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Abstract

Despite the popularity of the false discovery rate (FDR) as an error control metric

for large-scale multiple testing, its close Bayesian counterpart the local false discovery

rate (lfdr), defined as the posterior probability that a particular null hypothesis is false,

is a more directly relevant standard for justifying and interpreting individual rejections.

However, the lfdr is difficult to work with in small samples, as the prior distribution

is typically unknown. We propose a simple multiple testing procedure and prove that

it controls the expectation of the maximum lfdr across all rejections; equivalently, it

controls the probability that the rejection with the largest p-value is a false discovery.

Our method operates without knowledge of the prior, assuming only that the p-value

density is uniform under the null and decreasing under the alternative. We also show

that our method asymptotically implements the oracle Bayes procedure for a weighted

classification risk, optimally trading off between false positives and false negatives. We

derive the limiting distribution of the attained maximum lfdr over the rejections, and the

limiting empirical Bayes regret relative to the oracle procedure.

1 Introduction

A common goal in applications of multiple hypothesis testing is to identify a relatively short

list of candidate “discoveries” that are sufficiently promising to undertake some costly further

action. In scientific applications, for example, each discovery may be the focus of a follow-up

experiment, which wastes resources if the apparent discovery was only a mirage. The false

discovery rate (FDR, Benjamini and Hochberg, 1995) has become a cornerstone of modern

large-scale multiple testing because it directly measures the rate of this wastage:

[T]he proportion of errors in the pool of candidates is of great economical signifi-

cance since follow-up studies are costly, and thus avoiding multiplicity control is

costly. Indeed, the FDR criterion is economically interpretable; when considering
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a potential threshold, the adjusted FDR gives the proportion of the investment

that is about to be wasted on false leads. (Reiner et al., 2003)

An analyst who controls FDR at level q = 5%, then, is willing to waste resources following

up on one false discovery in exchange for every nineteen real discoveries.

Carrying this reasoning further, however, we can apply the same cost-benefit analysis to

each individual rejection, not only to the list of rejections taken as a whole. In economic

terminology, we should consider not only the average utility of our entire rejection set, but

also the marginal utility of each rejection we make, since we always have the option to exclude

any rejection that is not individually promising. For example, in Section 4 we reproduce the

simulations of Benjamini and Hochberg (1995) and find in some settings that, even while the

Benjamini–Hochberg (BH) procedure controls FDR at level q = 5%, the last discovery (i.e.

the discovery with the largest p-value) is false more than 30% of the time. In such settings,

unless we are willing to suffer one false discovery for every two true discoveries, we would be

better served by excluding the last rejection from the BH rejection set. More generally, to

decide where to set our rejection threshold, we should ask about the proportion of false leads

among the incremental rejections that we would add or remove by raising or lowering it.

The likelihood that an individual discovery is a false lead is called its local false discovery

rate (lfdr, Efron et al., 2001). For i = 1, . . . ,m, let Hi = 0 if the ith hypothesis is null and

Hi = 1 otherwise, and consider the simple Bayesian two-groups model

pi | Hi = h
ind∼ fh, with Hi

iid∼ Bern(1− π0), for i = 1, . . . ,m, (1)

where f0 := 1[0,1] and f1 are densities (null and alternative, respectively) supported on the

unit interval [0, 1], and the null proportion is π0 ∈ [0, 1]. Let f := π0 + (1 − π0)f1 denote

the common mixture density of the p-values in model (1), and let F (t) :=
∫ t

0 f(u) du denote

the corresponding cumulative distribution function (cdf). The lfdr is then defined as the

posterior probability that Hi = 0, conditional on the observed p-value pi:

lfdr(t) := P (Hi = 0 | pi = t) =
π0

f(t)
. (2)

If we knew the problem parameters π0 and f1, then the definition (2) would neatly solve the

problem posed above: we should reject only those hypotheses whose lfdr is below the break-

even threshold of our cost-benefit tradeoff. Concretely, let λ > 0 define the ratio between the

cost of each false discovery and the benefit of each true discovery. Then the utility of making

R rejections, of which V are false discoveries, is proportional to (R− V )− λV , and a simple

calculation shows that we should reject the ith hypothesis if and only if lfdr(pi) ≤ α := 1
1+λ .

We will usually work under the additional assumption that f1(t) is non-increasing in

t, or equivalently that lfdr(t) is non-decreasing, so that smaller p-values represent stronger

evidence against the null. This assumption, common in multiple testing (see, e.g., Genovese

and Wasserman, 2004; Langaas et al., 2005; Strimmer, 2008), lets us restrict our attention

to procedures that reject all p-values below a given threshold: if f1 is non-increasing then

rejecting when lfdr(pi) ≤ α is equivalent to rejecting when pi is sufficiently small.
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In practice, π0 and f1 are typically unknown and must be estimated from the data,

and many estimators have been proposed; see e.g. Efron et al. (2001); Pounds and Morris

(2003); Scheid and Spang (2004); Aubert et al. (2004); Efron (2004, 2008); Liao et al. (2004);

Pounds and Cheng (2004); Robin et al. (2007); Strimmer (2008); Muralidharan (2010); Patra

and Sen (2016); Stephens (2017). To the best of our knowledge, however, there are no

known finite-sample lfdr control guarantees for multiple testing procedures based on these

methods. By contrast, simple, robust, and well-known methods like the Benjamini–Hochberg

(BH) procedure of Benjamini and Hochberg (1995) enjoy finite-sample FDR control without

requiring the analyst to model the p-value distribution.

In this work, we introduce a new error control metric that measures the lfdr of a multiple

testing procedure’s least promising rejection. We represent a generic multiple testing method

as a function R(p1, . . . , pm) returning an index set R ⊆ {1, . . . ,m}, where hypothesis i is

rejected if and only if i ∈ R. We say the procedure’s max-lfdr is

max-lfdr(R) := E
[
max
i∈R

lfdr(pi)

]
, (3)

defining the maximum as zero if no rejections are made. If f1 is non-increasing, then the

max-lfdr of R coincides with the probability that the last rejection is a false discovery.

We also introduce a simple multiple testing procedure, which we call the support line (SL)

procedure, that provably controls the max-lfdr under mild assumptions. Define the p-value

order statistics p(1) ≤ · · · ≤ p(m), and let p(0) = 0 by convention. Then our procedure rejects

p-values up to the last (and a.s. unique) minimizer

Rq := argmin
k=0,...,m

p(k) −
qk

m
. (4)

That is, we reject Rq := {i : pi ≤ τq}, for the threshold τq = p(Rq). Under the two-groups

model (1), with non-increasing f1, we show in Theorem 1 that

max-lfdr(Rq) = π0q.

