
Bootstrapped Learning of Semantic Classes

from Positive and Negative Examples

Winston Lin winston@cs.nyu.edu

Roman Yangarber roman@cs.nyu.edu

Ralph Grishman grishman@cs.nyu.edu

Courant Institute of Mathematical Sciences, New York University, 715 Broadway, 7th Floor,
New York, NY 10003 USA

Abstract

We present an algorithm for unsupervised
learning and semantic classification of names
and terms. Given a small number of seed ex-
amples and an unlabeled training corpus, the
algorithm learns patterns that identify more
examples, in a bootstrapping cycle. Multiple
classes are learned simultaneously, including
negative classes that serve to provide nega-
tive examples for the target classes. We apply
the algorithm to texts from several domains,
in English and Chinese.

1. Introduction

Many approaches to various text-understanding
tasks—such as Information Extraction, Question An-
swering, and Summarization—employ the identifica-
tion and classification of names as an essential lower-
level component. In broad terms, names are lexical
items that are unlikely to be found in general-purpose
dictionaries, and in text understanding it is important
to be able to identify and categorize names correctly.

Name classification is a much-studied field; we men-
tion some of the recent contributions in Section 2.
The work presented here extends the bootstrapping
algorithm of Yangarber, Lin, and Grishman (2002) to
obtain wider applicability and better performance on
multiple categories of names. It is tested on several
different scenarios, different corpora and in two lan-
guages, English and Chinese.

1.1. Proper Names and Generalized Names

Much previous research focuses on the Named En-
tity (NE) task (Defense Advanced Research Projects

Agency, 1995), which is largely restricted to proper
names. In English text, most proper names are capi-
talized. The classic NE categories are person, organi-

zation, and location.

In some languages, such as Chinese or German, cap-
italization is either unavailable or unreliable as a cue
for name detection. Thus, other textual features must
be used to detect and identify names.

In English, some domains contain semantic classes
whose members are not uniformly capitalized: organ-
isms, diseases, proteins, chemical compounds, etc.;
e.g., “fruit fly” vs. “Drosophila,” or “anthrax” vs.
“Siberian Plague.” These generalized names (GNs)
(Yangarber et al., 2002) are harder to identify than
conventional proper names (PNs).

1.2. Learning from Positive and Negative
Examples

Building on contributions described in Section 2, we
use unlabeled training data to detect and classify
names. Given a small number of seed examples, the al-
gorithm learns patterns that identify more names and
continues in a bootstrapping cycle.

Using this general approach, Thelen and Riloff (2002)
and Yangarber et al. (2002) found that performance
was improved when multiple semantic classes were
learned simultaneously.1 The work presented here con-
firms this effect. Essentially, a seed name serves as a
positive example for its own class and a negative exam-

ple for all other classes. Negative examples help steer
the learner away from unreliable patterns.

1In another application of bootstrapping, Yangarber
(2003) found a similar improvement from simultaneous
learning of information extraction patterns for multiple sce-
narios.

Proceedings of the ICML-2003 Workshop on The Continuum from Labeled to Unlabeled Data, Washington DC, 2003.

For PNs in English, a few classes of interest may pro-
vide adequate negative examples for each other. E.g.,
Collins and Singer (1999) found that 91% of the proper
names in their test set were names of persons, organi-
zations, or locations. Thus, the precision of a learner
for person names depends greatly on how well it avoids
organizations and locations.

When capitalization cues are unavailable, the learner
must consider a much larger space of possible names.
E.g., any noun phrase could be a disease name in En-
glish or an organization name in Chinese. In such sit-
uations, we have found it valuable to learn negative

classes that are not of interest in themselves but serve
to provide negative examples for the target classes. In
particular, including a “none of the above” class im-
proved precision substantially.

Additional effort may be needed to prevent a target
class from “creeping” into related concepts. E.g., a
learner for disease names may acquire patterns such
as “suffering from X” that are associated with both
diseases and symptoms. If such ambiguous patterns
lead the learner to misclassify enough symptoms as
diseases, it will begin to acquire other patterns that
are primarily associated with symptoms.

