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Abstract

Length of stay in the intensive care unit (ICU) is a common outcome measure
in randomized trials of ICU interventions. Because many patients die in the ICU,
it is difficult to disentangle treatment effects on length of stay from effects on
mortality; conventional analyses depend on assumptions that are often unstated
and hard to interpret or check. We adapt a proposal from Rosenbaum (2006) that
addresses concerns about selection bias and makes its assumptions explicit. A
composite outcome is constructed that equals ICU length of stay if the patient was
discharged alive and indicates death otherwise. Given any preference ordering
that compares death with possible lengths of stay, we can estimate the
intervention’s effects on the composite outcome distribution. Sensitivity analyses
can show results for different preference orderings.

We discuss methods for constructing approximate confidence intervals for
treatment effects on quantiles of the outcome distribution or on proportions of
patients with outcomes preferable to various cutoffs. Strengths and weaknesses of
possible primary significance tests (including the Wilcoxon–Mann–Whitney rank
sum test and a heteroskedasticity-robust variant due to Brunner and Munzel
[2000]) are reviewed. An illustrative example reanalyzes a randomized trial of an
ICU staffing intervention.
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1 Introduction

Length of stay (LOS) in the intensive care unit (ICU) is a common outcome measure
used as an indicator of both quality of care and resource use.1 Longer ICU stays are
associated with increased stress and discomfort for patients and their families, as well
as increased costs for patients, hospitals, and society. Recent randomized-trial reports
that estimate treatment effects on LOS include Lilly et al.2 and Mehta et al.3 LOS was
the primary outcome for the Study to Understand Nighttime Staffing Effectiveness in
a Tertiary Care ICU (SUNSET-ICU),4 a randomized trial of 24-hour staffing by
intensivist physicians in a medical ICU, compared to having intensivists available in
person during the day and by phone at night.

Because a significant proportion of patients die in the ICU, conventional analytic
approaches may confound an intervention’s effects on LOS with its effects on
mortality. Analyzing only survivors’ stays is problematic: if the intervention saves the
lives of some patients, but those patients have atypically long LOS, then the
intervention may spuriously appear to increase survivors’ LOS. It is also potentially
misleading to pool the LOS data of survivors and non-survivors: a reduction in
average LOS could be achieved either by helping survivors to recover faster or by
shortening non-survivors’ lives. Finally, time-to-event analysis can attempt to account
for death by treating non-survivors’ stays as censored, but this typically involves
dubious assumptions and concepts (such as the existence of a latent LOS that exceeds
the observed values for non-survivors and is independent of time till death).
Freedman5 and Joffe6 critique the assumptions underlying conventional time-to-event
analyses.

These issues are related to the “censoring by death” problem discussed from different
perspectives by Rubin7 and Joffe6. Rubin’s exposition uses the hypothetical example
of a randomized trial where the outcome is a quality-of-life (QOL) score, some
patients die before QOL is measured, and treatment may affect mortality. In a
comment on Rubin’s paper, Rosenbaum8 proposes an analysis of a composite
outcome that equals the QOL score if the patient was alive at the measurement time
and indicates death otherwise. Death need not be valued numerically; given any
preference ordering that includes death and all possible QOL scores, Rosenbaum’s
method gives confidence intervals for treatment effects on order statistics of the
distribution of the treated patients’ outcomes. He notes that although researchers
cannot decide the appropriate placement of death relative to the QOL scores, we can
offer analyses for several different placements, “and each patient could select the
analysis that corresponds to that patient’s own evaluation.”

Rubin9 notes that Rosenbaum’s proposal is “deep and creative” but may be “difficult
to convey to consumers.” Our goal in this paper is to adapt Rosenbaum’s approach to
provide inferences about quantities that may be more easily understood by
“consumers” such as critical care researchers interested in an intervention’s effects on
ICU LOS. Using a composite outcome that equals the LOS if the patient was
discharged alive and indicates death otherwise, we can make inferences about
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treatment effects on the median and other quantiles of the outcome distribution, or
about effects on the proportions of patients whose outcomes are considered better than
various cutoff values of LOS. Sensitivity analyses can show how the results vary
according to whether death is treated as the worst possible outcome or as preferable to
extremely long ICU stays. Because the approach (like Rosenbaum’s) compares the
entire treatment group with the entire control group, it avoids the selection bias
problem that can arise when only survivors’ outcomes are analyzed.

Our approach allows researchers to explore treatment effects on more than one
quantile of the composite outcome distribution or on proportions below more than one
cutoff. For protection against data dredging, it may be desirable to choose a primary
significance test before outcome data are available. We discuss the properties of
several possible primary tests, including the Wilcoxon–Mann–Whitney rank sum test
and a heteroskedasticity-robust variant due to Brunner and Munzel.10

Section 2 explains Rosenbaum’s proposal and our modified approach and presents
simulation evidence on the validity of bootstrap percentile confidence intervals for
quantile treatment effects. Section 3 discusses the choice of a primary significance test
and reasons to prefer the Brunner–Munzel test to the Wilcoxon–Mann–Whitney, with
both a review of the literature and new simulations. Section 4 reanalyzes the SUNSET
trial data as an illustrative example. Section 5 discusses benefits and limitations of the
approach and directions for further research.

2 Estimating treatment effects

2.1 Rosenbaum’s original proposal

Rosenbaum8 considers a completely randomized experiment: out of a finite
population of N patients, we assign a simple random sample of fixed size to treatment
and the remainder to control. Patients’ QOL scores take values in a subset Q of the
real numbers. For those who have died before the time of QOL measurement, the
outcome is “D,” indicating death, instead of a real number. The analysis requires a
“placement of death” determining, for each x ∈ Q , either that x is preferred to D or
vice versa. For example, two possible placements are “Death is the worst outcome”
and “Death is worse than x if x≥ 2, but better than x if x < 2.” (The framework could
easily be modified to allow placements such as “Death is equivalent to a QOL score of
2.”) Any placement of death, together with the assumption that higher QOL scores are
preferred to lower scores, defines a total ordering of Q ∪{D}.

Rosenbaum derives exact, randomization-based confidence intervals for order
statistics of the distribution of outcomes that the treatment group patients would have
experienced if they had been assigned to control. For example, his method enables
statements of the form: “Ranking the 400 treatment group patients’ outcomes from
best to worst, the 201st value was a QOL score of 4.2. We estimate that if the same

3



400 patients had not received the intervention and we ranked their outcomes from best
to worst, the 201st value would lie in the range [x,y] (95% confidence interval).” Here
x and y could be real numbers, or one or both of them could be D.

