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Abstract

The knockoff filter of Barber and Candès (2015) is a flexible framework for multiple testing in
supervised learning models, based on introducing synthetic predictor variables to control the false
discovery rate (FDR). Using the conditional calibration framework of Fithian and Lei (2020), we
introduce the calibrated knockoff procedure, a method that uniformly improves the power of any
knockoff procedure. We implement our method for fixed-X knockoffs and show theoretically and
empirically that the improvement is especially notable in two contexts where knockoff methods can
be nearly powerless: when the rejection set is small, and when the structure of the design matrix
prevents us from constructing good knockoff variables. In these contexts, calibrated knockoffs
even outperform competing FDR-controlling methods like the (dependence-adjusted) Benjamini–
Hochberg procedure in many scenarios.

1 Introduction

The Gaussian linear regression model is one of the most versatile and best studied models in statistics,
with myriad applications in experimental analysis, causal inference, and machine learning. In modern
applications, there are commonly many explanatory variables, and we suspect that most of them have
little to do with the response, i.e. that the true coefficient vector is (approximately) sparse. In such
problems, multiple hypothesis testing methods are a natural tool for discovering a small number of
variables with nonzero coefficients in the sea of noise variables, while controlling some error measure
such as the false discovery rate (FDR), introduced by Benjamini and Hochberg (1995).

At present, however, the multiple testing literature offers practitioners little clarity regarding how
they ought to perform the inference. There are at least two well-known methods for multiple testing
with FDR control: the (fixed-X) knockoff filter of Barber and Candès (2015) and the Benjamini–
Hochberg (BH) procedure of Benjamini and Hochberg (1995) (recently modified by Fithian and Lei
(2020) to ensure provable FDR control in linear regression among other problems with dependent
p-values). Knockoffs and BH use radically different approaches and can return very different rejection
sets on the same data, and it is not uncommon for one method to dramatically outperform the other,
depending on the problem context. For example, Section 1.2 illustrates a simple problem setting where
BH has much higher power at FDR level α “ 0.05, but the knockoff filter recovers and outperforms
BH at level α “ 0.2. In particular, the knockoff filter suffers from a so-called threshold phenomenon,
explained in Section 2.1, that makes it nearly powerless when the number of discernibly non-null
variables is smaller than 1{α, making it a risky choice for an analyst who aims for more stringent
FDR control. In problems with enough rejections to avoid this issue, however, the knockoff filter
often shines, since it can use efficient estimation methods like the lasso (Tibshirani, 1996) to guide its
prioritization of variables.

In this work, we propose a new method, the calibrated Knockoff procedure (cKnockoff), which uni-
formly improves the knockoff filter’s power while achieving finite-sample FDR control in the Gaussian
linear model. Our method acts as a “wrapper” around any implementation of fixed-X knockoffs,
augmenting its rejection set using a “fallback test” for each variable that is not already rejected by
knockoffs. To set the power of the fallback tests without violating FDR control, we use the conditional
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calibration framework proposed in Fithian and Lei (2020). cKnockoff is strictly more powerful than
knockoffs in every problem instance, but the power gain is especially large in problems with a small
number of non-null variables, resolving the threshold phenomenon while retaining the knockoff filter’s
advantages.

1.1 Multiple testing in the Gaussian linear model

We consider the linear model relating an observed response vector y “ py1, . . . , ynq
T to fixed explana-

tory variables Xj “ pX1j , . . . , Xnjq
T , for j “ 1, . . . ,m via

y “
m
ÿ

j“1

Xjβj ` ε “Xβ ` ε, ε „ N p0, σ2Inq, (1)

where the design matrix X P Rnˆm has Xj as its jth column. Both the coefficient vector β “

pβ1, . . . , βmq
T and the error variance σ2 are assumed to be unknown. We assume throughout that

m ă n, and that X has full column rank, ensuring that β and σ2 are identifiable.
A central inference question in this model is whether a given variable Xj helps to explain the

response, after adjusting for the other variables. Formally, we will study the problem of testing the
hypothesis Hj : βj “ 0 for each variable Xj simultaneously, while controlling the FDR.

Let H0 “ tj : Hj is trueu and m0 “ |H0|; we say Xj is a null variable if j P H0. For a multiple
testing procedure with rejection set R Ă t1, . . . ,mu, the false discovery proportion (FDP) and FDR
are defined respectively as

FDPpRq “ |RXH0|

|R| _ 1
, FDR “ ErFDPs.

We write R “ |R| and V “ |R X H0| for the number of rejections and false rejections respectively.
Our goal is to control FDR at a pre-specified threshold α while achieving a power as high as possible.
Throughout this paper we define power in terms of the true positive rate (TPR), defined as the
expectation of the true positive proportion (TPP), the fraction of the m1 “ m´m0 non-null hypotheses
rejected:

TPPpRq “ |RXHc
0|

m1
, TPR “ ErTPPs.