Our method can be implemented without knowing π0 or f1, apart from the shape constraint,

and bears a close relationship to the BH procedure, which replaces Rq in (4) with

RBH
q := max

{
k ∈ {0, . . . ,m} : p(k) ≤

qk

m

}
,

rejecting RBH
q := {i : pi ≤ τBH

q }, for τBH
q = qRBH

q /m ≥ p(RBH
q ). Because Rq ≤ RBH

q , the

BH method makes at least as many rejections as the SL method, and both methods make

at least one rejection if and only if p(k) ≤ qk
m for some k ≥ 1; however, as we will argue, in

general, the SL method should be run with a strictly larger q than we would use for BH. The

left panel of Figure 1 illustrates the relationship between the two methods by reproducing

the familiar plot of the BH procedure as an operation on the order statistics p(1), . . . , p(m).
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Figure 1: Left: The order statistics p(k) of the p-values as a function of the index k, shown in black.

The BH procedure, in red, finds the largest index RBH
q such that p(RBH

q ) falls below the ray of slope q/m;

by contrast, our procedure finds the (last and almost surely unique) boundary point (Rq, p(Rq)) of

the supporting line of slope q/m. Right: The same plot with the ray through the origin of slope q/m

subtracted off. The black dots represent a running estimate (7) of the weighted classification loss (5),

which our procedure minimizes. BH(q) finds the largest threshold where the estimated loss is negative.

1.1 Multiple testing and the weighted classification loss

To formalize our analysis above, define the per-instance weighted classification loss:

Lλ(H,R) :=
(1 + λ)V −R

m
. (5)

This loss can be derived, up to additive and multiplicative constants, by viewing each of the

m hypotheses as a binary classification problem, where we incur a cost c1 for each type I

error or false discovery (i ∈ R, but Hi = 0), and cost c2 from each type II error or false

non-discovery (i /∈ R, but Hi = 1). If the total number of non-nulls is m1 =
∑

iHi, then

there are m1 − (R− V ) false non-discoveries, so the total loss over all m instances is

c1V + c2(m1 − (R− V )) = c2m · Lλ(H,R) + c2m1,

where λ = c1/c2 is the ratio between the two misclassification costs. Lλ as defined in (5) is

normalized so that rejecting nothing incurs zero loss, and each true discovery has value 1/m.

Under the two-groups model (1), Sun and Cai (2007, Theorem 2) show that the corre-

sponding Bayes risk ELλ(H,R) is minimized by the oracle procedure

R∗ := {i : lfdr(pi) ≤ α} , where α =
1

1 + λ
. (6)
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The ratio λ specifies the “break-even exchange rate” at which we are willing to trade true

discoveries for false leads; e.g., if λ = 19 then we are willing to suffer a single false discovery

for exactly 19 true discoveries, and we should reject a hypothesis only if its lfdr falls below

the break-even tolerance α = 0.05. If f1 is non-increasing, then the oracle procedure reduces

to thresholding p-values at a fixed threshold

R∗ = {i : pi ≤ τ∗}, for τ∗ := max{t ∈ [0, 1] : lfdr(t) ≤ α},

with τ∗ = 0 if no such threshold exists.

Our method can be directly interpreted as minimizing an empirical proxy of the weighted

classification loss. For a candidate threshold t ∈ [0, 1], the expected number of null p-values

below the threshold is mπ0t. If π0 is known, we obtain a running estimator of the loss:

L̂λ(t;π0) =
(1 + λ)mπ0t−mFm(t)

m
= (1 + λ) (π0t− αFm(t)) , (7)

where Fm(t) represents the empirical cumulative distribution function (ecdf) of the p-values:

Fm(t) =
1

m

m∑

i=1

1{pi ≤ t}.

Because L̂λ(t;π0) is increasing between successive order statistics, it is minimized at one of

the order statistics, or at p(0) = 0:

argmin
k=0,1,...,m

L̂λ(p(k);π0) = argmin
k=0,1,...,m

π0p(k) −
αk

m
.

Comparing the last expression to the definition of our procedure in (4), we see that L̂λ(t;π0)

is minimized at t = τq for q = α/π0. By Theorem 1, we then have exactly max-lfdr(Rq) = α.

By contrast, τBH
q for q = α/π0 is the largest value of t that gives L̂λ(t;π0) = 0, the same

loss we would achieve by rejecting nothing at all. In other words, the BH procedure at level

α/π0 only aims to break even; to do better, we should run BH at a strictly smaller level

q < α/π0, viewing q as a tuning parameter as in Neuvial and Roquain (2012).

To select q for our SL procedure when π0 is unknown, we can either conservatively bound

π0 ≤ 1 and run the procedure at q = α, or estimate π0 and use q = α/π̂0. To avoid confusion,

we will always use the notation q to represent our method’s tuning parameter, and reserve

α = 1
1+λ to represent the true target lfdr, defined in terms of the cost ratio λ.

Our procedure can alternatively be derived as a plug-in maximum likelihood estimator

(MLE) of the oracle procedure R∗, where we estimate f(t) using Grenander’s nonparametric

MLE for a non-increasing density (Grenander, 1956):

f̂m := argmax
g:[0,1]→R+

non-increasing density

1

m

m∑

i=1

log g(pi). (8)
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As we will see in Section 3.2, τq is also the largest value t ∈ [0, 1] for which f̂m(t) ≥ q−1.

Thus, if we run our procedure at q = α/π0, we have

Rα/π0 =
{
i : f̂m(pi) ≥ (α/π0)−1

}
=

{
i :

π0

f̂m(pi)
≤ α

}
.

As above, if π0 is unknown, we can either estimate it or conservatively bound π0 ≤ 1.

The relationship between our method and the Grenander estimator is convenient for

asymptotic analysis because the latter is very well studied; see the book by Groeneboom

and Jongbloed (2014) for a thorough treatment. The Grenander estimator has previously

been considered for estimating the lfdr (Strimmer, 2008) as well as for estimating the null

proportion π0 (Langaas et al., 2005). While f̂m may be efficiently computed via the pool

adjacent violators algorithm (Robertson et al., 1988), the definition in (4) is usually preferred

for computational purposes.

1.2 The max-lfdr and the FDR

The max-lfdr in (3) and the FDR are two different error criteria that both appeal to the logic

of trading off true and false discoveries. The key difference is that the FDR, defined as

FDR(R) := E
[
V

R
· 1{R > 0}

]
,

measures the likelihood that a randomly selected rejection is null, whereas the max-lfdr instead

measures the likelihood that the least promising rejection is null. In both cases the event in

question is deemed not to have occurred if R = 0, so that under the global null (all Hi = 0,

almost surely), both criteria reduce to the probability of making a single rejection.

Throughout this section, we will restrict our attention to procedures that reject the R hy-

potheses with the smallest p-values. That is, we assume a procedure R rejects H(1), . . . ,H(R),

where H(k) represents the hypothesis corresponding to p(k). If f1 is non-increasing, then the

procedure’s last rejection H(R) is the least promising, and the max-lfdr can be equivalently

characterized as the probability that the last rejection is a false discovery:

max-lfdr(R) = E
[
lfdr

(
p(R)

)
· 1{R > 0}

]
= P

{
H(R) = 0, R > 0

}
. (9)

If max-lfdr(R) > α = 1
1+λ , then we can improve R by excluding its last discovery.1 Let R−1

denote the procedure that makes one fewer rejection thanR, meaning it rejectsH(1), . . . ,H(R−1)

if R > 0, and makes no rejections if R = 0. Then we have

E[Lλ(H,R)− Lλ(H,R−1)] =
1

m
E
[
(1 + λ)1{H(R) = 0, R > 0} − 1{R > 0}

]

=
1 + λ

m
(max-lfdr(R)− αP{R > 0}) ,

1Without the shape constraint on f1, max-lfdr > α still implies that the analyst could improve the procedure

by removing the least promising rejection, which may not be the same as the last rejection. However, this

improvement is only feasible if the analyst can recognize which rejection is least promising.