In the example above, slightly complicated language is needed to describe the
quantity being estimated. A statement is being made about the treatment group
patients (and since they are a random set, the estimand is a random variable). We
know their actual outcome distribution, and we are constructing a confidence interval
for an order statistic of the distribution that would have been observed had they been
assigned to control. With 400 treatment group patients, the median is not an order
statistic, so the example uses the 201st value instead. These unusual features of the
approach allow the derivation of exact confidence intervals.

2.2 Alternative estimands

We borrow Rosenbaum’s use of placements of death and his suggestion to offer
multiple analyses corresponding to different placements, but we explore alternative
estimands that may be more familiar to applied audiences. Our confidence intervals
for those estimands will be approximate instead of exact.

In the LOS context, for each patient i, let Yi denote a composite outcome that equals
her LOS if she was discharged alive from the ICU and takes the value D otherwise.
We allow D to be either a real number (meaning that death and some length of stay D
are considered equally undesirable) or a special nonnumeric value that is considered
greater (i.e., worse) than any possible LOS. Using the potential outcomes
framework,11–14 let Y1i denote the outcome that would occur if patient i were assigned
to treatment. If she is actually assigned to treatment, then Yi = Y1i; otherwise, Y1i is a
counterfactual. Similarly, let Y0i denote the outcome that would occur if she were
assigned to control.

Assume that each pair (Y1i,Y0i) is an independent observation from a probability
distribution with marginal distribution functions F1(x) = P(Y11 ≤ x) and
F0(x) = P(Y01 ≤ x). An intuitive interpretation of this assumption is that the patients
in the trial are a random sample from an infinite population of interest.15 We make
this assumption for mathematical convenience and compatibility with the literature
cited below, but it is probably not crucial, as standard errors, significance tests, and
confidence intervals that are valid from the infinite-population perspective are
typically conservative from the finite-population perspective (in which the N patients
in the trial are the population of interest).11,16–18

Define the treatment effect on the p-quantile (where 0 < p < 1) as

QTEp = min{x : F1(x)≥ p}−min{x : F0(x)≥ p}

if both terms on the right-hand side are real numbers; if either term is a nonnumeric
placement of death, QTEp is undefined. (A nonnumeric placement means that death is
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the worst possible outcome, but need not imply that the difference between death and
a 30-day ICU stay is considered greater than the difference between 30 and 3 days.
Thus, the former difference is undefined, not infinite.) For example, QTE0.5 (the
treatment effect on the median) is the difference between the population medians of
Y1i and Y0i, if both are real numbers.

Define the cutoff treatment effect at cutoff c as

CTEc = P(Y11 ≥ c)−P(Y01 ≥ c).

For example, if LOS is measured in days, then CTE20 is the treatment effect on the
proportion of patients with outcome at least as bad as a 20-day LOS. If death is the
worst possible outcome, then CTED is the treatment effect on the mortality rate.

Quantile treatment effects and cutoff treatment effects are different ways of
summarizing effects on the outcome distribution. QTEs may be undefined in the
highest quantiles (if death is considered the worst possible outcome but is not
assigned a numeric value), but CTEs are defined at all cutoffs. On the other hand,
there is perhaps more danger of data dredging with CTEs, since researchers may have
more leeway to choose cutoffs that yield results they like than to focus on, say, the
treatment effect on the 0.53-quantile instead of the median. In the very different
context of educational test scores, Holland19 argues that for measuring changes over
time in the gap between two distributions, analyses of differences in proportions
below a cutoff score can easily mislead. He prefers analyses of differences in
quantiles and recommends supplementary graphical displays. Whether analogous
issues arise in the LOS context (e.g., in comparing treatment effects for different
subgroups or different interventions) is a worthwhile topic for future research.

CTEs can be estimated by differences in sample proportions, with
normal-approximation confidence intervals or the finite-sample improvements
recommended by Agresti and Caffo20 or Brown and Li.21 QTEs can be estimated by
differences in sample quantiles; we have used the version of sample quantiles
recommended by Hyndman and Fan22 [“Definition 8,” which is median-unbiased of
order o(1/

√
N)]. Below we explore the use of bootstrap percentile confidence

intervals for QTEs.

2.3 Confidence intervals for QTEs

The treatment–control difference in sample quantiles is a special case of a quantile
regression estimator. Hahn23 shows that bootstrap percentile confidence intervals for
quantile regression coefficients have correct asymptotic coverage probabilities, under
regularity conditions that in our case imply that the distributions of Y1i and Y0i are
continuous and their densities are bounded away from zero near the quantiles of
interest. In practice, we expect some discreteness in the distributions, in part because
LOS data may be rounded, but most importantly because many values will be tied at
the placement of death D.
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Another wrinkle is that if D is nonnumeric, then the difference in sample quantiles is
undefined when one or both of the sample quantiles equal D, and thus the bootstrap
percentile CI is undefined when any bootstrap replication yields a treatment or control
group sample quantile equal to D. (One can still report the sample quantiles from the
original data and, in some cases, a CI for one of the population quantiles.)

To examine these issues empirically, we simulated a hypothetical trial with 1,500
patients, assigning 750 to treatment and 750 to control (slightly smaller sample sizes
than the SUNSET trial’s). On each of 10,000 replications of the trial:

1. We generated patients’ outcomes assuming that the probability of death in the
ICU was 20% for control group patients and 10% for treatment group patients.
Survivors’ LOS values were sampled with replacement from the data for
SUNSET control group patients who survived their ICU stays. (The SUNSET
data are rounded to the nearest tenth of an hour.)

2. Nominal 95% confidence intervals were constructed using the bootstrap
percentile method with 1,000 bootstrap replications. We resampled the
treatment group and control group independently with fixed sample sizes.

Step 1 implies the population quantiles of Y1i and Y0i shown in Table 1, if D is either
nonnumeric or a number of days no less than 204.3 (the highest LOS value for
survivors in the SUNSET control group). On each replication of the hypothetical trial,
we observe the treatment and control sample quantiles, which are estimates of the
population quantiles.

One might consider Hahn’s23 asymptotic results least reassuring near and above the
0.8-quantile, both because the population distributions of Y0i and Y1i put 20% and 10%
probabilities on point masses at D, and because just below the 0.8- and 0.9-quantiles,
there are nonnegligible gaps between the highest numeric LOS values in the
distributions (e.g., the two highest values are 204.3 and 37.8 days). Table 2 assumes
D = 204.3 days and shows a below-nominal CI coverage rate (88%) at the
0.8-quantile, but the effect is localized and not severe.

In Table 3, D is nonnumeric (death is the worst possible outcome). The CIs appear to
be valid at the 0.7-quantile and below. At the 0.75-quantile, the bootstrap CI is
undefined in 48% of the trial replications, because the control group’s 0.75-quantile
equaled D on at least one bootstrap replication. At the 0.8- and higher quantiles, this
situation occurs frequently, and the CI is always or almost always undefined.

