White (1980ab) proposed a covariance matrix estimator for

OLS that is consistent under simple random sampling from an infinite population.
The regression model assumptions, such as linearity and homoskedasticity, are not
needed for this result.7 The estimator is

(X′X)−1X′ diag(ε̂2
1, . . . , ε̂

2
n)X(X′X)−1

where X is the matrix of regressors and ε̂i is the ith OLS residual. It is known as the
sandwich estimator because of its form, or as the Huber–White estimator because
it is the sample analog of Huber’s (1967) formula for the asymptotic variance of a
maximum likelihood estimator when the model is incorrect.

Theorem 2.2 shows that under the Neyman model, the sandwich variance es-
timators for ÂTEadj and ÂTEinteract are consistent or asymptotically conservative.
Together, Theorems 2.1 and 2.2 in this chapter and Theorem 2 in Freedman (2008b)
imply that asymptotically valid confidence intervals for ATE can be constructed
from either ÂTEadj or ÂTEinteract and the sandwich standard error estimator.

The vectors Qa and Qb were defined in Section 2.4. Let Q denote the weighted
average pAQa +(1− pA)Qb. As shown in Freedman (2008b) and Appendix A,
Q is the probability limit of the vector of estimated coefficients on zi in the OLS
regression of Yi on Ti and zi.

Mimicking Section 2.4, define the prediction errors

a∗∗i = (ai−a)− (zi− z)Q, b∗∗i = (bi−b)− (zi− z)Q

for i = 1, . . . ,n.
Theorem 2.2 is proved in Appendix A.

Theorem 2.2. Assume Conditions 1–3. Let v̂adj and v̂interact denote the sandwich
variance estimators for ÂTEadj and ÂTEinteract. Then nv̂adj converges in probability
to

1
pA

lim
n→∞

σ
2
a∗∗+

1
1− pA

lim
n→∞

σ
2
b∗∗,

which is greater than or equal to the true asymptotic variance of
√

n(ÂTEadj−
ATE). The difference is

lim
n→∞

σ
2
(a−b) = lim

n→∞

1
n

n

∑
i=1

[(ai−bi)−ATE]2.

7See, e.g., Chamberlain (1982, pp. 17–19) or Angrist and Pischke (2009, pp. 40–48). Fuller
(1975) proves a finite-population version of the result.
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Similarly, nv̂interact converges in probability to

1
pA

lim
n→∞

σ
2
a∗+

1
1− pA

lim
n→∞

σ
2
b∗,

which is greater than or equal to the true asymptotic variance of
√

n(ÂTEinteract−
ATE). The difference is

lim
n→∞

σ
2
(a∗−b∗) = lim

n→∞

1
n

n

∑
i=1

[(ai−bi)−ATE− (zi− z)(Qa−Qb)]
2.

Remarks. (i) Theorem 2.2 generalizes to designs with more than two treatment
groups.

(ii) With two treatment groups of equal size, the conventional OLS variance
estimator for ÂTEadj is also consistent or asymptotically conservative [Freedman
(2008a)].

(iii) Freedman (2008a) shows analogous results for variance estimators for the
difference in means; the issue there is whether to assume σ2

a = σ2
b. Reichardt and

Gollob (1999) and Freedman, Pisani, and Purves (2007, pp. 508–511) give helpful
expositions of basic results under the Neyman model. Related issues appear in
discussions of the two-sample problem [Miller (1986, pp. 56–62); Stonehouse and
Forrester (1998)] and randomization tests [Gail et al. (1996); Chung and Romano
(2011, 2012)].

(iv) With a small sample or points of high leverage, the sandwich estimator can
have substantial downward bias and high variability. MacKinnon (2013) discusses
bias-corrected sandwich estimators and improved confidence intervals based on
the wild bootstrap. See also Wu (1986), Tibshirani (1986), Angrist and Pischke
(2009, ch. 8), and Kline and Santos (2012).

(v) When ÂTEunadj is computed by regressing Yi on Ti, the HC2 bias-corrected
sandwich estimator [MacKinnon and White (1985); Royall and Cumberland (1978);
Wu (1986, p. 1274)] gives exactly the variance estimate preferred by Neyman
(1923) and Freedman (2008a): σ̂2

a/nA + σ̂2
b/(n− nA), where σ̂2

a and σ̂2
b are the

sample variances of Yi in the two groups.8

(vi) When the n subjects are randomly drawn from a superpopulation, v̂interact
does not take into account the variability in z [Imbens and Wooldridge (2009, pp.
28–30)]. In the Neyman model, z is fixed.

(vii) Freedman’s (2006) critique of the sandwich estimator does not apply here,
as ÂTEadj and ÂTEinteract are consistent even when their regression models are
incorrect.

(viii) Freedman (2008a) associates the difference in means and regression with
heteroskedasticity-robust and conventional variance estimators, respectively. His

8For details, see Hinkley and Wang (1991), Angrist and Pischke (2009, pp. 294–304), or Samii
and Aronow (2012).
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rationale for these pairings is unclear. The pooled-variance two-sample t-test and
the conventional F-test for equality of means are often used in difference-in-means
analyses. Conversely, the sandwich estimator has become the usual variance es-
timator for regression in economics [Stock (2010)]. The question of whether to
adjust for covariates should be disentangled from the question of whether to as-
sume homoskedasticity.

2.6 Bias
The bias of OLS adjustment diminishes rapidly with the number of randomly

assigned units: ÂTEadj and ÂTEinteract have biases of order 1/n, while their stan-
dard errors are of order 1/

√
n. Brief remarks follow; see also Deaton (2010, pp.

443–444), Imbens (2010, pp. 410–411), and Green and Aronow (2011).
(i) If the actual random assignment yields substantial covariate imbalance, it is

hardly reassuring to be told that the difference in means is unbiased over all possi-
ble random assignments. Senn (1989) and Cox and Reid (2000, pp. 29–32) argue
that inference should be conditional on a measure of covariate imbalance, and that
the conditional bias of ÂTEunadj justifies adjustment. Tukey (1991) suggests ad-
justment “perhaps as a supplemental analysis” for “protection against either the
consequences of inadequate randomization or the (random) occurrence of an un-
usual randomization.”

(ii) As noted in Section 2.2, poststratification is a special case of ÂTEinteract.
The poststratified estimator is a population-weighted average of subgroup-specific
differences in means. Conditional on the numbers of subgroup members assigned
to each treatment, the poststratified estimator is unbiased, but ÂTEunadj can be bi-
ased. Miratrix, Sekhon, and Yu (2013) give finite-sample and asymptotic analyses
of poststratification and blocking; see also Holt and Smith (1979) in the sampling
context.

(iii) Cochran (1977) analyzes the bias of ŷreg in Eq. (2.3.1). If the adjustment
factor q is fixed, ŷreg is unbiased, but if q varies with the sample, ŷreg has a bias of
−cov(q,zS). The leading term in the bias of ŷOLS is

− 1
σ2

z

(
1
n
− 1

N

)
lim

N→∞

1
N

N

∑
i=1

ei(zi− z)2

where n is the sample size, N is the population size, and ei is the prediction error
in the population least squares regression of yi on zi.

(iv) By analogy, the leading term in the bias of ÂTEinteract (with a single covari-
ate zi) is

− 1
σ2

z

[(
1
nA
− 1

n

)
lim
n→∞

1
n

n

∑
i=1

a∗i (zi− z)2−
(

1
n−nA

− 1
n

)
lim
n→∞

1
n

n

∑
i=1

b∗i (zi− z)2

]
.
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Thus, the bias tends to depend largely on n, nA/n, and the importance of omitted
quadratic terms in the regressions of ai and bi on zi. With multiple covariates, it
would also depend on the importance of omitted first-order interactions between
the covariates.

(v) Remark (iii) also implies that if the adjustment factors qa and qb in Eqs.
(2.3.2–2.3.3) do not vary with random assignment, the resulting estimator of ATE
is unbiased. Middleton and Aronow’s (2012) insightful paper uses out-of-sample
data to determine qa = qb. In-sample data can be used when multiple pretests
(pre-randomization outcome measures) are available: if the only covariate zi is the
most recent pretest, a common adjustment factor qa = qb can be determined by
regressing zi on an earlier pretest.

2.7 Empirical example
This section suggests empirical checks on the asymptotic approximations. I will

focus on the validity of confidence intervals, using data from a social experiment
for an illustrative example.

Background
Angrist, Lang, and Oreopoulos (2009; henceforth ALO) conducted an experi-

ment to estimate the effects of support services and financial incentives on college
students’ academic achievement. At a Canadian university campus, all first-year
undergraduates entering in September 2005, except those with a high-school grade
point average (GPA) in the top quartile, were randomly assigned to four groups.
One treatment group was offered support services (peer advising and supplemen-
tal instruction). Another group was offered financial incentives (awards of $1,000
to $5,000 for meeting a target GPA). A third group was offered both services and
incentives. The control group was eligible only for standard university support
services (which included supplemental instruction for some courses).

ALO report that for women, the combination of services and incentives had
sizable estimated effects on both first- and second-year academic achievement,
even though the programs were only offered during the first year. In contrast,
there was no evidence that services alone or incentives alone had lasting effects
for women or that any of the treatments improved achievement for men (who were
much less likely to contact peer advisors).

To simplify the example and focus on the accuracy of large-sample approxi-
mations in samples that are not huge, I use only the data for men (43 percent of
the students) in the services-and-incentives and services-only groups (9 percent
and 15 percent of the men). First-year GPA data are available for 58 men in the
services-and-incentives group and 99 in the services-only group.
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Table 2.2 shows alternative estimates of ATE (the average treatment effect of the
financial incentives, given that the support services were available). The services-
and-incentives and services-only groups had average first-year GPAs of 1.82 and
1.86 (on a scale of 0 to 4), so the unadjusted estimate of ATE is close to zero.
OLS adjustment for high-school GPA hardly makes a practical difference to either
the point estimate of ATE or the sandwich standard error estimate, regardless of
whether the treatment × covariate interaction is included.9 The two groups had
similar average high-school GPAs, and high-school GPA was not a strong predictor
of first-year college GPA.

Table 2.2: Estimates of average treatment effect on men’s first-year GPA

Point estimate Sandwich SE
Unadjusted −0.036 0.158
Usual OLS-adjusted −0.083 0.146
OLS with interaction −0.081 0.146

The finding that adjustment appears to have little effect on precision is not un-
usual in social experiments, because the covariates are often only weakly corre-
lated with the outcome [Meyer (1995, pp. 100, 116); Lin et al. (1998, pp. 129–
133)]. Examining eight social experiments with a wide range of outcome variables,
Schochet (2010) finds R2 values above 0.3 only when the outcome is a standard-
ized achievement test score or Medicaid costs and the covariates include a lagged
outcome.

Researchers may prefer not to adjust when the expected precision improvement
is meager. Either way, confidence intervals for treatment effects typically rely
on either strong parametric assumptions (such as a constant treatment effect or a
normally distributed outcome) or asymptotic approximations. When a sandwich
standard error estimate is multiplied by 1.96 to form a margin of error for a 95
percent confidence interval, the calculation assumes the sample is large enough
that (i) the estimator of ATE is approximately normally distributed, (ii) the bias
and variability of the sandwich standard error estimator are small relative to the
true standard error (or else the bias is conservative and the variability is small),
and (iii) the bias of adjustment (if used) is small relative to the true standard error.

Below I discuss a simulation to check for confidence interval undercoverage
due to violations of (i) or (ii), and a bias estimate to check for violations of (iii).
These checks are not foolproof, but may provide a useful sniff test.

9ALO adjust for a larger set of covariates, including first language, parents’ education, and self-
reported procrastination tendencies. These also have little effect on the estimated standard errors.
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Simulation
For technical reasons, the most revealing initial check is a simulation with a

constant treatment effect. When treatment effects are heterogeneous, the sand-
wich standard error estimators for ÂTEunadj and ÂTEadj are asymptotically con-
servative,10 so nominal 95 percent confidence intervals for ATE achieve greater
than 95 percent coverage in large enough samples. A simulation that overstates
treatment effect heterogeneity may overestimate coverage.

Table 2.3 reports a simulation that assumes treatment had no effect on any of
the men. Keeping the GPA data at their actual values, I replicated the experiment
250,000 times, each time randomly assigning 58 men to services-and-incentives
and 99 to services-only. The first panel shows the means and standard deviations
of ÂTEunadj, ÂTEadj, and ÂTEinteract. All three estimators are approximately un-
biased, but adjustment slightly improves precision. Since the simulation assumes
a constant treatment effect (zero), including the treatment × covariate interaction
does not improve precision relative to the usual adjustment.

The second and third panels show the estimated biases and standard deviations
of the sandwich standard error estimator and the three variants discussed in An-
grist and Pischke (2009, pp. 294–308). ALO’s paper uses HC1 [Hinkley (1977)],
which simply multiplies the sandwich variance estimator by n/(n− k), where k
is the number of regressors. HC2 [see remark (v) after Theorem 2.2] and the
approximate jackknife HC3 [Davidson and MacKinnon (1993, pp. 553–554); Tib-
shirani (1986)] inflate the squared residuals in the sandwich formula by the factors
(1− hii)

−1 and (1− hii)
−2, where hii is the ith diagonal element of the hat ma-

trix X(X′X)−1X′. All the standard error estimators appear to be approximately
unbiased with low variability.

The fourth and fifth panels evaluate thirteen ways of constructing a 95 per-
cent confidence interval. For each of the three estimators of ATE, each of the
four standard error estimators was multiplied by 1.96 to form the margin of error
for a normal-approximation interval. Welch’s (1949) t-interval [Miller (1986, pp.
60–62)] was also constructed. Welch’s interval uses ÂTEunadj, the HC2 standard
error estimator, and the t-distribution with the Welch–Satterthwaite approximate
degrees of freedom.

The fourth panel shows that all thirteen confidence intervals cover the true value
of ATE (zero) with approximately 95 percent probability. The fifth panel shows
the average widths of the intervals. (The mean and median widths agree up to
three decimal places.) The regression-adjusted intervals are narrower on average
than the unadjusted intervals, but the improvement is meager. In sum, adjustment
appears to yield slightly more precise inference without sacrificing validity.