6



which is positive if max-lfdr(R) > α. The converse, that dropping the last rejection does not

improve the risk if max-lfdr(R) ≤ α, is almost true if P{R > 0} ≈ 1. Under the global null,

however, any procedure is improved by making fewer rejections.

This thought experiment — what if we dropped the last rejection? — is at the heart of

our motivation for proposing the max-lfdr as an error criterion. Even when a rejection set’s

average quality is high, the rejections near the threshold may be recognizably bad bets. In

that case, we are better off “trimming the fat” from our rejection set until all of the rejections

that remain are individually worth following up on.

Because max-lfdr(R) ≤ FDR(R), controlling the max-lfdr is more conservative than

controlling FDR at the same level q, in most cases considerably so. From this, it is tempting

to conclude that max-lfdr control is an inherently more conservative goal than FDR control,

but this conclusion would be mistaken. An analyst whose break-even exchange rate is λ = 9

and break-even tolerance is α = 0.1, for example, would never choose a method with a 10%

FDR; the resulting rejection set would be no better on average than rejecting nothing at all,

so there would be no point in collecting the data in the first place. Thus, an analyst who is

satisfied with a 10% FDR must have a larger break-even tolerance, say α = 0.2 or 0.3.

By the same token, it would be unfair to evaluate the risk under Lλ of the BH procedure

at level q = α = 1
1+λ , since an analyst whose break-even tolerance is α would want to control

FDR at a strictly smaller level q, like α/2 or α/10. However, as we show in Section 3.1, the

performance of BH(q) with such a priori choices of q can depend sensitively on the unknown

alternative density f1.

1.3 Outline and contributions

In Section 2, we state and prove our main result, that max-lfdr(Rq) = π0q under the Bayesian

two-groups model with non-increasing f1, applying a result of Takács (1967). Even without

monotonicity of f1, we have P{H(Rq) = 0, Rq > 0} = π0q, but monotonicity ensures that the

lfdr is not out of control for rejections in the interior of the rejection region. We also prove

max-lfdr control for an adaptive method that estimates π0 from the data in the same way as

the procedure of Storey (2002).

In Section 3, we investigate our method’s asymptotic performance relative to the oracle

procedure R∗. Extending asymptotic results for the Grenander estimator, we show that our

method’s attained lfdr threshold, lfdr(τq), concentrates at a rate m−1/3 around its expectation

π0q, giving an explicit formula for its asymptotic distribution. We also show that our method’s

asymptotic regret relative to the oracle shrinks at the rate m−2/3. Section 4 illustrates our

results with selected simulations, and Section 5 concludes.

2 Finite-sample max-lfdr control

2.1 Main result

Our main result is that our procedure Rq controls the max-lfdr at exactly π0q.
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Theorem 1. Suppose p1, . . . , pm follow the Bayesian two-groups model (1), with f0 = 1[0,1].

For the procedure defined in (4), we have

E
[
lfdr

(
p(Rq)

)
· 1{Rq > 0}

]
= P

{
H(Rq) = 0, Rq > 0

}
= π0q. (10)

If f1 is non-increasing, then we have

max-lfdr(Rq) = π0q.

The familiar optional-stopping arguments from the FDR control literature, introduced by

Storey et al. (2004), do not seem to apply to our procedure, since the minimizer Rq of the

sequence p(k) − qk/m for k = 0, . . . ,m is not a stopping time. We instead prove Theorem 1

via a conditioning argument, which crucially relies on the fact that each null p-value has

exactly a q/m chance of being the last rejection p(Rq):

Lemma 2. Fix p1, . . . , pm−1 ∈ [0, 1] and let pm ∼ Unif(0, 1). Then P{p(Rq) = pm} = q/m.

Given Lemma 2, the proof of Theorem 1 is straightforward:

Proof of Theorem 1. Because the (Hi, pi) pairs are independent and identically distributed,

we can decompose the probability in (10) as

P
{
H(Rq) = 0, Rq > 0

}
=

m∑

i=1

P
{
Hi = 0, p(Rq) = pi

}

= mP
{
Hm = 0, p(Rq) = pm

}

= π0mP
{
p(Rq) = pm | Hm = 0

}

= π0q,

where the last step comes from conditioning on p1, . . . , pm−1 and applying Lemma 2. If f1(t)

is non-increasing, then lfdr(t) is non-decreasing, so that maxi∈Rq lfdr(pi) = lfdr(p(Rq)) almost

surely, completing the argument.

We now turn to proving Lemma 2. Because pm is uniform, the probability statement is

equivalent to a showing that, for any fixed p1, . . . , pm−1 ∈ [0, 1], the set of “winning values”

pm ∈ [0, 1], for which τq(p1, . . . , pm) = pm, has Lebesgue measure q/m. To prove this fact,

we rely on a useful result of Takács (1967), which we state next:

Lemma 3. (Takács, 1967, Theorem 1) Let ϕ : R+ → R+ denote a non-decreasing step

function with ϕ(0) = 0. Assume that, for some positive q, we have ϕ(u + q) = ϕ(u) + ϕ(q)

for all u ≥ 0, and define

δ(u) = 1{v − ϕ(v) ≥ u− ϕ(u) for all v ≥ u},

Then we have ∫ q

0
δ(u)du = (q − ϕ(q))+ .

8



Lemma 2 is proved by designing a function ϕ for which the corresponding indicator δ(pm)

in Lemma 3 checks whether pm is the last rejection when we run our method on (pi)
m
i=1.

Proof of Lemma 2. Let Fm−1(t) = 1
m−1

∑m−1
i=1 1{pi ≤ t} denote the ecdf of p1, . . . , pm−1, and

define a new function ϕ on [0, q]

ϕ(v) :=

{
qFm−1(v)m−1

m if v < q

qm−1
m if v = q.

Next, extend ϕ to a non-decreasing step function on all of R+ by ϕ(kq + v) = kϕ(q) + ϕ(v)

for all positive integers k and v ∈ [0, q].

Now let Fm(t) = 1
m

∑m
i=1 1{pi ≤ t}. If τq = p(Rq) = pm then we have pm − qRq

m ≤
p(0) − q 0

m = 0, so we may restrict our attention to pm ≤ q. On the range v ∈ [pm, q) we have

mFm(v) = 1 + (m− 1)Fm−1(v), so ϕ(v) = qFm(v)− q

m
.

On the range v ∈ [q, q + pm), we have

mFm(v − q) = (m− 1)Fm−1(v − q), so ϕ(v) = qFm(v − q)− q

m
+ q.