When likely areas of creep are anticipated, negative
classes can help prevent the learner from acquiring
ambiguous patterns. Another potentially useful strat-
egy is to have a human reviewer reject misclassified
names during the bootstrapping process. Human re-
view can protect against unanticipated errors, but al-
low the learner to benefit from ambiguous patterns
that would be blocked by an additional negative class.
Section 4.3 describes a simulation designed to explore
the effects of human review.

2. Related Work

Supervised algorithms for PN identification have been
extensively studied (Bikel et al., 1997). Unsupervised
algorithms (bootstrapping from seed examples and un-
labeled data) were developed by Collins and Singer
(1999) and Cucerzan and Yarowsky (1999, 2002).2

Collins and Singer used a parsed corpus and classi-
fied PNs that appeared in certain syntactic contexts.
Cucerzan and Yarowsky identified and classified PNs
in seven languages, learning character-based contex-
tual, internal, and morphological patterns. Their al-
gorithm does not strictly require capitalization cues,
but recall was much lower for the language without
case distinctions (Hindi).

2Abney (2002) gives a theoretical analysis of bootstrap-
ping and co-training algorithms.

A number of bootstrapping algorithms have been de-
veloped to learn semantic classes that may contain
common nouns or GNs as well as PNs. Phillips and
Riloff (2002) and others relied on structures such as
appositives and compound nouns. Riloff and Jones
(1999) and Thelen and Riloff (2002) learned contex-
tual patterns that predict the semantic class of the
subject, direct object, or prepositional phrase object.
Strzalkowski and Wang (1996) and Yangarber et al.
(2002) used windows of tokens to learn contextual and
internal patterns without parsing. Yangarber et al.
enabled discovery of GNs embedded in larger noun
groups (such as yellow fever in “10 yellow fever cases”).

3. Learning Algorithm

Our algorithm, Nomen, is adapted from Yangarber
et al. (2002), with modifications in steps 4 (the con-
fidence formula) and 6 (the balance requirement and
the number of names acquired per iteration).

3.1. Pre-Processing

The training corpus is passed through a zoner, a sen-
tence splitter, a tokenizer/lemmatizer, and a part-of-
speech (POS) tagger. The zoner extracts the tex-
tual content, removing special segments such as e-mail
headers or newspaper headlines. The tokenizer sepa-
rates the text into words or lexical units. For English
text, a lemmatizer converts the surface word forms to
lemmas (base forms).

3.2. Bootstrapped Learning

0. Seeds: We initialize several learners to run si-
multaneously, one for each semantic class. The user
must provide seed examples for each learner. E.g., in
the domain of infectious diseases, we used the 10 most
common names as seeds for the classes of diseases and
locations.

The set of accepted names is initialized with the seeds,
for each learner.

1. Tag Accepted Names: For each accepted
name, mark each occurrence in the corpus with an
enclosing pair of category tags, e.g., <disease> and
</disease>.

2. Generate Patterns: For each tag T inserted in
Step 1, we generate a literal pattern p using a context
window of width w around the tag, e.g.,

p = [l−3 l−2 l−1 <T> l+1 l+2 l+3]

where l±i are the context of p—the lemmas of the sur-

rounding words. Two literal patterns are generated for
each name occurrence, one for the left tag, and one for
the right.

The literal pattern p is then generalized by replacing
some of the elements in the context window by wild-
cards. The generalized patterns form the set of can-

didate patterns. Note that each pattern matches on
only one side of an instance, the left or the right.

3. Evaluate Patterns: For every learner, match
each candidate pattern p against the training corpus.
Wherever the context of p matches, p predicts the
occurrence of the left or right boundary of a name.
The learner then uses a noun group (NG) regular ex-
pression to determine the other, partner boundary.3

Thus, if p predicts a left boundary, the regular expres-
sion determines the right boundary, and vice versa.