10By Theorem 2.2, the sandwich standard error estimator for ÂTEinteract is also asymptotically
conservative unless the treatment effect is a linear function of the covariates.
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Table 2.3: Simulation with zero treatment effect (250,000 replications). The fourth
panel shows the empirical coverage rates of nominal 95 percent confidence inter-
vals. All other estimates are on the four-point GPA scale.

ATE estimator

Unadjusted
Usual OLS- OLS with

adjusted interaction
Bias & SD of ATE estimator
Mean (estimated bias) 0.000 0.000 0.000
SD 0.158 0.147 0.147

Bias of SE estimator
Classic sandwich −0.001 −0.002 −0.002
HC1 0.000 0.000 0.000
HC2 0.000 0.000 0.000
HC3 0.001 0.002 0.002

SD of SE estimator
Classic sandwich 0.004 0.004 0.004
HC1 0.004 0.004 0.004
HC2 0.004 0.004 0.004
HC3 0.004 0.004 0.005

CI coverage (percent)
Classic sandwich 94.6 94.5 94.4
HC1 94.8 94.7 94.7
HC2 (normal) 94.8 94.8 94.8
HC2 (Welch t) 95.1
HC3 95.0 95.0 95.1

CI width (average)
Classic sandwich 0.618 0.570 0.568
HC1 0.622 0.576 0.575
HC2 (normal) 0.622 0.576 0.577
HC2 (Welch t) 0.629
HC3 0.627 0.583 0.586
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Bias estimates
One limitation of the simulation above is that the bias of adjustment may be

larger when treatment effects are heterogeneous. With a single covariate zi, the
leading term in the bias of ÂTEadj is11

−1
n

1
σ2

z
lim
n→∞

1
n

n

∑
i=1

[(ai−bi)−ATE](zi− z)2.

Thus, with a constant treatment effect, the leading term is zero (and the bias is of
order n−3/2 or smaller). Freedman (2008b) shows that with a balanced design and
a constant treatment effect, the bias is exactly zero.

We can estimate the leading term by rewriting it as

−1
n

1
σ2

z

[
lim
n→∞

1
n

n

∑
i=1

(ai−a)(zi− z)2− lim
n→∞

1
n

n

∑
i=1

(bi−b)(zi− z)2

]

and substituting the sample variance of high-school GPA for σ2
z , and the sample

covariances of first-year college GPA with the square of centered high-school GPA
in the services-and-incentives and services-only groups for the bracketed limits.
The resulting estimate of the bias of ÂTEadj is −0.0002 on the four-point GPA
scale. Similarly, the leading term in the bias of ÂTEinteract [Section 2.6, remark
(iv)] can be estimated, and the result is also −0.0002. The biases would need
to be orders of magnitude larger to have noticeable effects on confidence interval
coverage (the estimated standard errors of ÂTEadj and ÂTEinteract in Table 2.2 are
both 0.146).

Remarks
(i) This exercise does not prove that the bias of adjustment is negligible, since it

just replaces a first-order approximation (the bias is close to zero in large enough
samples) with a second-order approximation (the bias is close to the leading term
in large enough samples), and the estimate of the leading term has sampling er-
ror.12 The checks suggested here cannot validate an analysis, but they can reveal
problems.

(ii) Another limitation is that the simulation assumes the potential outcome dis-
tributions have the same shape. In Stonehouse and Forrester’s (1998) simulations,
Welch’s t-test was not robust to extreme skewness in the smaller group when that

11An equivalent expression appears in the version of Freedman (2008a) on his web page. It can
be derived from Freedman (2008b) after correcting a minor error in Eqs. (17–18): the potential
outcomes should be centered.

12Finite-population bootstrap methods [Davison and Hinkley (1997, pp. 92–100, 125)] may also
be useful for estimating the bias of ÂTEinteract, but similar caveats would apply.

25



group’s sample size was 30 or smaller. That does not appear to be a serious issue
in this example, however. The distribution of men’s first-year GPA in the services-
and-incentives group is roughly symmetric (e.g., see ALO, Fig. 1A).

(iii) The simulation check may appear to resemble permutation inference [Fisher
(1935); Tukey (1993); Rosenbaum (2002)], but the goals differ. Here, the con-
stant treatment effect scenario just gives a benchmark to check the finite-sample
coverage of confidence intervals that are asymptotically valid under weaker as-
sumptions. Classical permutation methods achieve exact inference under strong
assumptions about treatment effects, but may give misleading results when the as-
sumptions fail. For example, the Fisher–Pitman permutation test is asymptotically
equivalent to a t-test using the conventional OLS standard error estimator. The test
can be inverted to give exact confidence intervals for a constant treatment effect,
but these intervals may undercover ATE when treatment effects are heterogeneous
and the design is imbalanced [Gail et al. (1996)].

(iv) Chung and Romano (2011, 2012) discuss and extend a literature on permu-
tation tests that do remain valid asymptotically when the null hypothesis is weak-
ened. One such test is based on the permutation distribution of a heteroskedasticity-
robust t-statistic. Exploration of this approach under the Neyman model (with and
without covariate adjustment) would be valuable.

2.8 Further remarks
Freedman’s papers answer important questions about the properties of OLS ad-

justment. He and others have summarized his results with a “glass is half empty”
view that highlights the dangers of adjustment. To the extent that this view en-
courages researchers to present unadjusted estimates first, it is probably a good
influence. The difference in means is the “hands above the table” estimate: it is
clearly not the product of a specification search, and its transparency may encour-
age discussion of the strengths and weaknesses of the data and research design.13

But it would be unwise to conclude that Freedman’s critique should always
override the arguments for adjustment, or that studies reporting only adjusted es-
timates should always be distrusted. Freedman’s own work shows that with large
enough samples and balanced two-group designs, randomization justifies the tra-
ditional adjustment. One does not need to believe in the classical linear model to
tolerate or even advocate OLS adjustment, just as one does not need to believe in
the Four Noble Truths of Buddhism to entertain the hypothesis that mindfulness
meditation has causal effects on mental health.

From an agnostic perspective, Freedman’s theorems are a major contribution.
Three-quarters of a century after Fisher discovered the analysis of covariance,

13On transparency and critical discussion, see Ashenfelter and Plant (1990), Freedman (1991,
2008c, 2010), Moher et al. (2010), and Rosenbaum (2010, ch. 6).
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Freedman deepened our understanding of its properties by deriving the regression-
adjusted estimator’s asymptotic distribution without assuming a regression model,
a constant treatment effect, or an infinite superpopulation. His argument is con-
structed with unsurpassed clarity and rigor. It deserves to be studied in detail and
considered carefully.
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Chapter 3

Approximating the bias of OLS
adjustment in randomized
experiments

3.1 Motivation
Chapter 2 and a companion blog essay [Lin (2012ab)] discussed Freedman’s

(2008ab) three concerns about OLS adjustment—possible worsening of precision,
invalid measures of precision, and small-sample bias—and a further concern about
ad hoc specification search [Freedman (2008c, 2010)]. Small-sample bias is prob-
ably the least important of these concerns in many social experiments, since it
diminishes rapidly as the number of randomly assigned units grows. Yet the bias
issue has captured the lion’s share of the attention in some published and unpub-
lished discussions of Freedman’s critique. The economist Jed Friedman (2012)
writes: “I and others have indeed received informal comments and referee reports
claiming that adjusting for observables leads to biased inference (without supple-
mental caveats on small sample bias). . . . The precision arguments of Freedman
don’t seem to have settled in the minds of practitioners as much as bias.”

How can applied researchers judge whether small-sample bias is likely to be a
serious concern? One approach is to use the data to estimate the bias, as Freed-
man (2004) notes in his discussion of ratio estimators in survey sampling.1 In the
empirical example in Chapter 2, I estimated the leading term in the bias of OLS
adjustment for a single covariate (with and without the treatment × covariate in-
teraction), using the sample analogs of asymptotic formulas from Cochran (1977,
pp. 198–199) and Freedman (2008b). The current chapter derives and discusses
the leading term in the bias of adjustment for multiple covariates. The results may
be useful for estimating the bias and may also be relevant to choosing a regression

1Ratio estimators of population means are a special case of regression estimators and also have
a bias of order 1/n. See, e.g., Cochran (1977, pp. 160–162, 189–190).

28



model when the sample is small.

3.2 Assumptions and notation

Review from Chapter 2
We assume a completely randomized experiment with n subjects, assigning nA

to treatment A and n−nA to treatment B. For each subject i, we observe an outcome
Yi and a 1×K vector of covariates zi. The potential outcomes corresponding to
treatments A and B are ai and bi. Let Ti denote a dummy variable for treatment A.

The means of ai, bi, and zi over the population (the n subjects) are a, b, and z.
The average treatment effect of A relative to B is ATE = a− b. We consider two
OLS-adjusted estimators, ÂTEadj (the estimated coefficient on Ti in the regression
of Yi on Ti and zi) and ÂTEinteract [the estimated coefficient on Ti in the regression
of Yi on Ti, zi, and Ti(zi− z)].

Section 2.4 discusses the scenario and regularity conditions for asymptotics.
As Freedman (2008a) writes, the scenario assumes “our inference problem is em-
bedded in an infinite sequence of such problems, with the number of subjects n
increasing to infinity.” The number of covariates K is held constant as n grows.
Theorem 3.1 below (on the bias of ÂTEadj) assumes Conditions 1–3 from Section
2.4.

Additional assumptions and notation
Freedman (2008b, p. 194) and Appendix A (Section A.1) note that Conditions

1–3 do not rule out the possibility that for some n and some randomizations,
ÂTEadj or ÂTEinteract is ill-defined because of perfect multicollinearity. The cur-
rent chapter assumes that for all n above some threshold, the distribution of the
covariates is such that both ÂTEadj and ÂTEinteract are well-defined for every pos-
sible randomization. (It seems likely that results similar to Theorems 3.1 and 3.2
below would hold even without this assumption, since Conditions 2 and 3 imply
that perfect multicollinearity becomes extremely unlikely as n grows with K fixed.
But the details have not been fleshed out.)

Theorem 3.2 (on the bias of ÂTEinteract) assumes a stronger set of regularity
conditions. In brief, in addition to Conditions 1–3, we assume bounded eighth
moments and converging fourth moments. Details are given in the theorem’s state-
ment.

For both theorems, let M = [n−1
∑

n
i=1(zi− z)′(zi− z)]−1, or equivalently M =

n(Z̃′Z̃)−1, where Z̃ is the n×K matrix whose ith row is zi− z.
Section 2.4 defined prediction errors a∗i and b∗i for predictions based on Qa and

Qb, the limits of the least squares slope vectors in the population regressions of ai
and bi on zi. Theorem 3.2 below involves the actual population least squares slope
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vectors Q̃a and Q̃b instead of their asymptotic limits:

Q̃a =

[
n

∑
i=1

(zi− z)′(zi− z)

]−1 n

∑
i=1

(zi− z)′(ai−a),

Q̃b =

[
n

∑
i=1

(zi− z)′(zi− z)

]−1 n

∑
i=1

(zi− z)′(bi−b).

Let ãi and b̃i denote the population least squares prediction errors:

ãi = (ai−a)− (zi− z)Q̃a, b̃i = (bi−b)− (zi− z)Q̃b

for i = 1, . . . ,n.

3.3 Results
Theorems 3.1 and 3.2 are proved in Appendix B. Theorem 3.1 gives the leading

term in the bias of ÂTEadj.

Theorem 3.1. Assume Conditions 1–3. Then

ÂTEadj−ATE = ηn + ρn,

where

E(ηn) = − 1
n−1

1
n

n

∑
i=1

[(ai−bi)−AT E](zi− z)M(zi− z)′

and ρn is of order less than or equal to n−3/2 in probability.

Remarks. (i) With a single covariate zi, the leading term E(ηn) reduces to

− 1
n−1

1
n

n

∑
i=1

[(ai−bi)−AT E][(zi− z)/σz]
2,

where σz is the population standard deviation of zi. In other words, the leading
term is −1/(n− 1) times the covariance between the treatment effect ai− bi and
the square of the standardized covariate. This expression should be interpreted
with care: the covariance can be nonzero even when ai−bi is a linear function of
zi.

(ii) With multiple covariates, the leading term is −1/(n− 1) times the covari-
ance between the treatment effect and the quadratic form (zi− z)M(zi− z)′. The
quadratic form is a linear combination of the squares and first-order interactions of
the mean-centered covariates, and can be rewritten as nhii, where hii is the leverage
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of observation i in a no-intercept regression on the mean-centered covariates [the
ith diagonal element of the hat matrix Z̃(Z̃′Z̃)−1Z̃′] [Hoaglin and Welsch (1978)].

(iii) Although E(ηn) depends on the heterogeneity in the individual treatment
effects, which are unobservable, it can be estimated as in Section 2.7 after rewriting
it as

− 1
n−1

[
1
n

n

∑
i=1

(ai−a)(zi− z)M(zi− z)′− 1
n

n

∑
i=1

(bi−b)(zi− z)M(zi− z)′
]
.

(iv) A technical point: Conditions 1 and 2 ensure that the covariance between
ai−bi and (zi− z)M(zi− z)′ is bounded as n goes to infinity, so E(ηn) is of order
1/n or smaller.

Theorem 3.2 gives the leading term in the bias of ÂTEinteract.

Theorem 3.2. Assume Conditions 2 and 3, and assume there is a bound L < ∞

such that for all n = 1,2, . . . and k = 1, . . . ,K,

1
n

n

∑
i=1

a8
i < L,

1
n

n

∑
i=1

b8
i < L,

1
n

n

∑
i=1

z8
ik < L.

Also assume that for all k = 1, . . . ,K and ` = 1, . . . ,K, the population variances
and covariances of aizik, bizik, and zikzi` converge to finite limits. Then

ÂTEinteract−ATE = η̃n + ρ̃n,

where

E(η̃n) = −

[(
1
nA
− 1

n

)
1

n−1

n

∑
i=1

ãi(zi− z)M(zi− z)′ −

(
1

n−nA
− 1

n

)
1

n−1

n

∑
i=1

b̃i(zi− z)M(zi− z)′
]

and ρ̃n is of order less than or equal to n−3/2 in probability.

Remarks. (i) E(η̃n) equals the difference between the leading terms in the biases
of the OLS-adjusted mean outcomes under treatments A and B.