Letting δ(pm) := 1{pm = τq(p1, . . . , pm)},

δ(pm) = 1{v − qFm(v) ≥ pm − qFm(pm) for all v ∈ [0, 1]}

= 1 {v − ϕ(v) ≥ pm − ϕ(pm) for all v ∈ [pm, q + pm)}

= 1 {v − ϕ(v) ≥ pm − ϕ(pm) for all v ≥ pm} ,

where the last step follows from the fact that ϕ(v) > ϕ(v − q) for all v ≥ q + pm. We have

checked the conditions of Lemma 3 (Takács, 1967, Theorem 1), from which we conclude

P(τq = pm) =

∫ q

0
δ(pm)dpm = (q − ϕ(q))+ =

q

m
.

To convey some intuition for our result, Figure 2 depicts an illustrative example, high-

lighting in green the “winning values” of pm such that τ̂q = pm.

Remark 4. Because the set of “winning values” in Lemma 2 is a subset of [0, q] with Lebesgue

measure q/m, we can trivially extend the result to conclude P{p(Rq) = pm} ≤ q/m, if pm is

drawn from any density f0 with f0(t) ≤ 1 for all t ∈ [0, q]. Likewise, we can extend Theorem 1

to show that max-lfdr(Rq) ≤ π0q with a more general null density f0, as long as lfdr(t) is

non-decreasing and f0(t) ≤ 1 for all t ∈ [0, q].
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Possible values of(
pm,

rank(pm)
m

)
where

pm is not last rejection

Values where pm
is last rejection

q/m mink<m p(k) − qk
m

mink<m p(k) − q(k+1)
m

Figure 2: Intuition for Lemma 2. Black points represent the empirical cdf (scaled by m−1
m )

of p1, . . . , pm−1; red points represent how the empirical cdf gets shifted after adding a point pm
to its left. Adding a point pm can shift the supporting line by at most q

m , and each possible shift

in [0, q/m] corresponds to precisely one pm where pm becomes the new support point.

2.2 Estimating π0

Theorem 1 parallels the exact FDR guarantee FDR(RBH
q ) = π0q for the BH procedure. If

we bound π0 ≤ 1, we can run our method at level q = α and ensure that we conservatively

control max-lfdr at π0α, but our method will be overly conservative. In this section, we

consider estimating π0 using the Storey (2002) estimator of the null proportion, defined as

π̂ζ0 :=
1 + #{i : pi > ζ}

(1− ζ)m
, (11)

modifying an estimator originally proposed by Schweder and Spjøtvoll (1982).

Our next result shows that plugging in π̂ζ0 and running a modification of our procedure

at level q = α/π̂ζ0 controls max-lfdr at level α in finite samples:

Theorem 5. Suppose p1, . . . , pm follow the Bayesian two-groups model (1), with f0 = 1[0,1]

and f1 non-increasing. Fix ζ ∈ (0, 1), and define a modified version of our SL procedure that

only examines order statistics below ζ:

Rζq := argmin
k≥0: p(k)≤ζ

π̂ζ0p(k) −
qk

m
, (12)
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and Rζq = {i : pi ≤ p(Rζq)
}. Then we have

max-lfdr
(
Rζq
)

= q · (1− ζ)π0

1− F (ζ)
· (1− F (ζ)m) ≤ q.

The proof of Theorem 5 is deferred to the Appendix. The method Rζα coincides with

R
α/π̂ζ0

, our original procedure applied at the corrected level q̂ = α/π̂ζ0 , whenever τq̂ ≤ ζ.

Since we usually have τq̂ � 0.5 ≤ ζ, the two methods are identical for all practical purposes.

In the next section, we will investigate the asymptotic regret of methods that estimate π0.

In particular, we will show that this estimation error is asymptotically negligible if it shrinks

at a faster rate than m−1/3. We can indeed achieve this with π̂ζ0 if f1 has two continuous

derivatives in a neighborhood of 1, with f ′1(1) = f1(1) = 0. By Taylor’s theorem, we have

1− F (ζ) = (1− ζ)π0 +
(1− π0)f ′′1 (ξ)

6
(1− ζ)3,

for some ξ ∈ [ζ, 1]. Assuming π0 ∈ (0, 1) and taking ζ = 1−m−1/5, we then have

m2/5
(
π̂ζ0 − π0

)
∼ m2/5

(
1 + Binom (m, 1− F (ζ))

(1− ζ)m
− π0

)
d→ N

(
(1− π0)f ′′1 (1)

6
, π0

)
,

(13)

with subgaussian errors for finitem, so the results in Section 3.3 generally apply. See Genovese

and Wasserman (2004) and Patra and Sen (2016) for a discussion of estimators for π0.

3 Asymptotic regret analysis

In this section, we study our procedure’s empirical Bayes regret under the weighted classi-

fication risk E [Lλ(H,R)], where the expectation is taken over H1, . . . ,Hm and p1, . . . , pm
according to (1), and Lλ is defined as in (5). Throughout this section we will be considering

a sequence of problems with m→∞.

A fundamental result of Sun and Cai (2007) is that the oracle (6) minimizes the weighted

classification risk over all procedures, thus representing a benchmark against which we can

compare methods that are feasible without a priori knowledge the lfdr. In the empirical

Bayes literature (see, e.g., Efron, 2019), the price of our ignorance of the model parameters

is measured by the regret, or average excess risk, given by the optimality gap

Regretm(R) := E [Lλ(H,R)− Lλ (H,R∗)] . (14)

3.1 Population regret

Before tackling the more delicate problem of calculating the regret for procedures with data-

dependent p-value rejection thresholds, we first investigate the regret of fixed-threshold meth-

ods. For t ∈ [0, 1], let RFix
t := {i : pi ≤ t}, and note that the oracle method is R∗ = RFix

τ∗ .

We introduce the function ρ(t) to represent the regret of this method, which is free of m:

ρ(t) := Regretm(RFix
t ) = F (τ∗)− F (t)− π0

α
(τ∗ − t). (15)
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Figure 3: Left: The fixed-threshold regret ρ(t) (15) with Beta alternatives f1(t) = θtθ as a function

of θ ∈ [0, .5]. Right: a normalized version ρ(t)/ρ(0), such that BH at level α/π0 has unit normalized

regret, identical to the regret of the procedure that rejects nothing. The null proportion is π0 = 0.8

and the cost-benefit ratio is λ = 4.

If lfdr(τ∗) = α, then we also have f(τ∗) = π0/α, and ρ(t) is simply the error of the first-order

Taylor expansion of F around τ∗, also known as the Bregman divergence associated with −F .

If f is continuously differentiable between t and τ∗, then

ρ(t) =
−f ′(ξt)

2
(t− τ∗)2 , for some ξt between t and τ∗. (16)

Since F is concave, ρ(t) ≥ 0. Finally, we can also rewrite (15) as an integral

ρ(t) =

∫ τ∗

τ

(
1− α−1lfdr(t)

)
dF (t). (17)

This form for the regret underscores the relationship between the lfdr and the regret, and

will prove useful for analyzing the regret with data-dependent thresholds.