Next, the learner checks whether the NG between
these boundaries has already been accepted as a name
by any learner; the NG can be:

• positive example: already accepted as a name by
the same learner;

• negative example: already accepted as a name by
a different learner;

• unknown: not yet accepted as a name by any
learner.

The unknown case is where a new candidate name may
potentially be discovered.

4. Acquire Patterns: For each candidate pattern p,
we compile three lists of types (distinct NGs) matched
by p: the positive, negative, and unknown examples,
or pos(p), neg(p), and unk(p).

We then compute the pattern’s accuracy and confi-

dence:

acc(p) =
|pos(p)|

|pos(p)| + |neg(p)|

conf(p) =
|pos(p)| − |neg(p)|

|pos(p)| + |neg(p)| + |unk(p)|

Patterns with accuracy below a threshold θprec are dis-
carded. The remaining patterns are ranked by:

Score(p) = conf(p) · log |pos(p)| (1)

(Thus, to get a positive score, a pattern must have at
least two distinct NGs as positive examples, and more

3This is why POS tagging is needed. We use simple
NG regular expression heuristics, similar to those used in
terminology discovery, e.g., [Adj* Noun+] (Frantzi, Ana-
niadou, & Mima, 2000).

positive than negative examples.) The n top-scoring
patterns for each learner are added to its set of accepted

patterns.

5. Apply Patterns: For each accepted pattern p,
the noun groups in the set unk(p) become candidate

names.

6. Acquire Names: The learner scores each can-
didate name t, based on how many different accepted
patterns match the instances of t, and how reliable
these patterns are.

Let Mt be the set of accepted patterns which match
any of the instances of t. We require that Mt have
sufficient

• mass4: |Mt| ≥ 2,

• balance5: Mt contains at least one pattern pre-
dicting the left boundary of t and one pattern
predicting the right boundary.

Compute Rank(t) based on the quality of Mt:

Rank(t) = 1 −
∏

p∈Mt

(

1 − conf(p)
)

(2)

This formula favors candidates matched by more pat-
terns or more reliable patterns.

Each learner acquires the top-scoring k percent (here,
5%) of the candidate names, up to a maximum of m

names (here, 5 names), on each iteration.6

7. Repeat: from Step 1, until no more names can be
learned.

4. Experiments

We used Nomen to discover names in a specialized
corpus (in English) and two general news corpora (in
English and Chinese).

The specialized corpus was drawn from the ProMED
mailing list, a global forum for public health profes-
sionals reporting outbreaks of infectious diseases. The
corpus contains 600,000 words from 1,400 postings.

4Because of the mass requirement, the algorithm is less
likely to learn a name that appears only once in the corpus.

5The balance requirement is waived if at least two pat-
terns in Mt are contextual (matching lemmas outside the
name boundaries). The NG heuristic to find the part-
ner boundary is less reliable when the pattern is internal
(matching the initial or final lemmas of the name).

6If k% of all candidates is less than one (and greater
than zero), then the learner acquires the single top-scoring
name.

Appropriate evaluation strategies may depend on the
algorithm’s intended use. If the goal is to build a lexi-
con of names of a given class, a type-based evaluation
may be more appropriate, measuring how many of the
distinct names in the corpus were correctly discovered,
and how accurate the list of discovered names is.

On the other hand, if the algorithm is to be used as
a name tagger, one may be more interested in mea-
suring how many of the instances of names in the cor-
pus are identified correctly. Instance-based evaluation
was used in the Message Understanding Conferences
(MUCs) and in recent work on unsupervised name tag-
ging (Collins & Singer, 1999; Cucerzan & Yarowsky,
1999, 2002).

Yangarber et al. (2002) discussed the differences be-
tween type- and instance-based evaluation in an earlier
experiment on the ProMED corpus.