(ii) With a single covariate, E(η̃n) reduces to

−
(

1
nA
− 1

n

)
1

n−1

n

∑
i=1

ãi[(zi− z)/σz]
2 +

(
1

n−nA
− 1

n

)
1

n−1

n

∑
i=1

b̃i[(zi− z)/σz]
2.

The factor 1/nA− 1/n reflects the sample size of treatment group A and a finite-
population correction. The covariance between the prediction error ãi and the
square of the standardized covariate reflects the variation in the potential outcome
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ai that is not explained by the population least squares regression of ai on zi but
would be explained if z2

i were included. If the relationship between ai and zi is
linear (e.g., if zi is a dummy variable), this covariance is zero.

(iii) With multiple covariates, E(η̃n) involves the covariances of the population
least squares prediction errors with the quadratic form (zi− z)M(zi− z)′, which
was discussed in remark (ii) after Theorem 3.1. Thus, the leading term in the bias
of ÂTEinteract reflects variation in the potential outcomes that cannot be predicted
by linear functions of the original covariates but can be predicted by quadratic
terms or first-order interactions.

(iv) With a balanced design, nA = n/2, so E(η̃n) reduces to

− 1
n−1

1
n

n

∑
i=1

(ãi− b̃i)(zi− z)M(zi− z)′.

This expression is formally similar to the leading term in the bias of ÂTEadj (see
Theorem 3.1) but arguably easier to interpret. The term ãi− b̃i is the prediction
error in the population least squares regression of the treatment effect ai−bi on zi.
By construction, ãi− b̃i has mean zero and is uncorrelated with zi. Thus, the co-
variance n−1

∑
n
i=1(ãi− b̃i)(zi−z)M(zi−z)′ reflects treatment effect heterogeneity

that is not linearly correlated with zi but is correlated with squares or first-order
interactions of the covariates. If the relationship between the treatment effect and
the covariates is linear, then E(η̃n) = 0, in contrast to remark (i) after Theorem 3.1.

(v) The regularity conditions ensure that E(η̃n) is of order 1/n or smaller.

3.4 Discussion
The leading terms derived above can be estimated by their sample analogs,

as done in Section 2.7 with a single covariate. These formulas are second-order
asymptotic approximations, so they may be inaccurate in very small samples. Sim-
ulations to check their accuracy would be useful.

Bootstrap methods, including finite-population bootstraps [Davison and Hink-
ley (1997, pp. 92–100, 125)], may also be useful for estimating the bias of OLS
adjustment. Again, these methods yield second- or higher-order asymptotic ap-
proximations.

Bias estimation can help provide a ballpark sense of the magnitude of the prob-
lem, but as Efron and Tibshirani (1993, p. 138) warn, using a bias estimate to
“correct” the original estimator (i.e., to reduce its bias) “can be dangerous in prac-
tice.” The reduction in bias is often outweighed by an increase in variance.

Examining the leading term in the bias of regression estimators of population
means, Cochran (1977, p. 198) writes: “This term represents a contribution from
the quadratic component of the regression. . . . Thus, if a sample plot . . . appears
approximately linear, there should be little risk of major bias.” Similar comments
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apply to the bias of ÂTEinteract, which is just the difference between the regression
estimators of the two mean potential outcomes. When one baseline characteristic is
thought to be much more predictive than all others (e.g., when a baseline measure
of the outcome is available), Theorem 3.2 suggests that in small samples, one
possible strategy to achieve precision improvement without serious bias is to adjust
only for that characteristic, but use a specification that allows some nonlinearities
(e.g., including a quadratic term) and includes treatment × covariate interactions.
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Chapter 4

A “placement of death” approach
for studies of treatment effects on
ICU length of stay

4.1 Introduction
Length of stay (LOS) in the intensive care unit (ICU) is a common outcome

measure used as an indicator of both quality of care and resource use [Marik and
Hedman (2000); Rapoport et al. (2003)]. Longer ICU stays are associated with
increased stress and discomfort for patients and their families, as well as increased
costs for patients, hospitals, and society. Recent randomized-trial reports that esti-
mate treatment effects on LOS include Lilly et al. (2011) and Mehta et al. (2012).
LOS was the primary outcome for the SUNSET-ICU trial [Kerlin et al. (2013)],
which studied the effectiveness of 24-hour staffing by intensivist physicians in the
ICU, compared to having intensivists available in person during the day and by
phone at night.

Because a significant proportion of patients die in the ICU, conventional ana-
lytic approaches may confound an intervention’s effects on LOS with its effects on
mortality. Analyzing only survivors’ stays is problematic: if the intervention saves
the lives of some patients, but those patients have atypically long LOS, then the
intervention may spuriously appear to increase survivors’ LOS. It is also poten-
tially misleading to pool the LOS data of survivors and non-survivors: a reduction
in average LOS could be achieved either by helping survivors to recover faster or
by shortening non-survivors’ lives. Finally, time-to-event analysis can attempt to
account for death by treating non-survivors’ stays as censored, but this typically
involves dubious assumptions and concepts (such as the existence of a latent LOS
that exceeds the observed values for non-survivors and is independent of time till
death).1

1See, e.g., Freedman (2010) and Joffe (2011, section 3.2.1) for critical discussions of the as-
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These issues are related to the “censoring by death” problem discussed from
different perspectives by Rubin (2006a) and Joffe (2011). Rubin’s exposition uses
the hypothetical example of a randomized trial where the outcome is a quality-of-
life (QOL) score, some patients die before QOL is measured, and treatment may
affect mortality. In a comment on Rubin’s paper, Rosenbaum (2006) proposes
an analysis of a composite outcome that equals the QOL score if the patient was
alive at the measurement time and indicates death otherwise. Death need not be
valued numerically; given any preference ordering that includes death and all pos-
sible QOL scores, Rosenbaum’s method gives confidence intervals for treatment
effects on order statistics of the distribution of the treated patients’ outcomes. He
notes that although researchers cannot decide the appropriate placement of death
relative to the QOL scores, we can offer analyses for several different placements,
“and each patient could select the analysis that corresponds to that patient’s own
evaluation.”

This chapter explores a modified version of Rosenbaum’s approach for appli-
cation to randomized trials in which ICU LOS is an outcome measure. Using a
composite outcome that equals the LOS if the patient was discharged alive and
indicates death otherwise, we can make inferences about treatment effects on the
median and other quantiles of the outcome distribution, or about effects on the
proportions of patients whose outcomes are considered better than various cut-
off values of LOS. Sensitivity analyses can show how the results vary according
to whether death is treated as the worst possible outcome or as preferable to ex-
tremely long ICU stays. Because the approach (like Rosenbaum’s) compares the
entire treatment group with the entire control group, it avoids the selection bias
problem that can arise in analyses of survivors’ LOS data.

A multiple-comparisons issue arises when treatment effects are estimated at
multiple quantiles of the outcome distribution or on proportions below multiple
cutoffs. Some researchers may choose to focus on effects on the median outcome,
but the expected or intended effects of an intervention may be concentrated else-
where in the distribution (e.g., the goal may be to reduce extremely long stays). For
protection against data dredging, it may be desirable to choose a primary signifi-
cance test before outcome data are available. We discuss the properties of several
possible primary tests, including the Wilcoxon–Mann–Whitney rank sum test and
a heteroskedasticity-robust variant due to Brunner and Munzel (2000).

Section 4.2 explains Rosenbaum’s proposal and our modified approach and
presents simulation evidence on the validity of bootstrap percentile confidence in-
tervals for quantile treatment effects. Section 4.3 discusses the choice of a primary
significance test and reasons to prefer the Brunner–Munzel test to the Wilcoxon–
Mann–Whitney, with both a review of the literature and new simulations. Section
4.4 re-analyzes the SUNSET trial data as an illustrative example. Section 4.5 dis-
cusses benefits and limitations of the approach and directions for further research.

sumptions underlying conventional time-to-event analyses.
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4.2 Estimating treatment effects

Rosenbaum’s original proposal
Rosenbaum (2006) considers a completely randomized experiment: out of a

finite population of N patients, we assign a simple random sample of fixed size
to treatment and the remainder to control. Patients’ QOL scores take values in
a subset Q of the real line. For those who have died before the time of QOL
measurement, the outcome is “D,” indicating death, instead of a real number. The
analysis requires a “placement of death” determining, for each x ∈ Q , either that x
is preferred to D or vice versa. For example, two possible placements are “Death is
the worst outcome” and “Death is worse than x if x≥ 2, but better than x if x < 2.”2

Any placement of death, together with the assumption that higher QOL scores are
preferred to lower scores, defines a total ordering of Q ∪{D}.

Rosenbaum derives exact, randomization-based confidence intervals for order
statistics of the distribution of outcomes that the treatment group patients would
have experienced if they had been assigned to control. For example, his method
enables statements of the form: “Ranking the 400 treatment group patients’ out-
comes from best to worst, the 201st value was a QOL score of 4.2. We estimate
that if the same 400 patients had not received the intervention and we ranked their
outcomes from best to worst, the 201st value would lie in the range [x,y] (95%
confidence interval).” Here x and y could be real numbers, or one or both of them
could be D.

As Rubin (2006b) notes, Rosenbaum’s elegant and insightful proposal deserves
exploration but may be “difficult to convey to consumers.” In the example above,
slightly complicated language is needed to describe the quantity being estimated.
A statement is being made about the treatment group patients (and since they are
a random set, the estimand is a random variable). We know their actual outcome
distribution, and we are constructing a confidence interval for an order statistic of
the distribution that would have been observed had they been assigned to control.
With 400 treatment group patients, the median is not an order statistic, so the
example uses the 201st value instead. These unusual features of the approach
allow the derivation of exact confidence intervals.

Alternative estimands
We borrow Rosenbaum’s use of placements of death and his suggestion to offer

multiple analyses corresponding to different placements, but we explore alterna-
tive estimands that may be more familiar to applied audiences. Our confidence
intervals for those estimands will be approximate instead of exact.

2The framework could easily be modified to allow placements such as “Death is equivalent to a
QOL score of 2.”
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In the LOS context, for each patient i, let Yi denote a composite outcome that
equals her LOS if she was discharged alive from the ICU and takes the value D
otherwise. We allow D to be either a real number (meaning that death and some
length of stay are considered equally undesirable) or a special nonnumeric value
that is considered greater (i.e., worse) than any possible LOS. Using the potential
outcomes framework [Neyman (1923); Rubin (1974, 2005)], let Y1i denote the
outcome that would occur if patient i were assigned to treatment. If she is actually
assigned to treatment, then Yi = Y1i; otherwise, Y1i is a counterfactual. Similarly,
let Y0i denote the outcome that would occur if she were assigned to control.

Assume that each pair (Y1i,Y0i) is an independent observation from a prob-
ability distribution with marginal distribution functions F1(x) = P(Y11 ≤ x) and
F0(x) = P(Y01 ≤ x). An intuitive interpretation of this assumption is that the pa-
tients in the trial are a random sample from an infinite population of interest. We
make this assumption for mathematical convenience and compatibility with litera-
ture cited later in this chapter, but it is probably not crucial, as standard errors, sig-
nificance tests, and confidence intervals that are valid from the infinite-population
perspective are typically conservative from the finite-population perspective (in
which the N patients in the trial are the population of interest).3

Define the treatment effect on the p quantile as

QTEp = min{x : F1(x)≥ p}−min{x : F0(x)≥ p}

if both terms on the right-hand side are real numbers; if either term is a nonnumeric
placement of death, QTEp is undefined.4 For example, QTE0.5 (the treatment
effect on the median) is the difference between the population medians of Y1i and
Y0i, if both are real numbers.

Define the cutoff treatment effect at cutoff c as

CTEc = P(X11 ≥ c)−P(X01 ≥ c).

For example, if LOS is measured in days, then CTE20 is the treatment effect on
the proportion of patients with outcome at least as bad as a 20-day LOS. If death
is the worst possible outcome, then CTED is the treatment effect on the mortality
rate.

Quantile treatment effects and cutoff treatment effects are different ways of
summarizing effects on the outcome distribution. QTEs may be undefined in the
highest quantiles (if death is considered the worst possible outcome but is not as-
signed a numeric value), but CTEs are defined at all cutoffs. On the other hand,
there is perhaps more danger of data dredging with CTEs, since researchers may
have more leeway to choose cutoffs that yield results they like than to focus on,

3See, e.g., Reichardt and Gollob (1999) and Chapter 2.
4A nonnumeric placement means that death is the worst possible outcome, but need not imply

that the difference between death and a 30-day ICU stay is considered greater than the difference
between 30 and 3 days. Thus, the former difference is undefined, not infinite.

37



say, the treatment effect on the 0.53 quantile instead of the median. In the very dif-
ferent context of educational test scores, Holland (2002) argues that for measuring
changes over time in the gap between two distributions, analyses of differences in
proportions below a cutoff score can easily mislead. He prefers analyses of dif-
ferences in quantiles and recommends supplementary graphical displays. Whether
analogous issues arise in the LOS context (e.g., in comparing treatment effects
for different subgroups or different interventions) is a worthwhile topic for future
research.

CTEs can be estimated by differences in sample proportions, with normal-ap-
proximation confidence intervals or the finite-sample improvements recommended
by Agresti and Caffo (2000) or Brown and Li (2005). QTEs can be estimated
by differences in sample quantiles; we have used the version of sample quan-
tiles recommended by Hyndman and Fan (1996) [“Definition 8,” which is median-
unbiased of order o(1/

√
N)]. Below we explore the use of bootstrap percentile

confidence intervals for QTEs.

Confidence intervals for QTEs
The treatment–control difference in sample quantiles is a special case of a quan-

tile regression estimator. Hahn (1995, Theorem 3) shows that bootstrap percentile
confidence intervals for quantile regression coefficients have correct asymptotic
coverage probabilities, under regularity conditions that in our case imply that the
distributions of Y1i and Y0i are continuous and their densities are bounded away
from zero near the quantiles of interest. In practice, we expect some discreteness
in the distributions, in part because LOS data may be rounded, but most impor-
tantly because many values will be tied at the placement of death D.

Another wrinkle is that if D is nonnumeric, then the difference in sample quan-
tiles is undefined when one or both of the sample quantiles equal D, and thus the
bootstrap percentile CI is undefined when any bootstrap replication yields a treat-
ment or control group sample quantile equal to D. (One can still report the two
sample quantiles and, in some cases, a CI for one of the population quantiles.)