(The empirical coverage rates shown in Tables 2 and 3 are estimates of the true
coverage probabilities and are subject to sampling error, but since they are based on
10,000 trial replications, the likely amounts of sampling error are small. It is
straightforward to compute a margin of error at the 95% confidence level for the
estimated coverage probability. When the empirical coverage rate is 50%, the margin
of error is 1 percentage point. In all other cases, the margin of error is smaller. When
the empirical coverage rate is 95% or 96%, the margin of error is 0.4 percentage
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point.)

These results suggest that bootstrap percentile CIs for QTEs are likely to have
approximate validity near the median (as long as mortality rates are well below 50%),
but caution is warranted in the upper tail of the distribution, near the placement of
death. Further research with more advanced methods such as BCa bootstrap CIs24,25

or subsampling26 may be worthwhile.

3 Choosing a primary significance test

Recommended practice for analysis of clinical trials includes pre-specification of a
primary outcome measure. As stated in the CONSORT explanation and elaboration
document, “Having several primary outcomes . . . incurs the problems of interpretation
associated with multiplicity of analyses . . . and is not recommended.”27 The same
principle may suggest that before analyzing QTEs or CTEs, one quantile or cutoff
should be designated as primary. The median may seem a natural choice, but some
interventions may be intended to shorten long ICU stays without necessarily reducing
the median. It may be difficult to predict which points in the outcome distribution are
likely to be affected.

Instead of designating a primary quantile or cutoff, one could pre-specify that the
primary significance test is a rank test with some sensitivity to effects throughout the
outcome distribution. Rank tests do not require a numeric placement of death (unlike,
e.g., the two-sample t-test). Rubin,9 modifying Korn’s28 proposal, comments that the
Wilcoxon–Mann–Whitney (WMW) rank sum test test could be combined with
Rosenbaum’s8 approach. More generally, Rosenbaum29,30 has extensively explored
the use of rank tests in causal inference, and Imbens and Wooldridge31 suggest the
WMW test “as a generally applicable way of establishing whether the treatment has
any effect” in randomized experiments.

The WMW test is often recommended because it is believed to have more robustness
of efficiency (power) than tests based on the difference in mean outcomes;
Lehmann32 gives a helpful overview of results that support this view. However, when
the classical assumption of a constant additive treatment effect is relaxed, power
comparisons vary with the nature of the anticipated treatment effect,33 and an even
more fundamental issue is the need to carefully consider what hypothesis would be
useful to test.34,35 The WMW test is still valid for the strong null hypothesis that
treatment has no effect on any patient (or for the hypothesis that treatment does not
change the outcome distribution), but whether researchers should be satisfied with a
test of the strong null is debatable.36 The Mann–Whitney form of the test statistic
naturally suggests a weaker null hypothesis, and there is an interesting, somewhat
neglected literature on testing the weak null. We next discuss this literature from a
causal inference perspective, using the potential outcomes framework. (The literature
is not explicitly causal; it assumes two independent random samples from two infinite
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populations and has both causal and descriptive applications.)

3.1 Rank tests and null hypotheses

Suppose m patients are assigned to treatment and n = N−m to control. Let T and C
denote the sets of indices of the treated and control patients. The Wilcoxon rank sum
statistic is ∑i∈T Ri, where Ri is the rank of Yi among the N observations (in ascending
order). Ties are often handled by the midrank method: each member of a group of tied
observations is given the average of the ranks they would have if they were not tied.
The rank sum statistic can be rewritten as U +m(m+1)/2, where U is the
Mann–Whitney statistic

U = ∑
i∈T

∑
j∈C

[
I(Y1i > Y0 j)+

1
2

I(Y1i = Y0 j)

]
and I(A) equals 1 if A occurs and 0 otherwise.37

The WMW test compares the observed value of the rank sum statistic ∑i∈T Ri (or,
equivalently, the Mann–Whitney statistic U) with its distribution under the null
hypothesis that the potential outcomes Y1i and Y0i have identical distribution
functions:15

Hd
0 : F1(x) = F0(x) for all x,

where F1 and F0 are the marginal distribution functions, as in Section 2.2. In the
causal inference literature, permutation tests (including the WMW and other rank
tests) are often viewed as tests of a more restrictive hypothesis:

Hs
0 : Y1i = Y0i for all i.

Hs
0 says that assignment to treatment has no effect on any patient’s outcome.

Following Gail et al.,36 we call Hs
0 the strong null hypothesis.

The WMW test is a valid test of Hd
0 , in the sense that its rejection probability under

the null hypothesis is no greater than the nominal significance level. It is therefore
also a valid test of the strong null hypothesis Hs

0. However, as our simulations in
Section 3.2 (supporting Pratt’s38 asymptotic predictions) illustrate, the test is sensitive
to certain kinds of departures from Hd

0 but not others, and under some scenarios where
Hd

0 is false, the test is less likely to reject than it would if Hd
0 were true. (In the

terminology of theoretical statistics, the WMW test is a valid but biased test of Hd
0 or

Hs
0 against a general alternative. Fay and Proschan39 give a helpful discussion of

desirable properties of tests.)

What kinds of departures from Hd
0 can the WMW test detect? The Mann–Whitney

statistic U provides a clue. The WMW test is equivalent to a test using the statistic

U
mn
− 1

2
=

1
mn ∑

i∈T
∑
j∈C

I(Y1i > Y0 j)+
1
2

1
mn ∑

i∈T
∑
j∈C

I(Y1i = Y0 j)−
1
2
,
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which is a consistent estimate of

P(Y1i > Y0 j)+
1
2

P(Y1i = Y0 j)−
1
2

=
P(Y1i > Y0 j)−P(Y1i < Y0 j)

2
, i 6= j.

An extreme positive test statistic is evidence that P(Y1i > Y0 j)> P(Y1i < Y0 j)—that is,
if we sample the treated and untreated potential outcome distributions independently,
it is more likely that a random treated value will exceed a random untreated value than
the other way around. Similarly, an extreme negative test statistic is evidence that
P(Y1i > Y0 j)< P(Y1i < Y0 j).

Thus, the WMW test can be reexamined as a test of the weak null hypothesis

Hw
0 : P(Y1i > Y0 j) = P(Y1i < Y0 j), i 6= j.