4.1. Learning Disease and Location Names

The experiment shown in Figure 1 focuses on build-
ing lexicons of disease and location names from the
ProMED corpus. For measuring the type-based per-
formance we first compiled two reference lists of names
for each class: a recall list and a precision list.

First, a manual list of disease and location names was
compiled from multiple databases. Nomen’s recall is
judged by how well it finds these names, if they occur
in the corpus. The manual list was filtered through the
corpus: names that appear in the corpus two or more
times were placed in the recall list. We focused on
recall for names that occur two or more times because
the algorithm is inherently discouraged from learning
names that appear only once in the corpus (cf. the
mass criterion in Section 3.2, step 6).

To measure precision we constructed the precision list,
which contains the manual list and an automatically
generated set of disease acronyms.7

The recall list contains 322 disease names and 641 lo-
cation names; the precision list contains 3,867 disease
names and 2,404 location names.

Figure 1 shows Nomen’s performance, with recall
judged against the recall list and precision against the
precision list.8

7Because this list is incomplete, precision is under-
stated: Nomen is penalized for learning some correct
names that are not in the precision list.

8For completeness, we also computed recall against all
names in the manual list that appear in the corpus, one
or more times. The final recall was 61% for diseases and
60% for locations, compared with the 74% for both classes
shown in Figure 1.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Disease
Location

Figure 1. Disease and location names: type-based evalua-
tion.

The parameters in these experiments are: 10 seeds
per category, context window width w = 3, pattern
accuracy threshold θprec = 0.5, and n = m = 5 for
the maximum number of patterns and names learned
per iteration. Six negative classes were learned, as
explained in Section 4.2.

4.2. Competing Categories

There are three reasons why competition between se-
mantic categories can improve bootstrapped learning
of names and patterns:

• As observed by Thelen and Riloff (2002), a cate-
gory is less likely to expand beyond its true terri-
tory if it cannot acquire names that have already
been claimed by other categories.

• The accepted names in each category serve as neg-
ative examples for all other categories. Learners
avoid acquiring patterns with too many negative
examples (Section 3.2, step 4).

• Conversely, accepted patterns can provide nega-
tive evidence against other categories’ candidate
names. We have experimented with formulas that
consider such negative evidence and have not yet
found a consistent performance gain, but more
exploration is warranted.9

Figure 2 shows the effect of competition on the dis-
ease name learner. When running unopposed (“Dis-

ease only”), the learner quickly picks up non-specific

9Thelen and Riloff do not use negative examples to score
patterns but do find a small improvement from using neg-
ative evidence to score words or names.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Disease Names: Recall

Classes:
8 classes
Dis+Loc+Other
Dis+Loc
Disease only

Figure 2. Effect of competing categories on the disease
name learner.

patterns that may match many diseases but also match
irrelevant NGs. This leads it to acquire a very large
number of names, at very low precision. Adding the
location learner (“Dis+Loc”) helps the disease learner
only slightly.

To provide more guiding evidence, we introduce a neg-

ative learner that acquires noun phrases belonging to
neither of the target classes. As negative seeds, we
use the 10 most frequent NGs in the corpus.10 The
corresponding curve, “Dis+Loc+Other,” shows a sub-
stantial improvement in performance.

Still better performance is obtained when we split the
negative class into six competing categories: symptom,
animal, human, institution, time, and other. The re-
sult is shown in both Figure 1 (the “Disease” curve)
and Figure 2 (the “8 classes” curve). The final recall
and precision are around 70%.

4.3. Learning with Review

The algorithm as presented so far is unsupervised, ex-
cept for the information in the seed examples. The
next question we explore is: how can we help the al-
gorithm if we add a human reviewer who would check
each new name discovered on the current iteration,
and if the name is not of the correct class, tell Nomen

to reject it.