To examine these issues empirically, we simulated a hypothetical trial with
1,500 patients, assigning 750 to treatment and 750 to control (slightly smaller
sample sizes than the SUNSET trial’s). On each of 10,000 replications of the trial:

1. We generated patients’ outcomes assuming that the probability of death in
the ICU was 20% for control group patients and 10% for treatment group
patients. Survivors’ LOS values were sampled with replacement from the
data for SUNSET control group patients who survived their ICU stays. (The
SUNSET data are rounded to the nearest tenth of an hour.)
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Table 4.1: True quantiles of outcome distributions for simulations in Section 4.2.
The table assumes the placement of death D is no less than 40.9 days. The second
and third columns show quantiles of the distributions that treatment and control
group patients’ outcomes are randomly sampled from. Lengths of ICU stay are
given in days.

Quantile Treatment Control
0.25 1.2 1.4
0.5 (median) 2.3 2.7
0.6 3.0 4.1
0.7 4.5 5.7
0.75 5.7 10.6
0.775 6.7 16.6
0.8 7.6 40.9
0.825 9.2 Death
0.85 11.8 Death
0.9 40.9 Death
0.95 Death Death

Table 4.2: Coverage rates (in 10,000 replications) of nominal 95% confidence
intervals (bootstrap percentile method) for quantile treatment effects, assuming
placement of death D = 40.9 days.

Quantile Coverage rate (percent)
0.25 95.7
0.5 (median) 95.5
0.6 95.6
0.7 95.7
0.75 95.8
0.775 95.3
0.8 87.8
0.825 96.2
0.85 95.4
0.9 95.1
0.95 100.0
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Table 4.3: Empirical properties (in 10,000 replications) of nominal 95% confi-
dence intervals (bootstrap percentile method) for quantile treatment effects, as-
suming death is the worst possible outcome.

Quantile % of confidence intervals that:
Cover true value Miss true value Are undefined

0.25 95.7 4.3 0.0
0.5 (median) 95.5 4.5 0.0
0.6 95.6 4.4 0.0
0.7 95.7 4.2 0.2
0.75 49.9 1.7 48.4
0.775 5.2 2.2 92.6
0.8 0.0 0.2 99.8
0.825 NA NA 100.0
0.85 NA NA 100.0
0.9 NA NA 100.0
0.95 NA NA 100.0
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2. Nominal 95% confidence intervals were constructed using the bootstrap per-
centile method with 1,000 bootstrap replications. We resampled the treat-
ment group and control group independently with fixed sample sizes, as
suggested in Efron and Tibshirani (1993, pp. 88–89) and Davison and Hink-
ley (1997, p. 71).

Step 1 implies the population quantiles of Y1i and Y0i shown in Table 4.1, if D is
either nonnumeric or a number of days no less than 40.9 (the highest LOS value for
survivors in the SUNSET control group). On each replication of the hypothetical
trial, we observe the treatment and control sample quantiles, which are estimates
of the population quantiles.

One might consider Hahn’s asymptotic results least reassuring near and above
the 0.8 quantile, both because the population distributions of Y0i and Y1i put 20%
and 10% probabilities on point masses at D, and because just below the 0.8 and
0.9 population quantiles, there are nonnegligible gaps between the highest numeric
LOS values in the distributions (e.g., the two highest values are 40.9 and 37.8
days). Table 4.2 assumes D = 40.9 days and shows a below-nominal CI coverage
rate (88 percent) at the 0.8 quantile, but the effect is localized and not severe.5

In Table 4.3, D is nonnumeric (death is the worst possible outcome). The CIs
appear to be valid at the 0.7 quantile and below. At the 0.75 quantile, the bootstrap
CI is undefined in 48% of the trial replications, because the control group’s 0.75
quantile equaled D on at least one bootstrap replication. At the 0.8 and higher
quantiles, this situation occurs frequently, and the CI is always or almost always
undefined.

These results suggest that bootstrap percentile CIs for QTEs are likely to have
approximate validity near the median (as long as mortality rates are well below
50%), but caution is warranted in the upper tail of the distribution, near the place-
ment of death. Further research with more advanced methods such as BCa boot-
strap CIs [Efron and Tibshirani (1993, ch. 14); Davison and Hinkley (1997, ch. 5)]
or subsampling [Politis, Romano, and Wolf (1999)] may be worthwhile.

4.3 Choosing a primary significance test
Researchers may appropriately wish to explore QTEs or CTEs at more than one

quantile or more than one cutoff value of LOS. To mitigate the resulting multiple
comparisons issue, pre-specification of a primary significance test may be advis-
able. One possibility is to designate a specific quantile or cutoff as primary and
invert the corresponding CI. The median may seem a natural choice, but some
interventions may be intended to shorten long ICU stays without necessarily re-

5When D was raised to 200 days, undercoverage occurred not at the exact 0.8 quantile, but just
above it. Otherwise the results were similar.
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ducing the median. It may be difficult to predict which points in the outcome
distribution are likely to be affected.

Another option is to use a rank test that has some sensitivity to effects through-
out the outcome distribution, such as the Wilcoxon–Mann–Whitney (WMW) rank
sum test. Rank tests do not require a numeric placement of death (unlike, e.g., the
two-sample t-test). Rubin (2006b), modifying Korn’s (2006) proposal, comments
that the WMW test could be combined with Rosenbaum’s (2006) approach. More
generally, Rosenbaum has extensively explored the use of rank tests in causal infer-
ence [e.g., Rosenbaum (2007, 2010)], and Imbens and Wooldridge (2009, pp. 21–
23) suggest the WMW test “as a generally applicable way of establishing whether
the treatment has any effect” in randomized experiments.

The WMW test is often recommended because it is believed to have more ro-
bustness of efficiency (power) than tests based on the difference in mean outcomes;
Lehmann (2009) gives a helpful overview of results that support this view. How-
ever, when the classical assumption of a constant additive treatment effect is re-
laxed, power comparisons vary with the nature of the anticipated treatment effect
[White and Thompson (2003)], and an even more fundamental issue is the need to
carefully consider what hypothesis would be useful to test [Romano (2009); Chung
and Romano (2011)]. The WMW test is still valid for the strong null hypothesis
that treatment has no effect on any patient (or for the hypothesis that treatment does
not change the outcome distribution), but whether researchers should be satisfied
with a test of the strong null is debatable.6 The Mann–Whitney form of the test
statistic naturally suggests a weaker null hypothesis, and there is an interesting,
somewhat neglected literature on testing the weak null.7

Suppose m patients are assigned to treatment and n = N−m to control. Let T
and C denote the sets of indices of the treated and control patients. The Wilcoxon
rank sum statistic is ∑i∈T Ri, where Ri is the rank of Yi among the N observations
(in ascending order). Ties are often handled by the midrank method: each member
of a group of tied observations is given the average of the ranks they would have
if they were not tied. The rank sum statistic can be rewritten as U +m(m+1)/2,
where U is the Mann–Whitney statistic

U = ∑
i∈T

∑
j∈C

[
I(Y1i > Y0 j)+

1
2

I(Y1i = Y0 j)

]
and I(A) equals 1 if A occurs and 0 otherwise.8 We can equivalently use the

6R. A. Fisher and Jerzy Neyman debated the relevance of the strong null in connection with the
F-test. See, e.g., Fienberg and Tanur (1996) and Gail et al. (1996) for discussion.

7We will discuss this literature from a causal inference perspective and continue to use the po-
tential outcomes framework. However, the literature is not explicitly causal; it assumes two inde-
pendent random samples from two infinite populations and has both causal and descriptive appli-
cations.

8The result is derived in, e.g., Gibbons and Chakraborti (2011, pp. 292–293).
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statistic U/mn−1/2, which is a consistent estimate of

P(Y1i > Y0 j)+
1
2

P(Y1i = Y0 j)−
1
2

=
P(Y1i > Y0 j)−P(Y1i < Y0 j)

2
, i 6= j.

An extreme positive test statistic is evidence that P(Y1i >Y0 j)> P(Y1i <Y0 j)—that
is, if we sample the treated and untreated potential outcome distributions indepen-
dently, it is more likely that a random treated value will exceed a random untreated
value than the other way around.9 Similarly, an extreme negative test statistic is
evidence that P(Y1i > Y0 j)< P(Y1i < Y0 j).

Thus, the WMW test can be reexamined as a test of the weak null hypothesis

Hw
0 : P(Y1i > Y0 j) = P(Y1i < Y0 j), i 6= j.

Loosely speaking, Hw
0 says there is no systematic tendency for a treatment group

patient’s outcome to be better or worse than a control group patient’s outcome.
Pratt (1964) shows that in general, the WMW test is not an asymptotically valid
test of Hw

0 , in part because heteroskedasticity can distort the significance level.
Pratt’s Table 2 implies that if m = n, the size of a two-tailed WMW test (assuming
no ties) at the nominal 5% level tends to a limit between 5% and 11%. If m 6= n,
this range widens in both directions.

Brunner and Munzel (2000) derive an asymptotically valid test of Hw
0 by stu-

dentizing U/mn−1/2 (i.e., dividing by a consistent estimate of its standard error).
The Brunner–Munzel (BM) test allows ties (the distributions of Y1i and Y0i can be
of any nondegenerate form). The test statistic (which can be computed from the
overall ranks Ri and the ranks within the treatment and control groups) is asymp-
totically N(0,1) under Hw

0 ; to improve small-sample performance, BM suggest
using the t-distribution with degrees of freedom from a Welch–Satterthwaite ap-
proximation.10 Neubert and Brunner (2007) propose a permutation test based on
the BM statistic and prove its asymptotic validity. Chung and Romano (2011) de-
rive a general theory for constructing asymptotically valid permutation tests based
on two-sample U-statistics, discuss misapplications of the WMW test, and provide
a studentized permutation version (for the case without ties) whose critical values
can be tabled.

Simulation evidence on test validity
Table 4.4 shows the rejection rates of the WMW and BM tests (two-tailed, at

the nominal 5% level) in simulations of nine null-hypothesis scenarios with 1,500
patients and 250,000 replications. For the WMW test, we used the large-sample
normal approximation [e.g., Miller (1986, p. 51)]. In each panel, we show results

9Estimands related to P(Y1i > Y0 j) have been studied in many fields. Ho (2009) gives a helpful
discussion.

10The BM test is implemented in the R lawstat package.
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Table 4.4: Rejection rates (in 250,000 replications) of the Wilcoxon–Mann–
Whitney and Brunner–Munzel tests in nine null-hypothesis scenarios. All tests
are two-tailed with nominal significance level 5%.

Scenario Rejection rate (%)
Wilcoxon–Mann–Whitney Brunner–Munzel

Strong null
Balanced design 5.0 5.0
90% treated 5.1 5.1
10% treated 5.0 5.0

Weak null (no ties)
Balanced design 6.4 4.9
90% treated 14.7 5.0
10% treated 0.3 5.0

Weak null (with ties)
Balanced design 5.7 5.0
90% treated 11.4 5.0
10% treated 1.2 5.0

for a balanced design (i.e., with a 1:1 treatment:control allocation ratio), and two
imbalanced designs (with 9:1 and 1:9 allocation ratios).

The first panel shows rejection rates under the strong null hypothesis that treat-
ment has no effect on any patient’s outcome. For both the treatment group and the
control group, the data-generating process for outcomes is identical to that used
for the control group in Table 4.3: the probability of death is 20%, and survivors’
LOS values are sampled with replacement from the SUNSET trial’s control group
data. Death is placed as the worst possible outcome. As expected, the WMW and
BM tests have rejection rates close to the nominal 5% significance level.

For the second and third panels, we simulated scenarios in which Hw
0 holds but

the strong null does not. In each case, treatment shrinks the spread of a symmetric
outcome distribution without shifting its center. The second panel assumes contin-
uous distributions [the case analyzed by Pratt (1964)], while the third panel allows
a substantial number of ties.

In the second panel, the treated and control patients’ outcomes are drawn from
the continuous uniform distributions on [12.5, 27.5] and [5, 35], respectively. As
a test of Hw

0 , the WMW test rejects somewhat too often (6.4%) with a 1:1 treat-
ment:control allocation ratio, far too often (14.7%) with a 9:1 ratio, and rarely
(0.3%) with a 1:9 ratio; these rates are very close to the asymptotic limits implied
by Pratt’s (1964) Table 1. In contrast, the BM test’s rejection rates are always close
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to the nominal 5% level.
For the third panel, outcomes are drawn from mixed discrete/continuous distri-

butions. For treated patients, the distribution puts 20% probability on a point mass
at 2.5, 60% on the uniform distribution on [12.5, 27.5], and 20% on a point mass at
37.5. The control patients’ distribution is similar but the point masses are at 0 and
40 and the uniform distribution’s range is [5, 35]. Again, the BM test maintains
the nominal significance level but the WMW test does not (its rejection rates are
5.7%, 11.4%, and 1.2%).

In sum, the WMW test is not a valid test of Hw
0 . It is valid for the strong null, but

it is sensitive to certain kinds of departures from the strong null and not others. For
example, it is more likely to reject the null when treatment narrows the spread of
the outcome distribution and there are more treated than control patients, or when
treatment widens the spread and there are more control than treated patients. It is
less likely to reject when the opposite is true. These properties complicate the test’s
interpretation and are probably not well-known to most of its users. In contrast,
the BM test is an approximately valid test of Hw

0 in sufficiently large samples, and
a rejection of Hw

0 can be understood as evidence of a general tendency for treated
patients’ outcomes to be better or worse (depending on the sign of the test statistic)
than those of untreated patients.

On the other hand, it is not clear whether these issues are likely to be empiri-
cally important in most clinical trials. With a balanced design, the WMW test’s
overrejection of Hw

0 in Table 4.4 is only slight, and the simulated scenarios are
perhaps extreme (e.g., in the second panel, treatment halves the standard deviation
of the outcome).