We can evaluate ρ to investigate the regret of population versions of our procedure and

the BH procedure, i.e. versions of the procedures with rejection thresholds chosen using the

true cdf F in place of the empirical cdf Fm. The population BH threshold at an arbitrary

level q ∈ (0, 1) is found by intersecting F with the ray of slope q−1, i.e.

tBH-POP
q := max {t ∈ [0, 1] : F (t)− t/q = 0} .

By comparison, the population version of our procedure τq is

tq := max
{
t ∈ [0, 1] : f(t) ≤ q−1

}
,

12



which coincides with the oracle threshold τ∗ when q = α/π0. Note that tq is equivalent to

the population BH threshold tBH-POP
q′ at the lower level

q′ =
tq

F (tq)
. (18)

Thus, there is always some value q′ for which the BH procedure approximately reproduces

the oracle, namely tα/π0/F (tα/π0), but generally we cannot use it unless we know f1 and π0.

To illustrate the population regret in a concrete example, we consider a parametric alter-

native distribution

f1(t; θ) := θtθ−1 for some θ ∈ (0, 1),

which is a Beta(θ, 1) density. This form is called a Lehmann alternative in the multiple testing

literature (see, e.g., Pounds and Morris, 2003). In this case, the population procedures at

level q ∈ (0, 1) use rejection thresholds

tq =

(
q−1 − π0

(1− π0)θ

)− 1
1−θ

, and tBH-POP
q =

(
q−1 − π0

1− π0

)− 1
1−θ

.

Furthermore, the threshold equivalence (18) gives

q′ =
θq

1− (1− θ)π0q
≈ θq,

where the approximation holds for small values of q. Thus, the correspondence between q

and q′ depends on the parameter θ, which controls the signal strength under the alternative.

For small values of θ, the signal is very strong, and the “correct” choice of q′ is much smaller

than the desired max-lfdr level α, but for weaker signals (larger θ), we should choose q′ closer

to α. Without knowing the signal strength in advance, it is difficult to know at what values

of q′ the BH method will perform well.

In Figure 3 we plot the population regret for various choices of the level of the procedure,

π0 = 0.8 and λ = 4 and varying the parameter θ. The population version of our procedure

at level α
π0

with α = 1
1+λ = 0.2 is the oracle (6), so it achieves zero regret, while the

conservative version of our procedure with q = α performs quite well for all values of the

alternative parameter θ. In this example, the asymptotic error incurred from conservatively

bounding π0 by one in the procedure is small compared to the error incurred by using BH(q′)

at an ad hoc value. The BH procedure at levels α
π0

or α incurs substantial asymptotic regret

by comparison. In particular, note that the BH(α/π0) procedure incurs the same asymptotic

regret as the procedure that rejects nothing; i.e. ρ(tBH-POP
α/π0

) = ρ(0). If we run BH at a lower

level like α/2, α/10, or α/100, we can do well for some range of θ values, but struggle at

other parts of the parameter space. No single level for BH dominates in terms of regret, so

for the classification risk it is more appropriate to view the BH level as a tuning parameter

(Neuvial and Roquain, 2012).
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3.2 Relationship of our method to the Grenander estimator

Since the marginal density f appears in the denominator of the lfdr, bounding π0 ≤ 1 and

plugging in Grenander’s estimator f̂m (defined in (8)) gives the conservative estimate

l̂fdr(t) :=
1

f̂m(t)
, t ∈ [0, 1].

Similar to how the BH procedure chooses an interval [0, t] as large as possible subject to a

constraint on an estimate of the FDP, the rejection threshold of the SL procedure can be

equivalently expressed as

τq = argmax
p(0),...,p(m)

{
qk

m
− p(k)

}
= sup

{
t ∈ [0, 1] : l̂fdr(t) ≤ q

}
, (19)

taking the convention that sup ∅ ≡ 0. The equivalence in (19) is illustrated in Figure 4. Let

F̂m denote the least concave majorant of the empirical cdf Fm, plotted as a dotted blue line

in the left panel of Figure 4. By definition of l̂fdr(t), the supremum on the right hand side is

equal to the largest t for which d
dt(qF̂m(t) − t) = qf̂m(t) − 1 ≥ 0, which corresponds to the

maximizer of the function qF̂m(t)− t, illustrated for example in the right panel of Figure 4.

F̂m ≥ Fm implies

qF̂m(t)− t ≥ qFm(t)− t, t ∈ [0, 1],

with equality at the knots of F̂m, and since the maximizer of the left hand side occurs at a

knot of F̂m, it is also the maximizer of the right hand side, i.e. the argmax of qk
m − p(k).

We can again compare this result with the BH(q) threshold, given by

τBH
q = max

k=0,...,m

{
p(k) :

qk

m
− p(k) ≥ 0

}
= sup

{
t ∈ [0, 1] : Fm(t) ≥ q−1t

}
,

which is the largest t for which the ray q−1t lies below the ecdf Fm(t). Our procedure instead

finds the last intersection of the graph of Fm with a support line of slope q−1, since

l̂fdr(t) ≤ q ⇐⇒ f̂m(t) ≥ q−1.

This relationship is illustrated in the left panel of Figure 4.

3.3 Asymptotic behavior of our procedure

Equation (16) suggests that, when f is sufficiently regular near τ∗, the regret is closely

related to the squared error of the rejection threshold. Our main result in this section

establishes cube-root asymptotics for the behavior of our procedure Rq with q = α/π̂0, where

π̂0 consistently estimates π0; if π0 is known, then the results apply directly with π̂0 = π0.

We derive limiting distributions for the threshold τq, the lfdr at the threshold, and the

regret of Rq. All three are given in terms of Chernoff’s distribution (Chernoff, 1964), which is

14



τq t

Fm(t)

F̂m(t)q−1

τq t

Fm(t)− t/q

F̂m(t)− t/q

Figure 4: Left: empirical cdf Fm and its least concave majorant F̂m. The support line of slope q−1

touches both curves at the decision threshold τq. Right: the same plot with the line t/q subtracted

off.

defined as the distribution of the maximizer Z of a standard two-sided Brownian motion W =

(W (t))t∈R with parabolic drift:

Z = argmax
t∈R

W (t)− t2. (20)

The random variable Z has a density with respect to the Lebesgue measure on R that is

symmetric about zero. Dykstra and Carolan (1999) suggest approximating the density and

cdf of Z by those of N
(
0, (.52)2

)
. This approximation can be somewhat crude but gives a

rough sense for the distribution of Z. Groeneboom and Wellner (2001) provide much more

accurate numerical methods to compute the density, cdf, quantiles and moments of Z.

Theorem 6. Suppose p1, . . . , pm follow the Bayesian two-groups model (1), with π0 ∈ (0, 1),

f0 = 1[0,1], and f1 non-increasing. For q ∈ (0, π−1
0 ), assume additionally that

(i) there is a unique value tq ∈ (0, 1) for which f(tq) = q−1,

(ii) f is continuously differentiable in a neighborhood of tq with f ′(tq) < 0, and

(iii) q̂ is any random variable with m1/3(q̂ − q) p→ 0 as m→∞.