We designed an experiment to simulate human review.
On each iteration, the disease and location name learn-
ers submit for review the names they would normally

10We exclude disease and location names and related
generic NGs (“illness,” “area”). The negative seeds are:
case, health, day, people, year, patient, death, number, re-
port, farm.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Disease Names: Recall

classes:
8 classes+Review
8 classes
Dis+Loc+Other+Review
Dis+Loc+Other

Figure 3. Simulation of learning with review.

acquire. The simulated reviewer rejects submissions
that do not match the category’s precision list. If a
name is rejected, the learner does not acquire it on
the present iteration or at any later time.

Figure 3 shows the simulated effect of review on
the disease name learner. The curve labeled
“Dis+Loc+Other” is the same as in Figure 2.
“Dis+Loc+Other+Review” shows that with three
learners and review, performance improves to about
the level of having eight competing learners.11 One
way to view this finding is that the five additional
learners are able to compensate for the absence of a
human in the loop. Note, though, that specifying the
additional categories and seeds took some thought and
time.

Adding review on top of the eight classes yields only
a slight improvement in precision and reduces recall
somewhat. However, the simulation may understate
the benefits of review. The simulated reviewer rejects
some correct names because they are not in the preci-
sion list. This may prevent the learners from acquiring
useful patterns associated with those names. Also, a
real reviewer could suggest the correct category for in-
correct submissions, instead of just rejecting them.

4.4. Name Tagging in English

For the experiments on general news corpora, we per-
formed instance-based evaluation (cf. the beginning of
Section 4), using the MUC scoring software (Defense
Advanced Research Projects Agency, 1995).

Name instances are marked with SGML tags in the

11The precision measure is the percentage of submissions
from the learner that are accepted by the reviewer.

answer key and in Nomen’s response. Each name
instance receives two scores, for type and text. The
type score measures whether the category of the name
is correct in the response. The text score mea-
sures whether the boundaries of the name were cor-
rectly identified. E.g., if the answer key contains
<person>Herbert G. Wells</person> but the pro-
gram tags only Wells as a person, then it will get 1
for the type score and 0 for the text. The overall score
is the average of type and text.

We made some modifications to the standard MUC
scoring scheme. In MUC scoring, if the program tags
Herbert G. Wells as a location, it will get 0 for type
but 1 for text. Our scoring is more conservative: the
text score is 0 unless both text and type are correct.12

The training corpus for this experiment consists of
3,800 documents (3 million words) from the New York
Times News Service, 1996. These include the 200 an-
notated documents (150,000 words) of the MUC-7 dry-
run and formal training corpora, which we use as our
test set. The annotations are invisible to Nomen.

We ran learners for names of persons, organizations,
and locations. The NG regular expression (Section 3.2,
step 3) is [Adj* Noun+] with all words capitalized.13

Name boundary determination for left-boundary con-
textual patterns is handled differently: The learner
first finds the maximal NG, regardless of case. It
then searches for a capitalized NG inside the maxi-
mal NG, with the same right boundary. E.g., when
the pattern “said X” is applied to the text “said FAA
spokeswoman Mary Culver,” it extracts Mary Culver,
not FAA.

For location seed names, we use six countries, three
states, and two cities. For persons, we use “Bill Clin-
ton”, “Bob Dole”, “Newt Gingrich”, and all capital-
ized NGs immediately preceded by “Dr.” anywhere
in the corpus. For organizations, we use “White
House”, “Congress”, and all capitalized NGs that end
in “Corp.”

Figure 4 shows the text and type curves for the
instance-based evaluation on the three categories. In

12The original MUC scheme computes category-specific
recall and precision for type but not for text; misclassifying
a person as a location hurts type recall and precision for
persons (not locations). In our scheme, the same error
hurts recall for persons and precision for locations, on both
type and text.

13Sentence-initial capitals are treated as lowercase if the
non-sentence-initial occurrences of the bigram or token in
the corpus are mostly lowercase. Hyphenated words are
assigned the case of the first token and the POS tag of the
last.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Loc (type)
Loc (text)
Org (type)
Org (text)
Person (type)
Person (text)

Figure 4. Proper names in English: instance-based evalua-
tion.

general, the curves achieve high recall with very slow
decline in precision. Note the curious reversal in text
precision for person names. The learner initially tends
to acquire first or last names separately, which causes
a sharp drop in text precision. However, toward the
end, it proceeds to learn enough full names to recover
from the initial precision loss.