Simulation evidence on power
Table 4.5 compares the abilities of three tests to detect beneficial treatment

effects (i.e., reducing LOS or mortality) in various scenarios. The tests are the
WMW, the BM, and the significance test for QTE0.5 (the treatment effect on
the median) constructed by inverting the bootstrap percentile confidence interval
(based on 1,000 bootstrap replications). In each case we used a two-tailed test
(at the 5% level) but assumed that if the null hypothesis was rejected, researchers
would infer the direction of the effect from the sign of (i) the difference between
the Wilcoxon rank sum statistic and its expected value, (ii) the BM statistic, or (iii)
the CI limits for QTE0.5. The upper half of the table shows the rates of correctly
inferring a beneficial treatment effect (in 10,000 replications of a clinical trial); the
lower half shows the rates of incorrectly inferring a harmful effect, which are very
low. In each scenario, the trial includes 1,500 patients with a 1:1 treatment:control
allocation, and death is placed as the worst possible outcome.

In scenario A, the probability of death in the ICU is 5% for both the treat-
ment group and the control group, but treatment and control group survivors’ LOS
values are sampled from two different distributions. The control group LOS dis-
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Table 4.5: Rejection rates (in 10,000 replications) of three significance tests in
six alternative-hypothesis scenarios. WMW = Wilcoxon–Mann–Whitney; BM =
Brunner–Munzel. The QTE0.5 test rejects if and only if the bootstrap percentile CI
for the treatment effect on the median excludes zero. All tests are two-tailed with
nominal significance level 5%.

WMW BM QTE0.5
Reject, correctly infer beneficial effect (%)
Scenario A 54.8 54.7 10.3
Scenario B 30.6 30.5 61.2
Scenario C 38.3 38.2 61.6
Scenario D 7.5 7.5 4.2
Scenario E 5.1 5.1 6.9
Scenario F 7.4 7.4 7.0

Reject, incorrectly infer harm (%)
Scenario A 0.0 0.0 0.3
Scenario B 0.0 0.0 0.0
Scenario C 0.0 0.0 0.0
Scenario D 0.7 0.7 0.1
Scenario E 0.1 0.1 0.6
Scenario F 0.7 0.7 0.6

tribution is just the empirical distribution for the SUNSET trial’s control group
survivors. The treatment group LOS distribution substitutes g(x) for each value
x in the control group distribution, where g(x) = x if x is less than or equal to 2
days and g(x) = x/2+1 days if x exceeds 2 days. The underlying idea is that the
intervention is not expected to affect the shortest ICU stays, because bed space
availability limits the speed at which patients can be moved from the ICU to other
hospital units.

The WMW and BM tests detected a beneficial treatment effect in 55% of the
replications of scenario A, while the corresponding rate for the QTE0.5 test was
only 10%. In this scenario, the true QTE is small at the median and larger in the
upper half of the composite outcome distribution (except the upper 5% tail, which
represents death): the intervention reduces the population median from 2.2 to 2.1
days and the 95th percentile (the highest value except for death) from 40.9 to 21.5
days.

Scenario B raises the probability of death to 20% but is otherwise identical to
scenario A. Because death now occupies a larger area at the upper tail of the com-
posite outcome distribution, the median values with and without the intervention
are now higher, and the intervention reduces the population median from 2.7 to
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2.4 days. Thus, the true QTE at the median is higher than in scenario A, and the
QTE0.5 test has more power, detecting a beneficial effect in 61% of the replica-
tions. The corresponding rates for the WMW and BM tests have fallen to 31%;
these tests lose power when there are many ties. A possible remedy, following
Follmann, Fay, and Proschan (2009) and Hallstrom (2010), is to perform a WMW
test after removing an equal and maximal number of observations at the extremum
(here, death) from each group. However, we do not know of a way to use this
approach to construct a test that would share the BM test’s property of asymptotic
validity for a weak null hypothesis.

In scenario C, the intervention reduces both LOS and mortality. We assume
each patient in the population belongs to one of three principal strata [Frangakis
and Rubin (2002); Rubin (2006a)]: 17.5% are “never-survivors,” who would die in
the ICU with or without the intervention; 80% are “always-survivors,” who would
survive with or without the intervention; and 2.5% are “responders,” who would
die in the ICU without the intervention but would survive with the intervention.
(For simplicity, we assume the intervention does not cause any patients to die in
the ICU, although this may be unrealistic.) The control group’s outcomes are gen-
erated exactly as in scenario B. The treatment group’s outcome-generating process
puts 17.5% probability on death, 80% on the same LOS distribution as in scenarios
A and B, and 2.5% on the uniform distribution with range 14 to 28 days (thus as-
suming that responders have atypically long ICU stays). The WMW and BM tests
have somewhat higher power than in scenario B, while the QTE0.5 test’s power is
essentially unchanged. (The mortality effects are irrelevant to QTE0.5 here, since
responders’ outcomes are worse than the median with or without the intervention.)

Scenarios D, E, and F are identical to A, B, and C, respectively, except that
the treatment group LOS distribution only substitutes g(x) for a random 25% of
the values x in the control group distribution. The underlying idea is that we may
expect that only a minority of patients will have their outcomes affected by whether
an intensivist physician is present in the ICU at night. Table 4.5 shows that all three
tests have very low power in these scenarios.

The results in Table 4.5 suggest three conclusions. First, in large samples, it
seems appropriate to prefer the BM test to the WMW test, since they have approx-
imately equal power in Table 4.5 and the BM test has much more robustness of
validity in Table 4.4. Second, power comparisons between the BM test and the
QTE0.5 test vary with the nature of the treatment effect. (Arguably, in the absence
of any prior information about the anticipated effect, the BM test is a more robust
choice, since it has some sensitivity to effects throughout the outcome distribu-
tion, and an intervention can have practically significant effects without affecting
the median.) Third, if an intervention is expected to affect LOS for only a minority
of patients and only those with longer ICU stays, either a sample size greater than
1,500 or a more powerful test may be needed to detect treatment effects.
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4.4 Illustrative example
SUNSET-ICU [Kerlin et al. (2013)] was conducted in the medical ICU of the

Hospital of the University of Pennsylvania (a 24-bed ICU). The trial enrolled pa-
tients who were admitted between September 12, 2011, and September 11, 2012.
Within each two-week block during this period (except a winter holiday block),
one week was randomly assigned to the intervention staffing model and the other
to the control model. In both models, daytime staff included two intensivists
(attending physicians who were board-certified or board-eligible in critical care
medicine), and nighttime staff included three medical residents, who were ex-
pected to review all new admissions and critical events with an intensivist or crit-
ical care fellow by phone or in person. On control nights, two intensivists were
available by phone. On intervention nights, one intensivist was present in the ICU.

The staffing model on the night of admission (or the night after a daytime admis-
sion) determined whether each patient was considered a member of the treatment
group or the control group. In other words, the analysis estimates the effects of
being admitted during an intervention week vs. a control week. Most patients ex-
perienced only one staffing model (the median LOS was about 2 days), but patients
could experience both models if they stayed in the ICU long enough. After sample
exclusions detailed in Kerlin et al. (2013), there were 820 patients in the treatment
group and 778 in the control group.11

Using a proportional hazards model with death treated as a censoring event,
Kerlin et al. found no effect of intervention week admission on ICU LOS. There
was also no discernible effect on ICU deaths: 17.3% of the treatment group and
16.4% of the control group died in the ICU, and the difference is not statistically
significant. The concern about selection bias in analyses of survivors’ LOS, which
was a motivation for this chapter, is therefore lessened (although it is theoretically
possible that the intervention changed the composition of the survivor group). We
nevertheless present a re-analysis of the trial data here as an illustrative example.12

With death placed as the worst possible outcome, the Brunner–Munzel test does
not reject the hypothesis of no systematic tendency for a treatment group patient’s
outcome to be better or worse than a control group patient’s (the P-value in a two-
tailed test is 0.25). The associated 95% CI for P(Y1i <Y0 j)+0.5 P(Y1i =Y0 j)—that
is, the probability that a random treatment group patient’s outcome is better than a
random control group patient’s, plus one-half the probability that they are equally
desirable (or undesirable)—is [0.455,0.512]. The results are similar when death
and a 30-day LOS are considered equally undesirable.

11The trial has a matched-pair, cluster-randomized design [Imai, King, and Nall (2009)]: the
patients admitted during a week are a cluster, and each two-week block is a matched pair. For
simplicity, in this example we analyze the data as if individual patients were randomized without
blocking.

12The dataset used for this chapter excludes two control group patients who had LOS exceeding
90 days. The maximum LOS in the dataset is 40.9 days.
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Table 4.6: Estimated quantile treatment effects in the SUNSET trial. The second
and third columns show the sample quantiles for the treatment and control groups
(lengths of ICU stay are given in days). The fourth column shows their difference,
the estimated QTE. The fifth column shows a 95% confidence interval (bootstrap
percentile method) for the QTE. The top panel assumes death is the worst possible
outcome. The bottom panel assumes death and a 30-day ICU stay are considered
equally undesirable.

Quantile Treatment Control Difference 95% CI
Death is worst outcome
0.25 1.4 1.3 0.1 [−0.1, 0.3]
0.5 (median) 2.8 2.6 0.2 [−0.2, 0.7]
0.6 4.0 3.7 0.3 [−0.3, 1.3]
0.7 7.3 5.8 1.5 [−0.5, 3.2]
0.75 10.0 8.1 1.9 [−1.1, 6.6]
0.8 17.3 12.9 4.3 Undefined
0.9 Death Death Undefined Undefined

Death placed at 30 days
0.25 1.4 1.3 0.1 [−0.1, 0.3]
0.5 (median) 2.8 2.6 0.2 [−0.2, 0.7]
0.6 4.0 3.7 0.3 [−0.3, 1.3]
0.7 7.3 5.8 1.5 [−0.5, 3.2]
0.75 10.0 8.1 1.9 [−1.1, 6.6]
0.8 17.3 12.9 4.3 [−8.2, 18.7]
0.9 30.0 30.0 0.0 [0.0, 0.0]

The top panel of Table 4.6 shows estimated quantile treatment effects and 95%
confidence intervals (using the bootstrap percentile method with 1,000 replica-
tions), with death placed as the worst outcome. There is no evidence that the
intervention affected the median outcome or any of the other quantiles examined.
The CIs for the treatment effects on the 25th to 75th percentiles of the outcome
distribution all include zero. Our method is unable to perform inference for treat-
ment effects at the 80th percentile and above. The 80th percentile outcome for the
treatment group is a 17.3-day LOS, compared to a 12.9-day LOS for the control
group, but one or both values are death on some of the bootstrap replications, so
the method cannot produce a confidence interval without additional assumptions
about how to value the difference between death and a numeric LOS. The 90th
percentile is death in both groups. For a general audience, one might present the
results for the 0.25 to 0.75 quantiles together with a CI for the intervention’s effect
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Table 4.7: Estimated cutoff treatment effects in the SUNSET trial. The second
and third columns show the treatment and control group sample proportions with
outcomes at least as bad as the cutoff. The fourth column shows their difference,
the estimated CTE. The fifth column shows a 95% confidence interval (normal
approximation) for the CTE. The top panel assumes death is the worst possible
outcome. The bottom panel assumes death and a 30-day ICU stay are considered
equally undesirable.

Cutoff % with outcome at least as bad as cutoff
Treatment Control Difference 95% CI

Death is worst outcome
1 day in ICU 84.3 83.2 1.0 [−2.6,4.6]
2 days 60.4 59.0 1.3 [−3.5,6.2]
3 days 48.0 44.5 3.6 [−1.3,8.5]
4 days 40.1 37.8 2.4 [−2.4,7.1]
1 week 30.9 27.3 3.5 [−0.9,8.0]
2 weeks 22.1 19.6 2.5 [−1.5,6.5]
4 weeks 18.7 16.9 1.8 [−2.0,5.5]
Death 17.3 16.4 1.0 [−2.7,4.6]

Death placed at 30 days
1 day in ICU 84.3 83.2 1.0 [−2.6,4.6]
2 days 60.4 59.0 1.3 [−3.5,6.2]
3 days 48.0 44.5 3.6 [−1.3,8.5]
4 days 40.1 37.8 2.4 [−2.4,7.1]
1 week 30.9 27.3 3.5 [−0.9,8.0]
2 weeks 22.1 19.6 2.5 [−1.5,6.5]
4 weeks 18.7 16.9 1.8 [−2.0,5.5]
30 days 18.5 16.9 1.7 [−2.1,5.4]
5 weeks 0.7 0.3 0.5 [−0.2,1.2]

on mortality, which will be given below.
The bottom panel of Table 4.6 repeats the analysis with death and a 30-day

LOS considered equally undesirable. The results for the 25th to 75th percentiles
are unchanged. At the 80th percentile, a CI can now be constructed, and it cannot
rule out a strong beneficial effect (shortening LOS by 8.2 days), a strong harmful
effect (lengthening LOS by 18.7 days), or no effect. The 90th percentile outcome
is 30 (representing death) in both the treatment group and the control group and
the CI excludes all nonzero values.

The top panel of Table 4.7 shows estimated effects on the proportions of patients
with outcomes at least as bad as various cutoff values, with 95% CIs based on the

50



normal approximation. Death in the ICU is placed as the worst outcome, and the
last row of the panel shows the estimated effect on mortality (the point estimate
is 1.0 percentage point, but the CI ranges from −2.7 to 4.6 percentage points).
All the CIs include zero, so there is no evidence that the intervention affected
the ICU death rate or any of the other proportions. The bottom panel repeats the
analysis with death and a 30-day LOS considered equally undesirable; the results
are similar.

In sum, our analysis finds no evidence that the intervention affected the distribu-
tion of patients’ outcomes, regardless of whether death is considered the worst pos-
sible outcome or placed as comparable to an LOS as short as 30 days. Since there
was little difference in ICU mortality between the treatment and control groups, it
is not surprising that the original analysis in Kerlin et al. (2013) and the re-analysis
presented here yield similar conclusions.

4.5 Discussion
The placement-of-death approach does not estimate treatment effects on LOS

per se. Instead, it estimates effects on the distribution of a composite outcome
measure based on ICU mortality and survivors’ LOS. Researchers may hope to
disentangle those effects and to estimate treatment effects on the LOS of always-
survivors—those patients who would have survived their ICU stays regardless of
whether they were assigned to the intervention.13 Such questions are important,
but stronger assumptions are needed to study them. Thus, our approach is not a
substitute for additional modeling, but it may be a useful starting point. It ad-
dresses concerns about selection bias by comparing the entire treatment group
with the entire control group, and it can provide evidence of an overall beneficial
or harmful effect.