Hw
0 says that a random patient’s outcome under treatment is equally likely to be better

or worse than another random patient’s outcome in the absence of treatment. To
understand this null hypothesis, it may help to first consider an example from
descriptive (non-causal) inference. McGraw and Wong40 estimated a probability of
0.92 that a random young adult man was taller than a random young adult woman in
the United States. In that context, we could consider the null hypothesis that a random
man is equally likely to be taller or shorter than a random woman. In the descriptive
inference problem, we are comparing the male and female populations’ height
distributions. In the causal inference problem, there is only one population, but each
member of the population has two potential outcomes: Y1, which would occur under
treatment, and Y0, which would occur in the absence of treatment. Hw

0 is a statement
comparing the population distributions of Y1 and Y0.

Pratt38 shows that the WMW test is not an asymptotically valid test of Hw
0 , in part

because heteroskedasticity can distort the significance level, and more generally
because the test is based on the distribution of the test statistic under Hd

0 , not the
weaker null hypothesis Hw

0 . Pratt’s Table 2 implies that if m = n, the size of a
two-tailed WMW test (assuming no ties) at the nominal 5% level tends to a limit
between 5% and 11%. If m 6= n, this range widens in both directions.

Brunner and Munzel10 (BM) derive an asymptotically valid test of Hw
0 by studentizing

U/mn−1/2 (i.e., dividing by a consistent estimate of its standard error). The BM test
allows ties (the distributions of Y1i and Y0i can be of any nondegenerate form). The test
statistic (which can be computed from the overall ranks Ri and the ranks within the
treatment and control groups, and is implemented in the R lawstat package) is
asymptotically N(0,1) under Hw

0 ; to improve small-sample performance, BM suggest
using the t-distribution with degrees of freedom from a Welch–Satterthwaite
approximation. Neubert and Brunner41 propose a permutation test based on the BM
statistic and prove its asymptotic validity. Chung and Romano35 derive a general
theory for constructing asymptotically valid permutation tests based on two-sample
U-statistics, discuss misapplications of the WMW test, and provide a studentized
permutation version (for the case without ties) whose critical values can be tabled.
Fay and Proschan39 assess the validity and consistency of the WMW and related tests
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under many different sets of assumptions. Ho42 gives a helpful discussion of a related
literature on nonparametric methods for comparing test score distributions, trends, and
gaps.

A few authors43–47 discuss a nontransitivity paradox associated with rank-based tests.
If a test gives evidence that P(Y1i > Y0 j)> P(Y1i < Y0 j), one may be tempted to say
that the treated potential outcome distribution tends to have higher values than the
untreated distribution. But, using � to denote this sense of “tends to have higher
values,” there exist sets of three distributions F , G, and H such that F � G, G� H,
and H � F . Lumley43 argues that nontransitivity is an example of a more generally
troubling property of rank tests: because they avoid explicit valuation of tradeoffs
when a treatment makes some people better and others worse, they “can just be
misleading.” We agree that a rank test should not be the sole criterion for evaluating an
intervention. However, as Aldous48 writes, the most useful role of a significance test
is “to prevent you from jumping to conclusions based on too little data.” Thus, the BM
and related tests can serve as restraining devices: it is appropriate for the analysis of a
clinical trial to focus on estimated effect sizes and comparisons at multiple points in
the outcome distribution, but a failure to reject Hw

0 can prevent a premature conclusion
that treatment generally improves or generally worsens the outcome distribution.

3.2 Simulation evidence on test validity

Table 4 shows the rejection rates of the WMW and BM tests (two-tailed, at the
nominal 5% level) in simulations of nine null-hypothesis scenarios with 1,500 patients
and 250,000 replications. For the WMW test, we used the large-sample normal
approximation.49 In each panel, we show results for a balanced design (i.e., with a 1:1
treatment:control allocation ratio), and two imbalanced designs (with 9:1 and 1:9
allocation ratios).

The first panel shows rejection rates under the strong null hypothesis that treatment
has no effect on any patient’s outcome. For both the treatment group and the control
group, the data-generating process for outcomes is identical to that used for the
control group in Table 3: the probability of death is 20%, and survivors’ LOS values
are sampled with replacement from the SUNSET trial’s control group data. Death is
placed as the worst possible outcome. As expected, the WMW and BM tests have
rejection rates close to the nominal 5% significance level.

For the second and third panels, we simulated scenarios in which Hw
0 holds but the

strong null does not. In each case, treatment shrinks the spread of a symmetric
outcome distribution without shifting its center. The second panel assumes continuous
distributions (the case analyzed by Pratt38), while the third panel allows a substantial
number of ties.

In the second panel, the treated and control patients’ outcomes are drawn from the
continuous uniform distributions on [12.5, 27.5] and [5, 35], respectively. As a test of
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Hw
0 , the WMW test rejects somewhat too often (6.4%) with a 1:1 treatment:control

allocation ratio, far too often (14.7%) with a 9:1 ratio, and rarely (0.3%) with a 1:9
ratio; these rates are very close to the asymptotic limits implied by Pratt’s38 Table 1.
In contrast, the BM test’s rejection rates are always close to the nominal 5% level.

For the third panel, outcomes are drawn from mixed discrete/continuous distributions.
For treated patients, the distribution puts 20% probability on a point mass at 2.5, 60%
on the uniform distribution on [12.5, 27.5], and 20% on a point mass at 37.5. The
control patients’ distribution is similar but the point masses are at 0 and 40 and the
uniform distribution’s range is [5, 35]. Again, the BM test maintains the nominal
significance level but the WMW test does not (its rejection rates are 5.7%, 11.4%, and
1.2%).

In sum, the WMW test is not a valid test of Hw
0 . It is valid for the strong null, but it is

sensitive to certain kinds of departures from the strong null and not others. For
example, it is more likely to reject the null when treatment narrows the spread of the
outcome distribution and there are more treated than control patients, or when
treatment widens the spread and there are more control than treated patients. It is less
likely to reject when the opposite is true. These properties complicate the test’s
interpretation and are probably not well-known to most of its users. In contrast, the
BM test is an approximately valid test of Hw

0 in sufficiently large samples, and a
failure to reject Hw

0 can be understood to mean there is not enough data to infer a
general tendency for treated patients’ outcomes to be better or worse than those of
untreated patients.

On the other hand, it is not clear whether these issues are likely to be empirically
important in most clinical trials. With a balanced design, the WMW test’s
overrejection of Hw

0 in Table 4 is only slight, and the simulated scenarios are perhaps
extreme (e.g., in the second panel, treatment halves the standard deviation of the
outcome).