The “English” columns of Table 1 summarize recall
and precision before and after bootstrapping. Final
type recall is in the 86–92% range, with reasonable
precision (above 70%).

4.5. Name Tagging in Chinese

We have also begun to use Nomen to learn proper
names in Chinese text. The training corpus consists
of 700,000 words from the Beijing University Institute
of Computational Linguistics corpus (articles from the
People’s Daily, January 1998).

The Beijing annotators segmented the text into words,
attached part-of-speech tags, and labeled the person,
organization, and location names. We use the named
entity labels for evaluation. In our initial development
environment we rely on the annotators’ word segmen-
tation and POS tags, which were influenced by their
knowledge of names. In future research we plan to use
automated segmentation and POS tags, which will be
messier but more realistic.

Because of some omissions in the NE annotations (e.g.,
single-word abbreviations were not labeled as NEs),
we asked two colleagues to revise the NE tags for 41
documents (10,000 words), which we use as our test
set.

Because case distinctions do not exist in Chinese,

Table 1. Proper name tagging: instance-based evaluation.

English Chinese
–Negative +Negative

Rec Prec Rec Prec Rec Prec

Initial (seeds)

Person type 3.1 98.3 17.8 100.0 same

text 2.2 71.2 17.8 100.0

Org type 5.3 100.0 25.4 75.9
text 5.2 97.6 20.8 62.1

Location type 20.1 94.2 39.8 87.1
text 19.7 92.5 39.4 86.4

Final

Person type 85.7 84.4 63.1 75.1 67.1 83.9
text 75.7 74.5 47.1 56.1 51.6 64.4

Org type 89.6 70.2 54.9 16.5 48.0 54.6
text 83.9 65.7 37.6 11.3 35.8 40.8

Location type 91.8 82.2 77.6 61.9 86.3 67.6
text 89.1 79.7 65.8 52.5 79.2 62.0

the patterns learned may identify common nouns and
phrases as well as proper names in the target cate-
gories. For applications such as information extrac-
tion, finding generic terms of a given class may be
as important as finding PNs. However, generics are
not labeled in the test set, so our evaluation penalizes
Nomen for tagging generic person, organization, and
location phrases.

In the absence of case distinctions, a proper name tag-
ger can avoid tagging common nouns that appear in
a basic dictionary. (This approach does not work for
multiword phrases, since many organization names are
composed of common nouns.) To approximate a dic-
tionary check for common nouns, we prevented the
learners from acquiring words that the annotators had
ever POS-tagged as nouns and never labeled as NEs.
(The NE annotations were otherwise invisible to the
learners.)

We ran a negative learner in addition to the name
learners. Each learner was given 10 seeds.14 The
pattern accuracy threshold is θprec = 0.9, and the NG
regular expression is [Noun+].15

Recall and precision are shown in the “Chinese: +Neg-
ative” columns of Table 1. For the type scores, we also

14Negative seeds: Shiwuda spirit, economic develop-
ment, spiritual civilization construction, bi-coastal rela-
tions, cooperative relations, economic installations, finan-
cial crisis, national relations, Party-style cultivation of
clean government, struggle against corruption.

15With a left-boundary contextual pattern, the NG must
not be followed by the possessive/attributive particle de.

computed an adjusted measure (based on manual re-
view) that does not penalize generic phrases in the
correct category. The final adjusted precision scores
(not shown in the table) are 87% for persons, 76% for
organizations, and 72% for locations.

The columns labeled “Chinese: –Negative” show the
effect of omitting the negative learner. Type precision
for the organization learner plunges from 55% to 17%.