The approach allows sensitivity analysis with alternative placements of death,
but it does make some restrictive assumptions about valuations of LOS and death.
For example, it awards no credit for reducing long ICU stays of patients who
would die in the ICU with or without the intervention, although such an effect
may be in accordance with some patients’ wishes. Extending the approach to
accomodate more complicated valuations may be a useful direction for further
work. Alternatively, social cost-benefit analysis could be considered. However, the
placement-of-death approach may be more appealing to some audiences because
it avoids the need to assign a numeric value to death.

Of the significance tests we studied, the Brunner–Munzel test (or a permutation
test based on the BM statistic) may be a reasonable choice for an omnibus pri-
mary test. Some other rank tests may have more power when there are many ties
[Follmann, Fay, and Proschan (2009); Hallstrom (2010)] or when a small fraction

13Rubin (2006a) explains the concept of treatment effects on always-survivors and the difficulties
involved in estimating them. Joffe (2011) argues for a broader focus.
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of treated patients experience large treatment effects [see Rosenbaum (2007) and
references therein]. It is not clear that any of those other tests can be easily con-
verted into robust tests of weak null hypotheses, but further investigation may be
worthwhile.

Extension of the approach to cover cluster-randomized trials would also be valu-
able. Rosenbaum’s (2006) original approach provided exact confidence intervals
in experiments with complete random assignment of individuals, but more com-
plex designs create difficulties for exact inference.

Adjustment for treatment–control imbalances in the distributions of baseline
covariates may be desired. One option that could be investigated is to combine the
placement-of-death approach with inverse propensity score weighting.
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Appendix A

Proofs for Chapter 2

A.1 Additional notation and definitions
In Chapter 2:

• Section 2.2 defines the basic notation;

• Section 2.4 states Conditions 1–3, defines the vectors Qa and Qb and the
prediction errors a∗i and b∗i , and introduces the σ2

x and σx,y notation for pop-
ulation variances and covariances;

• Section 2.5 defines the vector Q and the prediction errors a∗∗i and b∗∗i .

Let p̃A = nA/n [as in remark (iii) after Corollary 2.1.2].
Extend Section 2.2’s notation for population and group means to cover any

scalar, vector, or matrix expression. For example:

abA =
1

nA
∑
i∈A

aibi, azA =
1
nA

∑
i∈A

aizi, z′zA =
1
nA

∑
i∈A

z′izi.

Extend Freedman’s (2008b) angle bracket notation to cover all the finite limits
assumed in Condition 2. For example:

〈az〉= lim
n→∞

1
n

n

∑
i=1

aizi, 〈z′z〉= lim
n→∞

1
n

n

∑
i=1

z′izi.

(The second limit exists since it is a submatrix of limn→∞ n−1Z′Z.)
Condition 4 (centering) will sometimes be assumed for convenience. The proofs

will explain why this can be done without loss of generality.

Condition 4. The population means of the potential outcomes and the covariates
are zero: a = b = 0 and z = 0.
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Some transformations of the regressors will be useful in the proofs. Define the
pooled-slopes regression estimator of mean potential outcomes, β̂adj, as the 2×1
vector containing the estimated coefficients on Ti and 1−Ti from the no-intercept
OLS regression of Yi on Ti, 1−Ti, and zi−z. Let Q̂ denote the vector of estimated
coefficients on zi− z from the same regression.

The vector β̂adj is an estimate of β = (a,b)′. By well-known invariance proper-
ties of least squares, ÂTEadj is the difference between the two elements of β̂adj.

Similarly, define the separate-slopes regression estimator of mean potential out-
comes, β̂interact, as the 2×1 vector containing the estimated coefficients on Ti and
1−Ti from the no-intercept OLS regression of Yi on Ti, 1−Ti, zi−z, and Ti(zi−z).
Then ÂTEinteract is the difference between the two elements of β̂interact.

Let Q̂a and Q̂b denote the vectors of estimated coefficients on zi in the OLS
regressions of Yi on zi in groups A and B, respectively.

Conditions 1–3 do not rule out the possibility that under some realizations of
random assignment, the regressors are perfectly collinear. The probability of this
event converges to zero by Conditions 2 and 3, so it is irrelevant to the asymp-
totic results. For concreteness, whenever ÂTEadj cannot be computed because
of collinearity, let ÂTEadj = Y A −Y B, Q̂ = 0, and β̂adj = (Y A,Y B)

′; whenever
ÂTEinteract cannot be computed, let ÂTEinteract = Y A−Y B, Q̂a = 0, Q̂b = 0, and
β̂interact = (Y A,Y B)

′. Other arbitrary values could be used.

A.2 Lemmas
Lemma A.1 is a finite-population version of the Weak Law of Large Numbers.

Lemma A.1. Assume Conditions 1–3. The means over group A or group B of ai,
bi, zi, a2

i , b2
i , z′izi, aibi, aizi, and bizi converge in probability to the limits of the

population means. For example:

aA
p−→ 〈a〉,

a2A ≡
1
nA

∑
i∈A

a2
i

p−→ 〈a2〉,

abA
p−→ 〈ab〉,

azA
p−→ 〈az〉,

z′zA
p−→ 〈z′z〉.

Proof. From basic results on simple random sampling [e.g., Freedman’s (2008b)
Proposition 1], E(aA) = a and

var(aA) =
1

n−1
1− p̃A

p̃A
σ

2
a.
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As n→ ∞, p̃A→ pA > 0 and σ2
a→ 〈a2〉− 〈a〉2, so var(aA)→ 0. By Chebyshev’s

inequality, aA−a
p−→ 0. Therefore,

aA
p−→ lim

n→∞
a = 〈a〉.

The proofs that a2A
p−→ 〈a2〉 and abA

p−→ 〈ab〉 are similar but rely on Condition 1
to show that var(a2A)→ 0 and var(abA)→ 0. First note that

var(a2A) =
1

n−1
1− p̃A

p̃A
σ

2
(a2)

and

var(abA) =
1

n−1
1− p̃A

p̃A
σ

2
(ab).

By Condition 1, σ2
(a2)

is bounded:

σ
2
(a2) ≤ a4 < L.

Therefore, var(a2A)→ 0. Next note that σ2
(ab) is bounded, using the Cauchy–

Schwarz inequality:

σ
2
(ab) ≤

1
n

n

∑
i=1

a2
i b2

i ≤

(
1
n

n

∑
i=1

a4
i

)1/2(
1
n

n

∑
i=1

b4
i

)1/2

< L.

Therefore, var(abA)→ 0.
The same logic can be used to show the remaining results. Those involving zi

can be proved element by element.

Lemma A.2. The pooled-slopes estimator of mean potential outcomes is

β̂adj =
[
Y A− (zA− z)Q̂,Y B− (zB− z)Q̂

]′
.

Proof. The residuals from the regression defining β̂adj are uncorrelated with Ti and
1−Ti. Therefore, the regression line passes through the points of means within
groups A and B, and the result follows.

Lemma A.3. The separate-slopes estimator of mean potential outcomes is

β̂interact =
[
Y A− (zA− z)Q̂a,Y B− (zB− z)Q̂b

]′
.
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Proof. In the regression defining β̂interact, the coefficient on zi− z is Q̂b and the
coefficient on Ti(zi− z) is Q̂a− Q̂b. (This can be shown from the equivalence of
the minimization problems.) The rest of the proof is similar to that of Lemma
A.2.

Lemma A.4. Assume Conditions 1–3. Then Q̂ p−→Q.

Proof. We can assume Condition 4 without loss of generality: Let γ̂ be the esti-
mated coefficient vector from a no-intercept OLS regression of Yi on Ti, 1−Ti, and
zi− z. Let ãi = ai−a and b̃i = bi−b, so that Condition 4 holds for ãi and b̃i. Let
Ỹi = ãiTi+ b̃i(1−Ti). By a well-known property of OLS [e.g., Freedman’s (2008b)
Lemma A.1], the estimated coefficient vector from a no-intercept OLS regression
of Ỹi on Ti, 1−Ti, and zi− z is γ̂− (a,b,0)′, so Q̂ is unchanged. Similarly, Q is
unchanged. Finally, centering zi has no effect on the slope vectors Q̂ and Q.

By the Frisch–Waugh–Lovell theorem, Q̂ can be computed from auxiliary re-
gressions: Let

ei = Yi−Y ATi−Y B(1−Ti),

fi = zi− zATi− zB(1−Ti).

Then

Q̂ =

(
1
n

n

∑
i=1

f′ifi

)−1(
1
n

n

∑
i=1

f′iei

)
.

Some algebra yields

1
n

n

∑
i=1

f′ifi = z′z− p̃Az′AzA− (1− p̃A)z′BzB.

By Condition 4 and Lemma A.1, zA
p−→ 0 and zB

p−→ 0. Therefore,

1
n

n

∑
i=1

f′ifi
p−→ 〈z′z〉.

Now note that

ei = (ai−aA)Ti +(bi−bB)(1−Ti),

fi = (zi− zA)Ti +(zi− zB)(1−Ti).

Therefore,

1
n

n

∑
i=1

f′iei =
1
n ∑

i∈A
(zi− zA)

′(ai−aA)+
1
n ∑

i∈B
(zi− zB)

′(bi−bB)

= p̃A(azA−aAzA)
′+(1− p̃A)(bzB−bBzB)

′

p−→ pA〈az〉′+(1− pA)〈bz〉′.

66



(Convergence to the last expression follows from Lemma A.1 and Conditions 3–4.)
It follows that

Q̂ p−→ 〈z′z〉−1 [pA〈az〉′+(1− pA)〈bz〉′
]

= pA lim
n→∞

( n

∑
i=1

z′izi

)−1 n

∑
i=1

z′iai

+(1− pA) lim
n→∞

( n

∑
i=1

z′izi

)−1 n

∑
i=1

z′ibi


= pAQa +(1− pA)Qb = Q.

Lemma A.5. Assume Conditions 1–3. Then Q̂a
p−→Qa and Q̂b

p−→Qb.

Proof. The proof is similar to that of Lemma A.4 but simpler. Again, we can
assume Condition 4 without loss of generality. By the Frisch–Waugh–Lovell the-
orem,

Q̂a =

[
1
nA

∑
i∈A

(zi− zA)
′(zi− zA)

]−1[
1

nA
∑
i∈A

(zi− zA)
′(ai−aA)

]
.

Some algebra, Lemma A.1, and Condition 4 yield

1
nA

∑
i∈A

(zi− zA)
′(zi− zA) = z′zA− z′AzA

p−→ 〈z′z〉

and
1
nA

∑
i∈A

(zi− zA)
′(ai−aA) = (azA−aAzA)

′ p−→ 〈az〉′

so

Q̂a
p−→ 〈z′z〉−1〈az〉′

= lim
n→∞

( n

∑
i=1

z′izi

)−1 n

∑
i=1

z′iai

= Qa.

The proof that Q̂b
p−→Qb is similar.

Lemma A.6 is similar to part of Freedman’s (2008b) Theorem 2.

Lemma A.6. Assume Conditions 1–3. Then
√

n(β̂adj−β)
d−→ N(0,V)

where

V =

[
1−pA

pA
limn→∞ σ2

a∗∗ − limn→∞ σa∗∗,b∗∗

− limn→∞ σa∗∗,b∗∗
pA

1−pA
limn→∞ σ2

b∗∗

]
.
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Proof. We can assume Condition 4 without loss of generality: Centering ai, bi, and
zi has no effect on Q̂ and Q, as shown in the proof of Lemma A.4, so it subtracts
(a,b)′ from both β̂adj (see Lemma A.2) and β, and it has no effect on the elements
of V.

Condition 4 and Lemma A.2 imply that
√

n(β̂adj−β) =
√

n(Y A− zAQ̂,Y B− zBQ̂)′

=
√

n(aA− zAQ,bB− zBQ)′− [
√

nzA(Q̂−Q),
√

nzB(Q̂−Q)]′.

By a finite-population Central Limit Theorem [Freedman’s (2008b) Theorem
1],
√

nzA and
√

nzB are Op(1), and by Lemma A.4, Q̂−Q is op(1). Therefore,

[
√

nzA(Q̂−Q),
√

nzB(Q̂−Q)]′
p−→ 0.

The conclusion follows from Freedman’s (2008b) Theorem 1 with a and b re-
placed by a− zQ and b− zQ.

Lemma A.7 is an application of the Weak Law of Large Numbers (Lemma A.1).

Lemma A.7. Assume Conditions 1–3. Let θ be any K×1 vector that is constant
as n→ ∞. Then

1
nA

∑
i∈A

(ai + ziθ)
2 p−→ lim

n→∞

1
n

n

∑
i=1

(ai + ziθ)
2,

1
n−nA

∑
i∈B

(bi + ziθ)
2 p−→ lim

n→∞

1
n

n

∑
i=1

(bi + ziθ)
2.

Proof. Using Lemma A.1,

1
nA

∑
i∈A

(ai + ziθ)
2 = a2A +2azAθ+θ′z′zAθ

p−→ 〈a2〉+2〈az〉θ+θ′〈z′z〉θ

= lim
n→∞

1
n

n

∑
i=1

(ai + ziθ)
2.

The proof of the other assertion is analogous.

Lemma A.8 shows that the sandwich variance estimator for ÂTEadj is invariant
to the transformation of the regressors that was used to define β̂adj.

Lemma A.8. Let

W = (X̃′X̃)−1

(
n

∑
i=1

ê2
i x̃′ix̃i

)
(X̃′X̃)−1

where X̃ is the n× (K + 2) matrix with row i equal to x̃i = (Ti,1−Ti,zi− z) and
êi is the residual from the no-intercept OLS regression of Yi on x̃i. Then v̂adj =
W11 +W22−2W12, where Wi j is the (i, j) element of W.

68



Proof. By definition, v̂adj is the (2,2) element of

(X′X)−1X′diag(ε̂2
1, . . . , ε̂

2
n)X(X′X)−1 = (X′X)−1

(
n

∑
i=1

ε̂
2
i x′ixi

)
(X′X)−1

where X is the n× (K + 2) matrix whose ith row is xi = (1,Ti,zi) and ε̂i is the
residual from the OLS regression of Yi on xi.