Then we have, as m→∞,

m1/3(τq̂ − tq) d→
(q

4
· f ′(tq)2

)−1/3
Z, and (21)

m1/3 · lfdr(τq̂)− π0q

π0q

d→
(
4q2 · |f ′(tq)|

)1/3
Z. (22)
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where Z follows Chernoff’s distribution defined in (20). Further, suppose that

P{m−1/3(q̂ − q) > ε} = o
(
m−2/3

)
, for all ε > 0. (23)

Then we also have m1/3E [τq̂] → tq. In addition,

m2/3Var (τq̂) →
(q

4
· f ′(tq)2

)−2/3
Var(Z), and (24)

m2/3Var

(
lfdr(τq̂)− π0q

π0q

)
→
(
4q2 · |f ′(tq)|

)2/3
Var(Z), (25)

where Var(Z) ≈ 0.26.

The proof of Theorem 6 is deferred to Appendix B. It is well-known that the Grenander

estimator f̂m estimates f at a cube root rate pointwise, away from zero, but this result, due

to (Rao, 1969), is too weak to describe the behavior of our procedure. We rely on a stronger

version of this result due to Dümbgen et al. (2016) that approximates the local behavior of

the Grenander estimator near tq.

The distributional result (22) complements our result from Theorem 1, by showing that

lfdr(τq) = maxi∈Rq lfdr(pi) is not only controlled in expectation, but also concentrates at rate

m−1/3 around its expectation. In particular, because P{Z ≥ 1} ≈ 0.05, we have

lfdr(τq)− π0q

π0q
≤ m−1/3

(
4q2 · |f ′(tq)|

)1/3
,

with roughly 95% probability in large samples. For example, suppose we use q = 0.2, so

f(tq) = 5, and suppose that f ′(tq) = −50. Then, whereas Theorem 1 guarantees E [lfdr(τq)] ≤
0.2 exactly, the asymptotic estimate from Theorem 6 bounds the 95th percentile of lfdr(τq)

at 0.24 if m = 1000, or at 0.21 if m = 64, 000.

To understand why the error is of order m−1/3, consider fixed q and recall that the

threshold τq maximizes the stochastic process

U(t) := Fm(t)− Fm(tq)−
t− tq
q

.

Because f(tq) = q−1, we have for t near tq,

F (t)− F (tq) ≈
t− tq
q

+
f ′(tq)

2
(t− tq)2.

Introducing the local parameterization t = tq +m−ah for a > 0 leads to

U(tq +m−ah) ≈ −|f
′(tq)|
2

· h
2

m2a
+ N

(
0,

h

qma+1

)
.

Setting a = 1/3 balances the mean and variance, giving

m2/3U(tq +m−1/3h)
d→ −|f

′(tq)|
2

h2 +N
(

0,
h

q

)
.
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Under this local scaling, U(t) converges to a Brownian motion with parabolic drift, and its

maximizer τq converges to Chernoff’s distribution. Theorem 6 applies a more careful version

of this argument, replacing Fm(t) with its LCM F̂m(t) and using a result of Dümbgen et al.

(2016) to characterize the process f̂m(t) under the same local scaling. The corresponding

results for lfdr(τq) follow from first-order Taylor expansion of lfdr(t) = π0/f(t) around tq.

By specializing Theorem 6 to q = α/π0 and q̂ = α/π̂0, we obtain the limiting regret for

our procedure with a known or accurately estimated null proportion.

Theorem 7. Suppose p1, . . . , pm follow the Bayesian two-groups model (1), with π0 ∈ (0, 1),

f0 = 1[0,1], and f1 non-increasing. Assume additionally that

(i) there is a unique value τ∗ ∈ (0, 1) for which lfdr(τ∗) = π0
f(τ∗) = α,

(ii) f is continuously differentiable in a neighborhood of τ∗ with f ′(τ∗) < 0, and

(iii) π̂0 is any estimator of π0 with P
{
m1/3(π̂0 − π0) > ε

}
= o

(
m−2/3

)
for all ε > 0.

Then we have, as m→∞,

m2/3Regretm(Rα/π̂0) →
(
α2

2π2
0

· |f ′(τ∗)|
)−1/3

Var(Z), (26)

where Z follows Chernoff’s distribution defined in (20), and Var(Z) ≈ 0.26.

Theorems 6–7 deal with the regret for π0 ∈ (0, 1). Under the global null, represented in

the Bayesian model by π0 = 1, the behavior is different and the regret is simply λEV , which

is O(m−1), as we see next.

Proposition 8. Suppose (pi)
m
i=1 follow a two-groups model (1) with f0 = 1[0,1] and π0 = 1,

i.e. Hi = 0 for all i and pi
iid∼ Unif(0, 1). Then as m→∞, we have

mRegretm(Rq)→ λ
∞∑

k=1

P {Uk ≤ q} , for Uk ∼ Gamma(k, k),

which is finite for every q ∈ [0, 1).

Proposition 8 is closely related to results derived in Finner and Roters (2001).

4 Numerical results

This section highlights our main results on simulation experiments. We adapt a simulation

setting of Benjamini and Hochberg (1995) to the two-groups model (1). Specifically, define

the alternative density

f1(t) =
1
4

∑4
i=1 φ

(
Φ̄−1 (t)− 5 i4

)

φ
(
Φ̄−1 (t)

) for 0 ≤ t ≤ 1, (27)
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Figure 5: Above: Mixture density f (left) and lfdr (right), with alternative density f1 defined in (27)

and null proportion π0 = 0.75. Note f1 diverges as t ↓ 0. Below: Comparison of FDR control

(left) and max-lfdr control (right) on simulated data. The estimate of the null proportion is (11)

with ζ = 0.5.

0.0 0.1 0.2 0.3
Input level q

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
D

R
(R

)

FDR control

BH(q/π̂ζ0)

BH(q) procedure

SL(q/π̂ζ0)

SL(q) procedure

0.0 0.1 0.2 0.3
Input level q

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m
ax

-l
fd

r(
R

)

max-lfdr control

where φ and Φ̄ denote the density and survival function of the standard Gaussian distribution.

Concretely, a non-null p-value pi ∼ f1 can be constructed by first taking Yi ∼ N (µi, 1) where

µi is drawn uniformly at random from the set {5 i4 : i = 1, 2, 3, 4}; then, pi = Φ̄(Yi) is a one

sided p-value for the null-hypothesis that µi = 0. We use a null proportion of π0 = 0.75.

Figure 5 shows the mixture density and corresponding lfdr.

We repeatedly sampled from the above two-groups model with m = 64 hypotheses. Fig-
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ure 5 shows the FDR (left panel) and max-lfdr (right panel) for both our procedure and the

BH procedure, at conservative level q = α and estimated level q̂ = α/π̂ζ0 . The BH proce-

dure, shown in red, achieves FDR exactly π0q, whereas the max-lfdr can be much larger. By

contrast, our procedure, shown in blue, conservatively controls FDR substantially below the

level π0q but has max-lfdr equal to π0q.