5. Conclusion

We discussed an algorithm for unsupervised learning of
semantic classes. The algorithm shows promise due to
its applicability in several different settings and good
performance levels. It requires very limited linguis-
tic information, which enhances portability. A central
idea is combining multiple learners in parallel, includ-
ing a negative learner. The learners provide negative
evidence to each other, which improves precision.

Acknowledgements

This research is supported by the Defense Advanced
Research Projects Agency as part of the Translingual
Information Detection, Extraction and Summarization
(TIDES) program, under Grant N66001-001-1-8917 from
the Space and Naval Warfare Systems Center San Diego,
and by the National Science Foundation under Grant IIS-
0081962. Shubin Zhao and Heng Ji gave valuable sugges-
tions and help for our work with the Beijing corpus. Two
anonymous reviewers provided helpful comments on an ear-
lier version.

References

Abney, S. (2002). Bootstrapping. Proceedings of the For-
tieth Annual Meeting of the Association for Computa-
tional Linguistics. San Francisco: Morgan Kaufmann.

Bikel, D., Miller, S., Schwartz, R., & Weischedel, R. (1997).
Nymble: a high-performance learning name-finder. Pro-
ceedings of the Fifth Applied Natural Language Process-
ing Conference. San Francisco: Morgan Kaufmann.

Collins, M., & Singer, Y. (1999). Unsupervised models
for named entity classification. Proceedings of the Joint
SIGDAT Conference on Empirical Methods in Natural
Language Processing and Very Large Corpora. New
Brunswick, NJ: Association for Computational Linguis-
tics.

Cucerzan, S., & Yarowsky, D. (1999). Language indepen-
dent named entity recognition combining morphologi-
cal and contextual evidence. Proceedings of the Joint
SIGDAT Conference on Empirical Methods in Natural
Language Processing and Very Large Corpora. New
Brunswick, NJ: Association for Computational Linguis-
tics.

Cucerzan, S., & Yarowsky, D. (2002). Language indepen-
dent NER using a unified model of internal and con-
textual evidence. Proceedings of the Sixth Conference
on Natural Language Learning. San Francisco: Morgan
Kaufmann.

Defense Advanced Research Projects Agency (1995). Pro-
ceedings of the Sixth Message Understanding Confer-
ence. San Francisco: Morgan Kaufmann.

Frantzi, K., Ananiadou, S., & Mima, H. (2000). Automatic
recognition of multi-word terms: the C-value/NC-value
method. International Journal on Digital Libraries, 3,
115–130.

Phillips, W., & Riloff, E. (2002). Exploiting strong syntac-
tic heuristics and co-training to learn semantic lexicons.
Proceedings of the 2002 Conference on Empirical Meth-
ods in Natural Language Processing. New Brunswick,
NJ: Association for Computational Linguistics.

Riloff, E., & Jones, R. (1999). Learning dictionaries for in-
formation extraction by multi-level bootstrapping. Pro-
ceedings of the Sixteenth National Conference on Artifi-
cial Intelligence. Menlo Park, CA: AAAI Press.

Strzalkowski, T., & Wang, J. (1996). A self-learning univer-
sal concept spotter. Proceedings of the Sixteenth Inter-
national Conference on Computational Linguistics. San
Francisco: Morgan Kaufmann.

Thelen, M., & Riloff, E. (2002). A bootstrapping method
for learning semantic lexicons using extraction pattern
contexts. Proceedings of the 2002 Conference on Em-
pirical Methods in Natural Language Processing. New
Brunswick, NJ: Association for Computational Linguis-
tics.

Yangarber, R. (2003). Counter-training in discovery of se-
mantic patterns. Proceedings of the Forty-First Annual
Meeting of the Association for Computational Linguis-
tics. San Francisco: Morgan Kaufmann.

Yangarber, R., Lin, W., & Grishman, R. (2002). Unsuper-
vised learning of generalized names. Proceedings of the
Nineteenth International Conference on Computational
Linguistics. San Francisco: Morgan Kaufmann.