The OLS residuals are invariant to the linear transformation of regressors, so
êi = ε̂i for i = 1,2, . . . ,n. Also, X = X̃RS where

R =

[
M 0
0 IK

]
, S =

[
I2 L
0 IK

]
,

and

M =

[
1 1
1 0

]
=

[
0 1
1 −1

]−1

, L =

[
z
0

]
.

Note that R is symmetric but S is not, and

S−1 =

[
I2 −L
0 IK

]
.

Therefore,

(X′X)−1X′diag(ε̂2
1, . . . , ε̂

2
n)X(X′X)−1 = S−1R−1WR−1(S−1)′.

The (2, 2) element is W11 +W22−2W12.

Lemma A.9 is important for the proof of Theorem 2.2.

Lemma A.9. Assume Conditions 1–4. Let êi denote the residual from the no-
intercept OLS regression of Yi on Ti, 1−Ti, and zi. Then

1
nA

∑
i∈A

ê2
i

p−→ lim
n→∞

σ
2
a∗∗,

1
n−nA

∑
i∈B

ê2
i

p−→ lim
n→∞

σ
2
b∗∗,

and n−1
∑i∈A ê2

i zi, n−1
∑i∈B ê2

i zi, and n−1
∑

n
i=1 ê2

i z′izi are all Op(1).

Proof. Let β̂ad j(1) and β̂ad j(2) denote the estimated coefficients on Ti and 1−Ti,
respectively. Then

êi = Yi− β̂ad j(1)Ti− β̂ad j(2)(1−Ti)− ziQ̂

= Ti[(ai− ziQ̂)− β̂ad j(1)]+ (1−Ti)[(bi− ziQ̂)− β̂ad j(2)]

= Ti[a∗∗i − zi(Q̂−Q)− β̂ad j(1)]+ (1−Ti)[b∗∗i − zi(Q̂−Q)− β̂ad j(2)].
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Therefore,

1
nA

∑
i∈A

ê2
i =

1
nA

∑
i∈A

[a∗∗i − zi(Q̂−Q)− β̂ad j(1)]
2

= S1 +S2 +S3−2S4−2S5−2S6

where

S1 =
1
nA

∑
i∈A

(a∗∗i )2,

S2 = (Q̂−Q)′z′zA(Q̂−Q),

S3 = β̂
2
ad j(1),

S4 =

(
1
nA

∑
i∈A

a∗∗i zi

)
(Q̂−Q),

S5 = β̂ad j(1)a∗∗A,

S6 = β̂ad j(1)zA(Q̂−Q).

S1
p−→ limn→∞ σ2

a∗∗ by Lemma A.7 and Condition 4.
The other terms are all op(1):

• S2
p−→ 0 because Q̂ p−→Q (by Lemma A.4) and z′zA

p−→ 〈z′z〉 (by Lemma A.1).

• S3
p−→ 0 because β̂ad j(1)

p−→ a = 0 (by Condition 4 and Lemma A.6).

• S4
p−→ 0 because

1
nA

∑
i∈A

a∗∗i zi =
1
nA

∑
i∈A

(ai−Q′z′i)zi

p−→ 〈az〉−Q′〈z′z〉

(by Lemma A.1) and Q̂ p−→Q.

• S5
p−→ 0 because a∗∗A

p−→ 〈a〉− 〈z〉Q = 0 (by Lemma A.1 and Condition 4)
and β̂ad j(1)

p−→ 0.

• S6
p−→ 0 because zA

p−→ 0 (by Lemma A.1 and Condition 4), β̂ad j(1)
p−→ 0, and

Q̂ p−→Q.

Therefore,

1
nA

∑
i∈A

ê2
i

p−→ lim
n→∞

σ
2
a∗∗.

70



Similarly,

1
n−nA

∑
i∈B

ê2
i

p−→ lim
n→∞

σ
2
b∗∗ .

Now note that

n−1
∑
i∈A

ê2
i zi =

1
n ∑

i∈A
[ai− ziQ̂− β̂ad j(1)]

2zi

= R1 +R2 +R3−2R4−2R5−2R6

where

R1 =
1
n ∑

i∈A
a2

i zi,

R2 =
1
n ∑

i∈A
(ziQ̂)2zi,

R3 = p̃Aβ̂
2
ad j(1)zA,

R4 = Q̂′
1
n ∑

i∈A
aiz′izi,

R5 = p̃Aβ̂ad j(1)azA,

R6 = p̃Aβ̂ad j(1)Q̂′z′zA.

R3, R5, and R6 are op(1) because β̂ad j(1)
p−→ 0, zA

p−→ 0, and p̃A, azA, z′zA, and
Q̂ converge to finite limits (by Condition 3, Lemma A.1, and Lemma A.4).

R1, R2, and R4 are Op(1), by Condition 1, Lemma A.4, and repeated appli-
cation of the Cauchy–Schwarz inequality. For example, for k = 1, . . . ,K, the kth
element of R2 is

1
n ∑

i∈A

(
K

∑
j=1

zi jQ̂ j

)2

zik =
K

∑
j=1

K

∑
`=1

(
Q̂ jQ̂`

1
n ∑

i∈A
zi jzi`zik

)
.

Q̂ j and Q̂` are Op(1), and n−1
∑i∈A zi jzi`zik is O(1):∣∣∣∣∣1n ∑

i∈A
zi jzi`zik

∣∣∣∣∣ ≤ 1
n

n

∑
i=1
|zi j||zi`zik| ≤

(
1
n

n

∑
i=1

z2
i j

)1/2(
1
n

n

∑
i=1

z2
i`z

2
ik

)1/2

≤

(
1
n

n

∑
i=1

z4
i j

)1/4(
1
n

n

∑
i=1

1

)1/4(
1
n

n

∑
i=1

z4
i`

)1/4(
1
n

n

∑
i=1

z4
ik

)1/4

< L3/4.

Therefore, R2 is Op(1).
Thus, n−1

∑i∈A ê2
i zi is Op(1). The proofs for n−1

∑i∈B ê2
i zi and n−1

∑
n
i=1 ê2

i z′izi
are similar.
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A.3 Proof of Theorem 2.1
We can assume Condition 4 without loss of generality, by an argument similar

to that given in the proof of Lemma A.6. Then ATE = 0, and by Lemma A.3 and
Condition 4,

√
n(ÂTEinteract−ATE) =

√
n[(aA− zAQ̂a)− (bB− zBQ̂b)]

=
√

n[(aA− zAQa)− (bB− zBQb)]−√
nzA(Q̂a−Qa)+

√
nzB(Q̂b−Qb).

By a finite-population Central Limit Theorem [Freedman’s (2008b) Theorem
1],
√

nzA and
√

nzB are Op(1), and by Lemma A.5, Q̂a−Qa and Q̂b−Qb are
op(1). Therefore,

√
nzA(Q̂a−Qa) and

√
nzB(Q̂b−Qb) are op(1).

The conclusion follows from Freedman’s (2008b) Theorem 1 with a and b re-
placed by a− zQa and b− zQb.

A.4 Proof of Corollary 2.1.1
We can assume Condition 4 without loss of generality: Centering ai, bi, and zi

has no effect on ÂTEinteract−ATE, ÂTEunadj−ATE, Qa, Qb, or σ2
E .

Note that:

lim
n→∞

σ
2
a∗ = lim

n→∞

1
n

n

∑
i=1

(ai− ziQa)
2

= 〈a2〉−〈az〉〈z′z〉−1〈az〉′,
lim
n→∞

σ
2
b∗ = 〈b2〉−〈bz〉〈z′z〉−1〈bz〉′,

lim
n→∞

σa∗,b∗ = lim
n→∞

1
n

n

∑
i=1

(ai− ziQa)(bi− ziQb)

= 〈ab〉−〈az〉Qb−〈bz〉Qa +Q′a〈z′z〉Qb

= 〈ab〉−〈az〉〈z′z〉−1〈bz〉′.

By Freedman’s (2008b) Theorem 1,

avar(
√

n[ÂTEunadj−ATE]) = avar(
√

n[aA−bB])

=
1− pA

pA
〈a2〉+ pA

1− pA
〈b2〉+2〈ab〉.

Let

∆ = avar(
√

n[ÂTEunadj−ATE])− avar(
√

n[ÂTEinteract−ATE]).
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Then

∆ =
1− pA

pA
〈az〉〈z′z〉−1〈az〉′+ pA

1− pA
〈bz〉〈z′z〉−1〈bz〉′+2〈az〉〈z′z〉−1〈bz〉′

=
1

pA(1− pA)
Q′E〈z′z〉QE =

1
pA(1− pA)

lim
n→∞

σ
2
E ≥ 0.

The matrix 〈z′z〉 is positive definite, so ∆/n = 0 if and only if QE = 0.

A.5 Proof of remark (iv) after Corollary 2.1.1
Suppose there are three treatment groups, A, B, and C, with associated dummy

variables Ui, Vi, and Wi and potential outcomes ai, bi, and ci. Let ATE = a−b, and
let ÂTEinteract be the difference between the estimated coefficients on Ui and Vi in
the no-intercept OLS regression of Yi on Ui, Vi, Wi, zi−z, Ui(zi−z), and Wi(zi−z).

Assume the three groups are of fixed sizes nA, nB, and n− nA− nB. Assume
regularity conditions analogous to Conditions 1–3: for example, nA/n→ pA and
nB/n→ pB, where pA > 0, pB > 0, and pA + pB < 1. Without loss of generality,
assume Condition 4.

Then
√

n(ÂTEinteract−ATE) converges in distribution to a Gaussian random
variable with mean 0 and variance

1− pA

pA
lim
n→∞

σ
2
a∗+

1− pB

pB
lim
n→∞

σ
2
b∗+2 lim

n→∞
σa∗,b∗.

The proof is essentially the same as that of Theorem 2.1.
Let ÂTEunadj = Y A−Y B. By Freedman’s (2008b) Theorem 1, the asymptotic

variance of
√

n(ÂTEunadj−ATE) is

1− pA

pA
〈a2〉+ 1− pB

pB
〈b2〉+2〈ab〉.

Let

∆ = avar(
√

n[ÂTEunadj−ATE])− avar(
√

n[ÂTEinteract−ATE]).

Then

∆ =
1− pA

pA
〈az〉〈z′z〉−1〈az〉′+ 1− pB

pB
〈bz〉〈z′z〉−1〈bz〉′+2〈az〉〈z′z〉−1〈bz〉′

=
1− pA

pA
〈az〉〈z′z〉−1〈az〉′+ pA

1− pA
〈bz〉〈z′z〉−1〈bz〉′+2〈az〉〈z′z〉−1〈bz〉′+(

1− pB

pB
− pA

1− pA

)
〈bz〉〈z′z〉−1〈bz〉′

=
1

pA(1− pA)
lim
n→∞

σ
2
E +

(
1− pB

pB
− pA

1− pA

)
Q′b〈z′z〉Qb,
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where Ei = (zi− z)QE and QE = (1− pA)Qa + pAQb.
Similarly,

∆ =
1

pB(1− pB)
lim
n→∞

σ
2
F +

(
1− pA

pA
− pB

1− pB

)
Q′a〈z′z〉Qa,

where Fi = (zi− z)QF and QF = pBQa +(1− pB)Qb.
The condition pA + pB < 1 implies

1− pB

pB
− pA

1− pA
> 0,

1− pA

pA
− pB

1− pB
> 0.

Also, 〈z′z〉 is positive definite. Therefore, ∆≥ 0, and the inequality is strict unless
Qa = 0 and Qb = 0.

The proof extends to designs with more than three treatment groups.

A.6 Proof of Corollary 2.1.2
Again, we can assume Condition 4 without loss of generality. By Lemma A.6,

avar(
√

n[ÂTEadj−ATE]) =
1− pA

pA
lim
n→∞

σ
2
a∗∗+

pA

1− pA
lim
n→∞

σ
2
b∗∗+2 lim

n→∞
σa∗∗,b∗∗

=
1− pA

pA
[〈a2〉+Q′〈z′z〉Q−2Q′〈az〉′]+
pA

1− pA
[〈b2〉+Q′〈z′z〉Q−2Q′〈bz〉′]+

2[〈ab〉+Q′〈z′z〉Q−Q′〈az〉′−Q′〈bz〉′]

=
1− pA

pA
〈a2〉+ pA

1− pA
〈b2〉+2〈ab〉+

1
pA(1− pA)

Q′〈z′z〉Q− 2
pA

Q′〈az〉′− 2
1− pA

Q′〈bz〉′.

Let

∆ = avar(
√

n[ÂTEadj−ATE])− avar(
√

n[ÂTEinteract−ATE]).
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Then

∆ =
1

pA(1− pA)
Q′〈z′z〉Q− 2

pA
Q′〈az〉′− 2

1− pA
Q′〈bz〉′+

1− pA

pA
〈az〉〈z′z〉−1〈az〉′+ pA

1− pA
〈bz〉〈z′z〉−1〈bz〉′+2〈az〉〈z′z〉−1〈bz〉′

=

(
pA

1− pA
−2+

1− pA

pA

)(
〈az〉〈z′z〉−1〈az〉′+ 〈bz〉〈z′z〉−1〈bz〉′−2〈az〉〈z′z〉−1〈bz〉′

)
=

(2pA−1)2

pA(1− pA)
(Qa−Qb)

′〈z′z〉(Qa−Qb)

=
(2pA−1)2

pA(1− pA)
lim
n→∞

σ
2
D ≥ 0.

A.7 Outline of proof of remark (iii) after Corollary
2.1.2

Without loss of generality, assume Condition 4. From the proof of Theorem 2.1,
√

nÂTEinteract =
√

n[(aA− zAQa)− (bB− zBQb)]+op(1).

By Condition 4, p̃AzA +(1− p̃A)zB = 0. Therefore, zA = (1− p̃A)(zA− zB) and
zB =−p̃A(zA− zB). It follows that

√
nÂTEinteract =

√
n{aA−bB− (zA− zB)[(1− pA)Qa + pAQb]}+op(1).

Now let ÂTEtyranny and Q̂tyranny be the estimated coefficients on Ti and zi from
a weighted least squares regression of Yi on Ti and zi, with weights

wi =
1− p̃A

p̃A
Ti +

p̃A

1− p̃A
(1−Ti).