3.3 Simulation evidence on power

Table 5 compares the abilities of three tests to detect beneficial treatment effects (i.e.,
reducing LOS or mortality) in various scenarios. The tests are the WMW, the BM, and
the significance test for QTE0.5 (the treatment effect on the median) constructed by
inverting the bootstrap percentile confidence interval (based on 1,000 bootstrap
replications). In each case we used a two-tailed test (at the 5% level) but assumed that
if the null hypothesis was rejected, researchers would infer the direction of the effect
from the sign of (i) the difference between the Wilcoxon rank sum statistic and its
expected value, (ii) the BM statistic, or (iii) the CI limits for QTE0.5. The top half of
the table shows the rates of correctly inferring a beneficial treatment effect (in 10,000
replications of a clinical trial); the bottom half shows the rates of incorrectly inferring
a harmful effect, which are very low.
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In each scenario, the treatment:control allocation ratio is 1:1 and death is placed as the
worst possible outcome. We first simulated Settings A–F (described below) with
1,500 patients. However, it turned out that a much larger sample size was needed for
any of the tests to have reasonable power to detect the weaker treatment effects of
Settings D–F, so we also simulated those settings with 30,000 patients.

In Setting A, the probability of death in the ICU is 5% for both the treatment group
and the control group, but treatment and control group survivors’ LOS values are
sampled from two different distributions. The control group LOS distribution is just
the empirical distribution for the SUNSET trial’s control group survivors. The
treatment group LOS distribution substitutes g(x) for each value x in the control group
distribution, where g(x) = x if x≤ 2 (in days) and g(x) = x/2+1 if x > 2. The
underlying idea is that the intervention is not expected to affect the shortest ICU stays,
because bed space availability limits the speed at which patients can be moved from
the ICU to other hospital units.

The WMW and BM tests detected a beneficial treatment effect in 54% of the
replications of Setting A, while the corresponding rate for the QTE0.5 test was only
10%. In this setting, the true QTE is very small at the median (the population median
is 2.07 days with the intervention, compared to 2.13 without it) but larger in the upper
half of the composite outcome distribution (e.g., the 90th percentile is 6.9 days with
the intervention, compared to 11.9 without it), except in the upper 5% tail, which
represents death.

Setting B raises the probability of death to 20% but is otherwise identical to Setting A.
Because death now occupies a larger area at the upper tail of the composite outcome
distribution, the median values with and without the intervention are now higher, and
the intervention reduces the population median from 2.7 to 2.4 days. Thus, the true
QTE at the median is higher than in Setting A, and the QTE0.5 test has more power,
detecting a beneficial effect in 61% of the replications. The corresponding rates for
the WMW and BM tests have fallen to 31%; these tests lose power when there are
many ties. A possible remedy is to perform a WMW test after removing an equal and
maximal number of observations at the extremum (here, death) from each group.50,51

However, we do not know of a way to use this approach to construct a test that would
share the BM test’s property of asymptotic validity for a weak null hypothesis.

In Setting C, the intervention reduces both LOS and mortality. We assume each
patient in the population belongs to one of three principal strata:7,52 17.5% are
“never-survivors,” who would die in the ICU with or without the intervention; 80%
are “always-survivors,” who would survive with or without the intervention; and 2.5%
are “responders,” who would die in the ICU without the intervention but would
survive with the intervention. (For simplicity, we assume the intervention does not
cause any patients to die in the ICU, although this may be unrealistic.) The control
group’s outcomes are generated exactly as in Setting B. The treatment group’s
outcome-generating process puts 17.5% probability on death, 80% on the same LOS
distribution as in Settings A and B, and 2.5% on the uniform distribution with range
14 to 28 days (thus assuming that responders have atypically long ICU stays). The
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WMW and BM tests have somewhat higher power than in Setting B, while the QTE0.5
test’s power is unchanged. (The mortality effects are irrelevant to QTE0.5 here, since
responders’ outcomes are worse than the median with or without the intervention.)

Settings D, E, and F are identical to A, B, and C, respectively, except that the
treatment group LOS distribution only substitutes g(x) for a random 25% of the
values x in the control group distribution. Thus, the intervention has dramatic effects
on some patients, but little or no effect on most. With a sample size of 1,500 patients,
all three tests have very low power in these settings. Even with 30,000 patients, power
is never above 71%, and the comparison between the rank-based and QTE0.5 tests
varies with the nature of the heterogeneity in the treatment effect.

These results suggest three general conclusions. First, in large samples, it seems
appropriate to prefer the BM test to the WMW test, since they have approximately
equal power in Table 5 and the BM test has much more robustness of validity in Table
4. Second, power comparisons between the BM test and the QTE0.5 test vary with the
nature of the treatment effect. (Arguably, in the absence of any prior information
about the anticipated effect, the BM test is a more robust choice, since it has some
sensitivity to effects throughout the outcome distribution, and an intervention can have
practically significant effects without affecting the median.) Third, the sample sizes
needed for detection of treatment effects can depend crucially on how widespread the
effects are. (Further research may be worthwhile to see if power can be improved
using other tests besides the ones considered here. See Section 5 for discussion.)

3.4 Comparison with two-part tests

A different approach to a primary significance test than using all observations in a
rank test is a two-part test as discussed by Lachenbruch53,54. In the settings
considered by Lachenbruch, the outcome has a positive probability of being zero and
then a continuous distribution conditional on being greater than zero, e.g.,
hospitalization costs in a health insurance plan. The two-part test of no treatment
effect combines two tests: (i) the treatment has no effect on the probability of being
zero; (ii) the treatment has no effect on the conditional distribution of the nonzero
values. The two-part test statistic is X2 = B2 +T 2 where B is an asymptotically
standard normal statistic from a test of (i) and T is an asymptotically standard normal
statistic from a test of (ii), such as a Wilcoxon rank sum test, t-test, or
Kolmogorov–Smirnov test comparing only the nonzero outcomes of treated and
control subjects. Under the null hypothesis of no treatment effect, B and T are
asymptotically independent and X2 has asymptotically a χ2 distribution with 2
degrees of freedom. The two-part test rejects for large values of X2.

For treatment effects on ICU length of stay, the two-part test can be adapted by
replacing “zero” with “death.” In particular, we consider the following two-part test:
let B be the t-statistic from the unequal-variances (Welch) two-sample t-test applied to
the outcome of whether or not a subject died, and let T be the test statistic from the
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Brunner–Munzel test applied to the LOS outcome for survivors. Table 6 simulates the
rejection rates for the two-part test in null-hypothesis scenarios that are comparable to
Table 4 (again with 1,500 patients and 250,000 replications). The “strong null”
scenarios are identical to those in Table 4. The “weak null” scenarios are modified
because a two-part test would not make sense for the corresponding scenarios in Table
4 (e.g., in the second panel of Table 4, outcomes are drawn from continuous uniform
distributions, so there is no mass point at “zero” or “death”). In the “weak null”
scenarios for Table 6, treated and control patients have a 20% probability of death and
80% probability of having their outcomes drawn from the same distributions as in the
weak null scenarios of Table 4. For balanced designs, the empirical rejection rate is
approximately equal to the nominal 5% level. For imbalanced designs, the empirical
rejection rates in Table 4 are 5.5% or 5.6% (which are significantly higher than would
be expected in 250,000 replications if the true rejection probability were 5%), but
when we increased the sample size from 1,500 to 15,000, the empirical rejection rates
(not shown in the table) were all between 5.0% and 5.1%.