Figure 6 highlights some features of the regret of our procedure present in Theorem 7.

The left panel shows a log-log plot of the regret as a function of the sample size m. The

red curve shows the regret of our uncorrected procedure R̂α for α = 0.05, which asymptot-

ically tends to ρ(tα) and hence asymptotically incurs some non-vanishing regret described

in Section 3.1. The blue curve shows the regret of the corrected procedure R̂α/π0 with

known π0. For larger samples, the simulated regret closely matches the asymptotic pre-

diction m−2/3
(
α2

2π2
0
· |f ′(τ∗)|

)−1/3
EZ2 from (26), shown in black. The green curve (which is

nearly indistinguishable from the blue curve) shows the corrected procedure with an estimated

null proportion π̂ζ0 based on (11) with ζ = 1−m−1/5. The right panel of Figure 6 confirms that

the asymptotic distribution of the conditional expectation E
[
Lλ(H, R̂

α/π̂ζ0
)− Lλ(H,R∗) | Fm

]

closely matches the theoretical prediction.
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Figure 6: Simulation results demonstrating some features of Theorem ?? with the alternative den-

sity f1 defined in (27), cost-benefit ratio λ = 19 and null proportion π0 = 0.75. Left: a log-log

plot of the regret (14) as a function of the sample size. The black line shows the asymptotic

prediction (26). Right: a comparison of the empirical quantiles of the conditional expectation of

E
[
Lλ(H, R̂α/π̂0(ζm))− Lλ(H,R∗) | Fm

]
, scaled so the quantity tends to Chernoff’s distribution, for

m = 106. Groeneboom and Wellner (2001) provide quantiles of Chernoff’s distribution.
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5 Discussion

In this work we have introduced a new error criterion, the max-lfdr, which modifies the FDR

by redirecting attention away from the average quality of the rejection set and toward the

rejections that are close to the rejection boundary. Despite the seeming difficulty of measuring

the quality of a single rejection, we also introduce a simple new multiple testing procedure

that controls the max-lfdr at level π0q in finite samples, where q is a tuning parameter and π0

is the null proportion. We assume only that the data follow a Bayesian two-groups model in

which smaller p-values reflect stronger evidence against the null. We find that our method is

better able than the BH method to adapt to the unknown problem structure, and to perform

well without knowledge of the true underlying distribution.

The BH procedure owes its enduring utility for FDR control in part to its versatility

beyond this basic setting, however. It is known to still control FDR, for instance, when the

null p-values are super-uniform and under certain forms of positive dependence, two of many

possible extensions that we leave open for our procedure.

Another seeming advantage of the FDR criterion is that it requires no Bayesian assump-

tions, whereas the max-lfdr is only defined with reference to a Bayesian model. A possible

avenue for generalizing the max-lfdr to frequentist settings is to work with its characterization

as the probability that the last rejection is a false discovery. Indeed, our proof of Theorem 1

implies that max-lfdr is controlled even conditional on H1, . . . ,Hm. This is initially puzzling:

if each Hi is fixed, then how can we speak of the probability that the last rejection is a false

discovery? The answer is that H(R) is random even if H1, . . . ,Hm are fixed, since its index

is random. We leave further development of the frequentist connection to the max-lfdr to

future work.
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A Proofs of results from Section 2

Proof of Theorem 5. As in the proof of Theorem 1, we have

max-lfdr
(
Rζq
)

= P
{
H

(Rζq)
= 0, Rζq > 0

}
= mP

{
Hm = 0, p

(Rζq)
= pm

}
.

Define the σ-field F = σ (p1, . . . , pm−1, Hm, 1{pm ≤ ζ}). We restrict our attention to the

event A = {Hm = 0, pm ≤ ζ}, since the event {Hm = 0, p
(Rζq)

= pm} cannot occur except on

A. On A, which is F-measurable, we have pm/ζ | F ∼ U [0, 1].

Let mζ = #{i : pi ≤ ζ}, which is also F-measurable. If j1 ≤ · · · ≤ jmζ = m are

the indices of the p-values that are below ζ, define the modified p-values pζi = pji/ζ, for

i = 1, . . . ,mζ . Because the order statistics of ζpζ1, . . . , ζp
ζ
mζ

are also the first mζ order

statistics of p1, . . . , pm, the quantity Rζq defined in (12) can be rewritten as

Rζq = argmin
k=0,...,mζ

ζpζ(k) −
q

π̂ζ0
· k
m

= argmin
k=0,...,mζ

pζ(k) −
qζk

mζ
, for qζ =

qmζ

ζπ̂ζ0m
.

Applying Lemma 2, we have

P
{
Hm = 0, p

(Rζq)
= pm | F

}
=

qζ

mζ
· 1A =

q

ζπ̂ζ0m
· 1A
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Marginalizing over F , and noting that P(A) = π0ζ, we obtain

P
{
Hm = 0, p

(Rζq)
= pm

}
=

q

m
· E
[
π0

π̂ζ0
| A
]

=
q

m
· (1− ζ)π0

1− F (ζ)
· E
[

(1− F (ζ))m

1 + #{i < m : pi > ζ}

]

=
q

m
· (1− ζ)π0

1− F (ζ)
· (1− F (ζ)m)

≤ q

m
,

completing the proof. The final inequality is a standard binomial identity:

E
[

βm

1 + Binom(m− 1, β)

]
=

m−1∑

k=0

βm

1 + k

(
m− 1

k

)
βk(1− β)m−1−k

=
m−1∑

k=0

(
m

k + 1

)
βk+1(1− β)m−(k+1)

=
m∑

j=1

(
m

j

)
βj(1− β)m−j

= P{Binom(m,β) ≥ 1}

= 1− (1− β)m.

B Proofs of results from Section 3

Proof of Theorem 6. Our proof will use the switching relation that states, for any t ∈ (0, 1),

we have almost surely

τq̂ ≤ t ⇐⇒ f̂m(t) ≤ q̂−1.

We will work with a local expansion of f̂m(t) around tq using the local parameterization

t = tq +m−1/3h. Using f(tq) = q−1, the switching relation becomes

m−1/3(τq̂ − tq) ≤ h ⇐⇒ f̂m

(
tq +m−1/3h

)
− f(tq) ≤ q̂−1 − q−1.