It can be shown that Q̂tyranny
p−→ (1− pA)Qa + pAQb. The proof is similar to that

of Lemma A.4, after noting that weighted least squares is equivalent to OLS with
all data values (including the constant) multiplied by

√
wi.

It follows that
√

nÂTEtyranny =
√

n{aA−bB− (zA− zB)[(1− pA)Qa + pAQb]}+op(1).

The proof is similar to arguments in the proofs of Lemmas A.2 and A.6.
Therefore,

√
n(ÂTEtyranny− ÂTEinteract)

p−→ 0.
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A.8 Proof of Theorem 2.2
We can assume Condition 4 without loss of generality, by arguments similar to

those given in the proofs of Lemmas A.4, A.6, and A.8.
By Lemma A.8, nv̂adj = M11 +M22−2M12, where

M = (n−1X̃′X̃)−1

(
n−1

n

∑
i=1

ê2
i x̃′ix̃i

)
(n−1X̃′X̃)−1.

Using Condition 4,

n−1X̃′X̃ =

[
C D
D′ z′z

]
,

where

C =

[
p̃A 0
0 1− p̃A

]
, D =

[
p̃AzA

(1− p̃A)zB

]
.

By Conditions 2–4 and Lemma A.1, p̃A→ pA, zA
p−→ 0, zB

p−→ 0, and 〈z′z〉 is invert-
ible. Therefore,

(n−1X̃′X̃)−1 p−→
[

F 0
0 〈z′z〉−1

]
where

F =

[
1/pA 0

0 1/(1− pA)

]
.

Also,

x̃′ix̃i =

[
G H
H′ z′izi

]
,

where

G =

[
Ti 0
0 1−Ti

]
, H =

[
Tizi

(1−Ti)zi

]
.

So

n−1
n

∑
i=1

ê2
i x̃′ix̃i =

[
K L
L′ n−1

∑
n
i=1 ê2

i z′izi

]
,

where

K =

[
n−1

∑i∈A ê2
i 0

0 n−1
∑i∈B ê2

i

]
=

[
p̃An−1

A ∑i∈A ê2
i 0

0 (1− p̃A)(n−nA)
−1

∑i∈B ê2
i

]
,

L =

[
n−1

∑i∈A ê2
i zi

n−1
∑i∈B ê2

i zi

]
.
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By Lemma A.9 and Condition 3, L and n−1
∑

n
i=1 ê2

i z′izi are Op(1), and

K p−→
[

pA limn→∞ σ2
a∗∗ 0

0 (1− pA) limn→∞ σ2
b∗∗

]
.

The above results imply that the upper-left 2×2 block of M converges in prob-
ability to[

1/pA 0
0 1/(1− pA)

][
pA limn→∞ σ2

a∗∗ 0
0 (1− pA) limn→∞ σ2

b∗∗

][
1/pA 0

0 1/(1− pA)

]
=

[
p−1

A limn→∞ σ2
a∗∗ 0

0 (1− pA)
−1 limn→∞ σ2

b∗∗

]
.

Thus,

nv̂adj
p−→ 1

pA
lim
n→∞

σ
2
a∗∗+

1
1− pA

lim
n→∞

σ
2
b∗∗.

Lemma A.6 implies

avar(
√

n[ÂTEadj−ATE]) =
1− pA

pA
lim
n→∞

σ
2
a∗∗+

pA

1− pA
lim
n→∞

σ
2
b∗∗+2 lim

n→∞
σa∗∗,b∗∗.

Let ∆ = plim nv̂adj− avar(
√

n[ÂTEadj−ATE]). Then

∆ = lim
n→∞

σ
2
a∗∗+ lim

n→∞
σ

2
b∗∗−2 lim

n→∞
σa∗∗,b∗∗

= lim
n→∞

σ
2
(a∗∗−b∗∗) = lim

n→∞
σ

2
(a−b) ≥ 0.

The proof for nv̂interact is similar.

77



Appendix B

Proofs for Chapter 3

B.1 Additional notation
Section 3.2 explains the notation used in Chapter 3. This appendix uses addi-

tional notation from Chapter 2 and Appendix A.
Let a, aA, and aB denote the means of ai over the population, treatment group

A, and treatment group B:

a =
1
n

n

∑
i=1

ai, aA =
1

nA
∑
i∈A

ai, aB =
1

n−nA
∑
i∈B

ai.

Use similar notation for the means of bi, Yi, zi, and other scalar, vector, and matrix
variables. For example:

abA =
1

nA
∑
i∈A

aibi, azA =
1
nA

∑
i∈A

aizi, z′zA =
1
nA

∑
i∈A

z′izi.

Let p̃A = nA/n.
Let Q̂ denote the vector of estimated coefficients on zi in the OLS regression of

Yi on Ti and zi.
Let Q̂a and Q̂b denote the vectors of estimated coefficients on zi in the OLS

regressions of Yi on zi in groups A and B, respectively.
Condition 4 (mean-centering) will sometimes be assumed for convenience. The

proof of Theorem 3.1 explains why this can be done without loss of generality.

Condition 4. The population means of the potential outcomes and the covariates
are zero: a = b = 0 and z = 0.

B.2 Lemmas
Lemma B.1 generalizes Freedman’s (2008b) Proposition 1.
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Lemma B.1. Let xi and yi be 1×K vectors defined for i = 1, . . . ,n (i.e., for each
subject i in the population). Let M be any fixed K×K matrix. Then

E([xA−x]M[yA−y]′) =
1

n−1
1− p̃A

p̃A

1
n

n

∑
i=1

(xi−x)My′i,

E([xB−x]M[yB−y]′) =
1

n−1
p̃A

1− p̃A

1
n

n

∑
i=1

(xi−x)My′i,

E([xA−x]M[yB−y]′) = − 1
n−1

1
n

n

∑
i=1

(xi−x)My′i.

Proof. Without loss of generality, we can assume x = y = 0, since the general case
follows easily from this special case.

Note that if i = j, then E(TiTj) = P(i ∈ A) = nA/n, and if i 6= j, then

E(TiTj) = P(i ∈ A, j ∈ A) =
nA

n
nA−1
n−1

.

Next,

E([xA−x]M[yA−y]′) = E(xAMy′A)

= E

([
1

nA

n

∑
i=1

Tixi

]
M

[
1
nA

n

∑
j=1

Tjy j

]′)

=
1

n2
A

n

∑
i=1

n

∑
j=1

xiMy′jE(TiTj)

=
1

n2
A

[
nA

n

n

∑
i=1

xiMy′i +
nA

n
nA−1
n−1

n

∑
i=1

∑
j 6=i

xiMy′j

]
.

We can rewrite ∑
n
i=1 ∑ j 6=i xiMy′j as

n2 xMy ′−
n

∑
i=1

xiMy′i = −
n

∑
i=1

xiMy′i.

Therefore,

E([xA−x]M[yA−y]′) =
1

nA

1
n

n−nA

n−1

n

∑
i=1

xiMy′i

=
1

n−1
1− p̃A

p̃A

1
n

n

∑
i=1

(xi−x)My′i,

proving the first result. The second result is analogous.
Next note that if i = j, then E(Ti[1−Tj]) = E(Ti−Ti) = 0, and if i 6= j, then

E(Ti[1−Tj]) = P(i ∈ A, j ∈ B) =
nA

n
n−nA

n−1
.
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Therefore,

E([xA−x]M[yB−y]′) = E(xAMy′B)

= E

([
1
nA

n

∑
i=1

Tixi

]
M

[
1

n−nA

n

∑
j=1

(1−Tj)y j

]′)

=
1
nA

1
n−nA

n

∑
i=1

∑
j 6=i

xiMy′jE(Ti[1−Tj])

=
1
n

1
n−1

n

∑
i=1

∑
j 6=i

xiMy′j

= − 1
n−1

1
n

n

∑
i=1

xiMy′i

= − 1
n−1

1
n

n

∑
i=1

(xi−x)My′i.

Lemma B.2. Let Dn and Fn be sequences of random, invertible matrices such that
Dn = Fn +Op(g(n)) and Fn

p−→ F, where g(n) is o(1) and F is invertible. Then
D−1

n = F−1
n +Op(g(n)).

Proof. Pre-multiply by F−1
n and post-multiply by D−1

n to get

F−1
n = D−1

n +F−1
n ·Op(g(n)) ·D−1

n .

By the continuous mapping theorem, F−1
n

p−→ F−1 and D−1
n

p−→ F−1. Therefore,
F−1

n −D−1
n is Op(g(n)).

B.3 Proof of Theorem 3.1
We can assume Condition 4 without loss of generality, since centering ai, bi,

and zi has no effect on ÂTEadj−ATE and the expression for E(ηn).
By Lemma A.2 and Condition 4,

ÂTEadj−ATE = (aA− zAQ̂)− (bB− zBQ̂),

and from the proof of Lemma A.4, Q̂ = D−1N, where

D = z′z− p̃Az′AzA− (1− p̃A)z′BzB,

N = p̃A(azA−aAzA)
′+(1− p̃A)(bzB−bBzB)

′.

Note that zA, zB, aA, and bB are Op(1/
√

n) by a finite-population Central Limit
Theorem [e.g., Theorem 1 in Freedman (2008b) or Theorem 2.8.2 in Lehmann
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(1999)] and Conditions 1–4, while p̃A, azA, and bzB are Op(1) by Lemma A.1 and
Conditions 1–3. We thus get

D = z′z+Op(1/n),

and by Lemma B.2 and Conditions 2 and 4, D−1 = M+Op(1/n). Therefore,

zAQ̂ = zAM[p̃AazA +(1− p̃A)bzB]
′+Op(n−3/2),

zBQ̂ = zBM[p̃AazA +(1− p̃A)bzB]
′+Op(n−3/2).

Now let Q̃ denote the vector of slope coefficients in the population least squares
regression of p̃Aai +(1− p̃A)bi on zi, that is,

Q̃ = M[p̃Aaz+(1− p̃A)bz]′.

Also, let

Q̌ = M[p̃A(azA−az)+(1− p̃A)(bzB−bz)]′.

Note that Q̃ is fixed, while Q̌ may vary across randomizations. We have

ÂTEadj−ATE = ηn + Op(n−3/2),

where

ηn = [aA− zA(Q̃+ Q̌)]− [bB− zB(Q̃+ Q̌)].

From Condition 4 and the unbiasedness of sample means under simple random
sampling, E(aA) = E(bB) = 0 and E(zA) = E(zB) = 0. Thus,

E(ηn) = −[E(zAQ̌)−E(zBQ̌)].

Next,

E(zAQ̌) = p̃AE(zAM[azA−az]′) + (1− p̃A)E(zAM[bzB−bz]′).

Using Lemma B.1 and Condition 4, we get

E(zAQ̌) = (1− p̃A)
1

n−1
1
n

[
n

∑
i=1

(zi− z)M(aizi)
′−

n

∑
i=1

(zi− z)M(bizi)
′

]

= (1− p̃A)
1

n−1
1
n

n

∑
i=1

[(ai−bi)−ATE](zi− z)M(zi− z)′.

Similarly,

E(zBQ̌) = −p̃A
1

n−1
1
n

n

∑
i=1

[(ai−bi)−ATE](zi− z)M(zi− z)′

and thus

E(ηn) = − 1
n−1

1
n

n

∑
i=1

[(ai−bi)−ATE](zi− z)M(zi− z)′.
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B.4 Proof of Theorem 3.2
We can again assume Condition 4 without loss of generality. By Lemma A.3,

ÂTEinteract−ATE = (aA− zAQ̂a)− (bB− zBQ̂b).

Recall that Q̂a is the vector of estimated slope coefficients in the OLS regression
of ai on zi in group A, while Q̃a is the corresponding population least squares slope
vector. By Condition 4, the population least squares prediction error ãi is

ãi = ai− ziQ̃a.

Thus,

Q̂a =

[
∑
i∈A

(zi− zA)
′(zi− zA)

]−1[
∑
i∈A

(zi− zA)
′(ai−aA)

]

=

[
∑
i∈A

(zi− zA)
′(zi− zA)

]−1[
∑
i∈A

(zi− zA)
′(ziQ̃a + ãi−aA)

]

= Q̃a +

[
∑
i∈A

(zi− zA)
′(zi− zA)

]−1[
∑
i∈A

(zi− zA)
′ãi

]

and

zAQ̂a = zAQ̃a + zA
[

z′zA− z′AzA
]−1 [

ãzA− ãAzA
]′

= zAQ̃a + zAD−1N,

where D = z′zA− z′AzA and N = (ãzA− ãAzA)
′.

Note that zA and ãA = aA− zAQ̃a are Op(1/
√

n). We get D = z′zA +Op(1/n),
and by Lemma B.2, Lemma A.1, and Condition 2,

D−1 = z′z−1
A +Op(1/n).

Next, by a finite-population Central Limit Theorem [Theorem 1 in Freedman
(2008b) or Theorem 2.8.2 in Lehmann (1999)] and our premise (specifically Con-
dition 3, bounded eighth moments, and finite limiting variances of zikzi`),

z′zA = z′z+Op(1/
√

n).

By Lemma B.2 and Conditions 2 and 4, z′z−1
A = M+Op(1/

√
n). Thus,

D−1 = M+Op(1/
√

n).
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In the population, the prediction errors ãi are orthogonal to the covariates:

n

∑
i=1

ãiz′i =
n

∑
i=1

(ai− ziQ̃a)z′i

=
n

∑
i=1

aiz′i −
n

∑
i=1

z′iziQ̃a

=
n

∑
i=1

aiz′i −

[
n

∑
i=1

z′izi

][
n

∑
i=1

z′izi

]−1[ n

∑
i=1

z′iai

]
= 0.

Thus, ãz = 0, so by a finite-population Central Limit Theorem, ãzA is Op(1/
√

n).
Therefore,

zAQ̂a = zAQ̃a + zAM ãz′A + Op(n−3/2).

Similarly,

zBQ̂b = zBQ̃b + zBM b̃z
′
B + Op(n−3/2).

We thus have ÂTEinteract−ATE = η̃n +Op(n−3/2), where

η̃n = (aA− zAQ̃a− zAM ãz′A) − (bB− zBQ̃b− zBM b̃z
′
B).

The result for E(η̃n) follows from Condition 4 and Lemma B.1.
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