Table 7 examines the power for the two-part test for the same scenarios as in Table 5.
Comparing the two tables, we see that for a sample size of 1,500, the two-part test was
more powerful than the one-part BM test for Settings B, E and F, less powerful for
Settings A and C, and comparable in power for Setting D. For a sample size of
30,000, the two-part test was more powerful than the one-part BM test for settings E
and F, but less powerful for setting D. In Table 7, we did not split out “infer beneficial
effect” and “infer harm” as in Table 5 because the test statistic X2 for the two-part test
does not suggest a direction of effect. One attractive feature of the one-part tests is
that they do suggest a direction of effect.

The two-part tests we have considered are nonparametric. A related approach is to use
a parametric mixture model in which survivors’ lengths of stay are modeled with a
parametric distribution. The August 2002 issue of Statistical Methods in Medical
Research contains several papers on mixture models54–56.

4 Illustrative example

SUNSET-ICU4 was conducted in the medical ICU of the Hospital of the University of
Pennsylvania (a 24-bed ICU). The trial enrolled patients who were admitted between
September 12, 2011, and September 11, 2012. Within each two-week block during
this period (except a winter holiday block), one week was randomly assigned to the
intervention staffing model and the other to the control model. In both models,
daytime staff included two intensivists (attending physicians who were board-certified
or board-eligible in critical care medicine), and nighttime staff included three medical
residents, who were expected to review all new admissions and critical events with an
intensivist or critical care fellow by phone or in person. On control nights, two
intensivists were available by phone (usual care). On intervention nights, one
intensivist was present in the ICU.
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The staffing model on the night of admission (or the night after a daytime admission)
determined whether each patient was considered a member of the treatment group or
the control group. In other words, the analysis estimates the effects of being admitted
during an intervention week vs. a control week. Most patients experienced only one
staffing model (the median LOS was about 2 days), but patients could experience both
models if they stayed in the ICU long enough. After sample exclusions detailed in
Kerlin et al.,4 there were 820 patients in the treatment group and 778 in the control
group. The ICU LOS in the SUNSET data are rounded to the nearest tenth of an hour.

Using a proportional hazards model with death treated as a censoring event, Kerlin et
al.4 found no effect of intervention week admission on ICU LOS. There was also no
discernible effect on ICU deaths: 18.8% of the treatment group and 17.9% of the
control group died in the ICU, and the difference is not statistically significant. A
supplementary rank-based analysis, with death coded as the longest possible LOS,
also found no evidence of an effect. In this section, we present more detailed results
from the placement-of-death approach. (The trial has a matched-pair,
cluster-randomized design:57 the patients admitted during a week are a cluster, and
each two-week block is a matched pair. For simplicity, we follow Kerlin et al.4 in
analyzing the data as if individual patients were randomized without blocking.)

With death placed as the worst possible outcome, the Brunner–Munzel test does not
reject the hypothesis that a random patient’s outcome under the intervention is equally
likely to be better or worse than another random patient’s outcome in the absence of
the intervention. (the P-value in a two-tailed test is 0.29). The associated 95% CI for
P(Y1i < Y0 j)+0.5 P(Y1i = Y0 j)—that is, the probability that a random treatment group
patient’s outcome is better than a random control group patient’s, plus one-half the
probability that they are equally desirable (or undesirable)—is [0.456,0.513]. The
results are similar when death and a 28-day LOS are considered equally undesirable.
A two-part test of no treatment effect gives a P-value of 0.31, similar to the P-value of
0.29 from the Brunner-Munzel test.

The top panel of Table 8 shows estimated quantile treatment effects and 95%
confidence intervals (using the bootstrap percentile method with 1,000 replications),
with death placed as the worst outcome. There is no evidence that the intervention
affected the median outcome or any of the other quantiles examined. The CIs for the
treatment effects on the 25th to 75th percentiles of the outcome distribution all include
zero. Our method is unable to perform inference for treatment effects at the 80th
percentile and above. The 80th percentile outcome for the treatment group is a 30-day
LOS, compared to a 17.8-day LOS for the control group, but one or both values are
death on some of the bootstrap replications, so the method cannot produce a
confidence interval without additional assumptions about how to value the difference
between death and a numeric LOS. The 90th percentile is death in both groups. For a
general audience, one might present the results for the 0.25- to 0.75-quantiles together
with a CI for the intervention’s effect on mortality, which will be given below.

Not everyone will agree with an analysis that places death as more undesirable than
all possible lengths of stay; some people may consider a long stay in the ICU as a
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“fate worse than death.” Our approach, following Rosenbaum’s idea, makes it
possible to see how the results change as we change the placement of death. The
bottom panel of Table 8 repeats the analysis with death and a 28-day LOS considered
equally undesirable. The results for the 25th to 75th percentiles are unchanged. At the
80th percentile, a CI can now be constructed, and it cannot rule out a strong beneficial
effect (shortening LOS by 10.8 days), a strong harmful effect (lengthening LOS by
16.3 days), or no effect. The 90th percentile outcome is 28 days (the placement of
death) in both the treatment group and the control group and the CI excludes all
nonzero values. The bottom panel of Table 8 shows that even if we place death as
equivalent to a 28-day LOS, the results do not change much from the top panel of
Table 8 where death is the worst possible outcome. We anticipate that most people
would want to place death as being equivalent to a longer LOS than 28 days or as the
worst outcome, so the fact that the results do not change much as we vary the
placement of death from a 28-day LOS to the worst outcome suggests that the results
are robust to the placement of death.

The top panel of Table 9 shows estimated effects on the proportions of patients with
outcomes at least as bad as various cutoff values, with 95% CIs based on the normal
approximation. Death in the ICU is placed as the worst outcome, and the last row of
the panel shows the estimated effect on mortality (the point estimate is 0.9 percentage
point, but the CI ranges from −2.9 to 4.7 percentage points). All the CIs include zero,
so there is no evidence that the intervention affected the ICU death rate or any of the
other proportions. The bottom panel repeats the analysis with death and a 28-day LOS
considered equally undesirable; the results are similar.

In sum, our analysis finds no evidence that the intervention affected the distribution of
patients’ outcomes, regardless of whether death is considered the worst possible
outcome or placed as comparable to an LOS as short as 28 days. Since there was little
difference in ICU mortality between the treatment and control groups, it is not
surprising that the time-to-event analysis in Kerlin et al.4 and the placement-of-death
analysis presented here yield similar conclusions. However, the example illustrates
the types of analyses that could be presented to address concerns about selection bias
due to mortality effects in other trials.