Now let W denote a standard two-sided Brownian motion, and let Sa,b denote the process of

left derivatives of the least concave majorant of Xa,b(t) = aW (t) − bt2, where a =
√
f(tq)

and b = |f ′(tq)|/2. Under our regularity assumptions, Dümbgen et al. (2016) show

m1/3
(
f̂m

(
tq +m−1/3h

)
− f(tq)

)
⇒ Sa,b(h)

in the Skorokhod topology on D[−K,K] for every finite K > 0. Since m1/3(q̂−1 − q−1)
p→ 0

by assumption, we have

P
{
m1/3 (τq̂ − tq) ≤ h

}
→ P {Sa,b(h) ≤ 0} .
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Observe that Sa,b(h) ≤ 0 iff t∗a,b ≤ h, where t∗a,b is the (a.s. unique) maximizer of Xa,b

(note the maximizer t∗a,b is always a knot in the concave majorant since the horizontal line

with intercept Xa,b(t
∗
a,b) is a supporting line intersecting (t∗a,b, Xa,b(t

∗
a,b))). Combining this

observation with the previous display, we have

m1/3 (τq̂ − tq) d→ t∗a,b
d
= (b/a)−2/3 Z =

(q
4
· f ′(tq)2

)−1/3
Z,

proving (21). Next we turn to the lfdr asymptotics. By Taylor’s theorem,

m1/3 (lfdr(τq̂)− π0q) = lfdr′(ω) ·m1/3 (τq̂ − tq)

for some ω between τq̂ and tq. Using

lfdr′(tq) =
−π0f

′(tq)

f(tq)2
= π0q

2 · |f ′(tq)|,

and applying the continuous mapping theorem and Slutsky’s theorem, we obtain

lfdr′(ω) ·m1/3 (τq̂ − tq) d→ lfdr′(tq) ·
(q

4
· f ′(tq)2

)−1/3
Z = π0q ·

(
4q2 · |f ′(tq)|

)1/3
Z,

proving (22). Next, under the strengthened assumption (23), fix ε > 0 and define the event

Aε =
{
|q̂ − q| ≤ m−1/3ε, |τq̂ − tq| ≤ m−2/9

}
, (28)

and the truncated random variable

Ym = m1/3(τq̂ − tq) · 1Aε ,

We will show that P(Acε) = o
(
m−2/3

)
. As a result, Ym has the same limit in distribution

as m1/3(τq̂ − tq). If we can show that the sequence Y 2
m is uniformly integrable, we will have

convergence of its mean and variance to the mean and variance of its limiting distribution.

Then, because

E
[(
m1/3(τq̂ − tq)− Ym

)2
]
≤ m2/3P(Acε) → 0,

we will have the same limiting mean and variance for m1/3(τq̂ − tq).
To show that P(Acε) = o

(
m−2/3

)
, let q1 = q −m−1/3ε and q2 = q + m−1/3ε and assume

that m is sufficiently large that m−1/3ε ≤ m−2/9/2, and

f ′(t) ≤ f ′(tq)/2, for all t ∈ [tq −m−2/9, tq +m−2/9].

As a result, for all t ≥ tq2 +m−2/9/2, we have

F (t)− F (tq2)− t− tq2
q2

≤ F (tq2 +m−2/9/2)− F (tq2)− m−2/9

2q2

≤ f ′(tq)

16
·m−4/9
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Then, since τq̂ ≤ τq2 a.s. on Aε, we have

P
{
τq̂ > tq +m−2/9, Aε

}
≤ P

{
τq2 > tq2 +m−2/9/2

}

≤ P

{
sup

t≥tq2+m−2/9/2

Fm(t)− Fm(tq2)− t− tq2
q2

≥ 0

}

≤ P

{
sup

t≥tq2+m−2/9/2

Fm(t)− F (t)− (Fm(tq2)− F (tq2)) ≥ |f
′(tq)|
16

·m−4/9

}

≤ P

{
sup
t∈[0,1]

|Fm(t)− F (t)| ≥ |f
′(tq)|
32

·m−4/9

}

≤ CDKW exp

{
−f
′(tq)

2

512
·m1/9

}
,

where CDKW is the constant for the Dvoretzky–Kiefer–Wolfowitz inequality. An analogous

argument yields the same bound for P{τq̂ ≤ tq −m−2/9}.

Proof of Theorem 7. Define q = α/π0 and q̂ = α/π̂0, and let ∆ ⊆ {1, . . . ,m} denote the

symmetric difference between the two rejection sets:

∆ =





{Rq̂ + 1, . . . , R∗} if Rq̂ < R∗

{R∗ + 1, . . . , Rq̂} if Rq̂ > R∗

∅ if Rq̂ = R∗

.

Then we have

Lλ(H,Rq̂)− Lλ(H,R∗) =
1

m

(
R∗ −Rq̂ +

sgn(Rq̂ −R∗)
α

∑

i∈∆

(1−Hi)

)
.

Conditional on Fm, we have Hi
ind∼ Bern(1− lfdr(p(i))), giving conditional expectation

Γm := E
[
Lλ(H,Rq̂)− Lλ(H,R∗) | Fm

]

=
1

m

(
R∗ −Rq̂ +

sgn(Rq̂ −R∗)
α

∑

i∈∆

lfdr(p(i))

)

=

∫ τ∗

τq̂

(
1− α−1lfdr(t)

)
dFm(t)

= ρ(τq̂) + α−1

∫ τ∗

τq̂

(α− lfdr(u)) (dFm(u)− dF (u))
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Define the same truncation event Aε as in (28).

Aε =
{
|q̂ − q| ≤ m−1/3ε, |τq̂ − τ∗| ≤ m−2/9

}
.

Then, because |Γm| ≤ α−1 we have

∣∣∣∣Regretm(Rq̂)− E [ρ(τq̂)1Aε ]

∣∣∣∣

≤ α−1E

[∣∣∣∣∣

∫ τ∗

τq̂

(α− lfdr(u)) (dFm(u)− dF (u))

∣∣∣∣∣ 1Aε

]
+ α−1P (Acε) .

(29)

We showed in the proof of Theorem 6 that P (Acε) = o
(
m−2/3

)
. Furthermore,

m2/3E [ρ(τq̂)1Aε ] = E
[
f ′(ξτq̂)

2
·m2/3(τq̂ − τ∗)2 · 1Aε

]

→ f ′(τ∗)

2

(
α

4π0
· f ′(τ∗)2

)−2/3

Var(Z)

=

(
α2

2π2
0

· |f ′(τ∗)|
)−1/3

Var(Z),

where we have used the fact that f ′(ξτq̂) is uniformly close to f ′(τ∗) on Aε. It remains only

to show that the first term on the right-hand side of (29) is o
(
m−2/3

)
.

Proof of Proposition 8. Since Hi = 0 for all i

Lλ(H, R̂α)− Lλ(H,ROPT
α ) =

λR̂α
m

.

Recall R̂α is the argmax of the random walk k 7→ α k
m − p(k), which has exchangeable incre-

ments. We will use Corollary 11.14 of Kallenberg (2002), due to Sparre-Andersen, that, by

exchangeability, the number of rejections R̂α is equal in distribution to the time the walk

stays positive:

R̂α
d
= Pα :=

m∑

k=1

1

{
p(k) ≤ α

k

m

}
.

Under the global null, the regret thus has mean

mE
[
Lλ(H, R̂α)− Lλ(H,ROPT

α )
]

= λER̂α = λ
m∑

k=1

P
{
p(k) ≤ α

k

m

}

→ λ

∞∑

k=1

PUk∼Gamma(k,k) {Uk ≤ α} ,

where the last step follows from the law of rare events.
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