5 Summary and discussion

We adapted Rosenbaum’s8 proposal for addressing the “censoring by death”
problem6,7 and showed how it could be applied to randomized trials where ICU
length of stay is an outcome of interest. Our approach estimates treatment effects on
the distribution of a composite outcome measure based on ICU mortality and
survivors’ LOS. Modifying Rosenbaum’s proposal, we explored methods for
inference about effects on quantiles of the outcome distribution or proportions of
patients with outcomes better than a cutoff value, which may be easier to understand
than Rosenbaum’s original estimands.
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Since it focuses on the composite outcome distribution, our approach does not
estimate treatment effects on LOS per se. Researchers may understandably want to
disentangle effects on LOS from effects on mortality, but opinions may differ on
whether this can be done persuasively, since stronger assumptions would be
needed.6,7 Thus, the placement-of-death approach does not answer all relevant
questions, but it may be a useful starting point. It addresses concerns about selection
bias by comparing the entire treatment group with the entire control group, and it can
provide evidence of an overall beneficial or harmful effect.

The approach allows sensitivity analysis with alternative placements of death, but it
does make some restrictive assumptions about valuations of LOS and death. For
example, it awards no credit for reducing long ICU stays of patients who would die in
the ICU with or without the intervention, although such an effect may be in
accordance with some patients’ wishes. Extending the approach to accomodate more
complicated valuations may be a useful direction for further work. Alternatively, a
cost-benefit analysis could be considered from the societal perspective, assigning
costs to death, time spent in the ICU, and other relevant considerations. However, the
placement-of-death approach may be more appealing to some audiences because it
avoids the need to assign a numeric value to death.

Of the significance tests we studied, the Brunner–Munzel test (or a permutation test
based on the BM statistic) may be a reasonable choice. Some other rank tests may
have more power when there are many ties50,51 or when a small fraction of treated
patients experience large treatment effects.29 It is not clear that any of those other
tests can be easily converted into robust tests of weak null hypotheses, but further
investigation may be worthwhile.

Extension of the approach to cover cluster-randomized trials would also be valuable.
Rosenbaum’s8 original approach provided exact confidence intervals in experiments
with complete random assignment of individuals, but more complex designs create
difficulties for exact inference.

Adjustment for treatment–control imbalances in the distributions of baseline
covariates may be desired. One option that could be investigated is to combine the
placement-of-death approach with inverse propensity score weighting.

A reviewer brought up the good point that by only looking at LOS in the ICU, we are
ignoring the possibility of discharge and readmission a short time later. Brown et al.58

showed that the appropriate cut point for defining ICU readmissions is 2 calendar days
if the goal is to capture those readmissions most likely to have been due to ICU
practices rather than patient characteristics. In the SUNSET-ICU trial, only 48 (3%)
of the 1,598 patients had an ICU readmission within 48 hours. In studies where there
are more readmissions, it might be better to define the LOS to include the original
LOS and the LOS on a readmission if the readmission was within 48 hours.

Following Kerlin et al.4, we have categorized patients who were transferred to
inpatient hospice as having died at the time of discharge from the ICU and patients
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who were transferred to home hospice or a long-term acute care hospital (LTACH) as
alive at the time of discharge. These transfers could in some circumstances be
considered competing risks to other live discharges and death. We categorized home
hospice differently from inpatient hospice because patients transferred to home
hospice typically live longer and because dying at home is commonly viewed as a
favorable outcome; in Kerlin et al.4, we performed a sensitivity analysis in which we
categorized transfers to home hospice as deaths, and this did not alter the results
much. Some transfers to LTACHs are “useful” and “timely” (i.e., the transfer happens
at the right time and the patient ultimately benefits from it). In such cases, it seems
reasonable to group transfers to LTACHs together with other live discharges, as we
have done. However, other LTACH transfers might be “premature” (e.g., sending a
patient to an LTACH to make room in the ICU even if the patient is not ideally suited
for transfer) or “useless” (i.e., the patient never regained meaningful quality of life
following LTACH transfer). Methods for dealing with these premature or useless
transfers are of future research interest but beyond the scope of this paper, because
there is not yet a standard way to distinguish between the types of LTACH transfers.

We have considered ICU LOS, but our approach could also be applied to studies of
hospital LOS. We focused on ICU LOS because deaths are particularly common
among ICU patients. Our proposed approach focuses only on ICU or hospital LOS
and deaths that terminate the LOS, and does not consider time to death if a patient is
discharged alive or future hospital stays after discharge. The reason is that most
currently available datasets do not provide information about readmissions to a
different hospital or time to death after discharge. If such data were available, an
alternative to our approach would be to fit a 4-state stochastic model with states (1) in
ICU, (2) in hospital, (3) out of hospital, and (4) dead.

In summary, ICU length of stay is a common outcome measure in randomized trials of
ICU interventions, but currently used methods of analyzing ICU LOS in the critical
care literature do not protect against possible selection biases due to deaths in the
ICU. Our approach addresses this problem with a composite outcome measure that
combines information on ICU LOS and deaths, and it allows the analysis to be
adjusted to reflect different preferences of patients regarding comparisons between
death and possible lengths of stay.
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Table 1: True quantiles of potential outcome distributions for simulations in Section
2.3. The table assumes the placement of death D is no less than 204.3 days. The
second and third columns show quantiles of the distributions that treatment and control
group patients’ outcomes are randomly sampled from. Lengths of ICU stay are given
in days.

Quantile Treatment Control
0.25 1.2 1.4
0.5 (median) 2.3 2.7
0.6 3.0 4.0
0.7 4.5 7.1
0.75 5.6 10.2
0.775 6.7 16.6
0.8 7.6 204.3
0.825 9.1 Death
0.85 11.7 Death
0.9 204.3 Death
0.95 Death Death

Table 2: Coverage rates (in 10,000 replications) of nominal 95% confidence intervals
(bootstrap percentile method) for quantile treatment effects, assuming placement of
death D = 204.3 days. For details of the simulation design, see Section 2.3.

Quantile Coverage rate (percent)
0.25 95.9
0.5 (median) 95.8
0.6 95.9
0.7 95.7
0.75 95.0
0.775 95.1
0.8 88.2
0.825 96.4
0.85 95.8
0.9 97.2
0.95 100.0
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Table 3: Empirical properties (in 10,000 replications) of nominal 95% confidence in-
tervals (bootstrap percentile method) for quantile treatment effects, assuming death is
the worst possible outcome. For details of the simulation design, see Section 2.3.

Quantile % of confidence intervals that:
Cover true value Miss true value Are undefined

0.25 95.9 4.2 0.0
0.5 (median) 95.8 4.2 0.0
0.6 95.9 4.1 0.0
0.7 95.6 4.3 0.2
0.75 50.3 1.3 48.4
0.775 5.1 2.3 92.6
0.8 0.0 0.2 99.8
0.825 NA NA 100.0
0.85 NA NA 100.0
0.9 NA NA 100.0
0.95 NA NA 100.0

Table 4: Rejection rates (in 250,000 replications) of the Wilcoxon–Mann–Whitney and
Brunner–Munzel tests in nine null-hypothesis scenarios. All tests are two-tailed with
nominal significance level 5%. For details of the scenarios and simulation design, see
Section 3.2.

Scenario Rejection rate (%)
Wilcoxon–Mann–Whitney Brunner–Munzel

Strong null
Balanced design 5.0 5.1
90% treated 5.0 5.0
10% treated 5.0 5.0

Weak null (no ties)
Balanced design 6.4 4.9
90% treated 14.7 5.0
10% treated 0.3 5.0

Weak null (with ties)
Balanced design 5.7 5.0
90% treated 11.4 5.0
10% treated 1.2 5.0
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Table 5: Rejection rates (in 10,000 replications) of three significance tests in nine
alternative-hypothesis scenarios. WMW = Wilcoxon–Mann–Whitney; BM = Brunner–
Munzel. The QTE0.5 test rejects if and only if the bootstrap percentile CI for the
treatment effect on the median excludes zero. All tests are two-tailed with nominal
significance level 5%. For details of the scenarios and simulation design, see Section
3.3.

WMW BM QTE0.5
Reject, correctly infer beneficial effect (%)

Sample size = 1,500
Setting A 53.9 53.7 9.9
Setting B 30.8 30.7 60.7
Setting C 39.0 39.0 60.7
Setting D 7.5 7.5 3.6
Setting E 5.2 5.2 7.4
Setting F 8.2 8.2 7.1

Sample size = 30,000
Setting D 62.3 62.3 7.5
Setting E 37.1 37.1 68.8
Setting F 71.1 71.1 71.0

Reject, incorrectly infer harm (%)

Sample size = 1,500
Setting A 0.0 0.0 0.4
Setting B 0.0 0.0 0.0
Setting C 0.0 0.0 0.0
Setting D 0.6 0.6 1.4
Setting E 1.0 1.0 0.5
Setting F 0.6 0.6 0.5

Sample size = 30,000
Setting D 0.0 0.0 0.3
Setting E 0.0 0.0 0.0
Setting F 0.0 0.0 0.0
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Table 6: Rejection rates (in 250,000 replications) of a two-part test in nine null-
hypothesis scenarios (see Section 3.4 for details). All tests are two-tailed with nominal
significance level 5%. Compare to Table 4.

Scenario Rejection rate (%)
Strong null
Balanced design 5.1
90% treated 5.5
10% treated 5.6

Weak null (no ties)
Balanced design 5.1
90% treated 5.5
10% treated 5.5

Weak null (with ties)
Balanced design 5.0
90% treated 5.6
10% treated 5.5

Table 7: Rejection rates (in 10,000 replications) of a two-part test in nine alternative-
hypothesis scenarios (see Section 3.4 for details). All tests are two-tailed with nominal
significance level 5%. Compare to Table 5.

Sample size = 1,500
Setting A 49.0
Setting B 42.7
Setting C 29.6
Setting D 7.8
Setting E 7.0
Setting F 18.9

Sample size = 30,000
Setting D 59.3
Setting E 51.8
Setting F 99.9
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Table 8: Estimated quantile treatment effects in the SUNSET trial. The second and
third columns show the sample quantiles for the treatment and control groups (lengths
of ICU stay are given in days). The fourth column shows their difference, the estimated
QTE. The fifth column shows a 95% confidence interval (bootstrap percentile method)
for the QTE. The top panel assumes death is the worst possible outcome. The bottom
panel assumes death and a 28-day ICU stay are considered equally undesirable.

Quantile Treatment Control Difference 95% CI
Death is worst outcome
0.25 1.4 1.3 0.1 [−0.1, 0.3]
0.5 (median) 2.9 2.6 0.2 [−0.1, 0.7]
0.6 4.2 3.8 0.3 [−0.3, 1.3]
0.7 7.8 6.2 1.7 [−0.3, 3.6]
0.75 11.0 8.9 2.2 [−1.5, 7.8]
0.8 30.0 17.8 12.2 Undefined
0.9 Death Death Undefined Undefined

Death placed at 28 days
0.25 1.4 1.3 0.1 [−0.1, 0.3]
0.5 (median) 2.9 2.6 0.2 [−0.1, 0.7]
0.6 4.2 3.8 0.3 [−0.3, 1.3]
0.7 7.8 6.2 1.7 [−0.3, 3.6]
0.75 11.0 8.9 2.2 [−1.5, 7.8]
0.8 28.0 17.8 10.2 [−10.8, 16.3]
0.9 28.0 28.0 0.0 [0.0, 0.0]
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Table 9: Estimated cutoff treatment effects in the SUNSET trial. The second and third
columns show the treatment and control group sample proportions with outcomes at
least as bad as the cutoff. The fourth column shows their difference, the estimated
CTE. The fifth column shows a 95% confidence interval (normal approximation) for
the CTE. The top panel assumes death is the worst possible outcome. The bottom panel
assumes death and a 28-day ICU stay are considered equally undesirable.

Cutoff % with outcome at least as bad as cutoff
Treatment Control Difference 95% CI

Death is worst outcome
1 day in ICU 84.4 83.5 0.8 [−2.8,4.4]
2 days 61.0 59.6 1.3 [−3.5,6.1]
3 days 48.7 45.2 3.4 [−1.5,8.3]
4 days 40.9 38.6 2.3 [−2.5,7.1]
1 week 32.0 28.4 3.5 [−1.0,8.0]
2 weeks 23.5 21.0 2.6 [−1.5,6.7]
4 weeks 20.1 18.4 1.7 [−2.1,5.6]
Death 18.8 17.9 0.9 [−2.9,4.7]

Death placed at 28 days
1 day in ICU 84.4 83.5 0.8 [−2.8,4.4]
2 days 61.0 59.6 1.3 [−3.5,6.1]
3 days 48.7 45.2 3.4 [−1.5,8.3]
4 days 40.9 38.6 2.3 [−2.5,7.1]
1 week 32.0 28.4 3.5 [−1.0,8.0]
2 weeks 23.5 21.0 2.6 [−1.5,6.7]
4 weeks 20.1 18.4 1.7 [−2.1,5.6]
5 weeks 0.7 0.3 0.5 [−0.2,1.2]
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