A traditional approach to multiple testing would start with the usual two-sided t-test statistics
|β̂j |{σ̂, which are calculated from the ordinary least squares (OLS) estimator and the unbiased esti-
mator of the error variance

β̂ “ pXTXq´1XTy, and σ̂2 “ RSS{pn´mq,

where RSS “ }y ´Xβ̂}22 is the residual sum of squares. Such t-tests are uniformly most powerful
unbiased for the individual hypotheses. Then an appropriate multiplicity correction is applied to
their corresponding p-values. The celebrated Benjamini–Hochberg procedure (BH), the best-known
FDR-controlling method, orders the p-values from smallest to largest pp1q ď ¨ ¨ ¨ ď ppmq, and rejects

RBH “

"

j : pj ď
αRBH

m

*

, where RBH “ max
!

r : pprq ď
αr

m

)

.

While BH does not provably control FDR in this context due to the dependence between p-values,
a corrected version called the dependence-adjusted BH procedure (dBH) does, while achieving nearly
identical power (Fithian and Lei, 2020).

The knockoff filter, described below in Section 2.1, is a flexible class of methods that take a
radically different approach, completely bypassing the t-tests. Instead, these methods introduce a
“knockoff” variable X̃j to serve as a negative control for each real predictor variable Xj , and then
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apply a learning algorithm to rank the 2m variables according to some importance measure in the
model. The knockoffs are constructed to ensure that, under Hj , Xj and X̃j are indistinguishable in
an appropriate sense. We emphasize that the knockoff filter does not relax the t-test assumptions in
any way: it controls FDR in model (1) in finite samples, for any β and σ2.

Knockoff methods enjoy substantially higher power than BH and dBH in some scenarios while
struggling in others, with the relative performance depending on the problem dimensions, the structure
of the design matrix, and the true β vector, among other considerations. Figure 2 illustrates one such
stark contrast, where the knockoff filter outshines BH at FDR level α “ 0.2 but struggles at level
α “ 0.05, in the same instance of a scenario we call blockwise multiple comparisons to control (MCC-
Block), a variation on the classic MCC problem of Dunnett (1955), which we describe next.

1.2 Motivating example: blockwise multiple comparisons to control

To illustrate why dependence between test statistics can offer opportunities to improve on BH, we now
introduce a very simple linear modeling problem that we will use as a running example throughout
the remainder of this paper. We will see that, when the dimension m is large and the coefficient vector
β is sparse, the variables whose p-values are smallest may not be the most favorable.

Example 1.1 (MCC-Block). For treatment group g “ 1, . . . , G in block k “ 1, . . . ,K, we observe r
independent replicates

zg,k,i “ µk ` δg,k ` εg,k,i, where εg,k,i
i.i.d.
„ Np0, σ2q, i “ 1, . . . , r

along with r independent replicates for a control group in the same block:

z0,k,i “ µk ` ε0,k,i, where ε0,k,i
i.i.d.
„ Np0, σ2q, i “ 1, . . . , r.

The effects of interest are the location shifts for each treatment group, δg,k.

Example 1.1 can naturally arise in experimental contexts where µk represents a fixed or random
“batch effect” for a set of observations. In applied settings, the number of groups in each block or the
number of replicates per group may be variable. The assumption of Gaussian errors with common
variance can easily be relaxed if r, the number of independent replicates per group, is large.

After “projecting out” the block effects, Example 1.1 can be equivalently expressed as a linear
model of the form (1) with m “ KG variables and n “ KprpG ` 1q ´ 1q independent observations,
where βj “ δg,k for j “ pk ´ 1qG ` g, and the design matrix X and response vector y are given by

appropriate linear contrasts; see Appendix E.1 for details. The OLS estimator β̂ is easily shown to be

β̂pk´1qG`g “ δ̂g,k :“ zg,k ´ z0,k “ δg,k ` εg,k ´ ε0,k „ Npδg,k, 2σ2{rq, (2)

where zg,k and z0,k respectively represent the sample means for the gth treatment group and the
control group in block k, and εg,k and ε0,k are defined similarly. Because estimates for the same

block use the same control group, the correlation matrix of β̂ is block-diagonal with correlation 0.5
for pairs of entries in the same block, and zero correlation across blocks. In the special case K “ 1,
Example 1.1 reduces to the classical MCC problem.

To test any individual hypothesis, the two-sided t-test using t-statistic
a

r{2σ̂2 ¨ β̂j seems virtually
unassailable. As a result, it would be quite natural to apply the BH method, or its close cousin dBH,
with the t-test p-values. To understand why BH is sub-optimal in this problem, we must carefully
consider the implications of sparsity: that we may expect δg,k « 0 for the vast majority of groups.
Hence if we observe

δ̂1,k « 0 and δ̂g,k « ´1, g “ 2, . . . , G

for some k, this would be a strong hint for δ1,k « 1 « ε0,k ´ εg,k under the sparsity assumption.
While the expectation of sparsity is natural and powerful in many multiple testing contexts, the OLS
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estimator that forms the backbone of the BH method does not incorporate a sparsity assumption in
any way, since the distributions of the jth t-statistic,

a

r{2σ̂2 ¨ β̂j and its p-value pj depend only on
βj{σ.

If β is sparse, however, we should be able to exploit the sparsity to improve our estimator of β,
for example by using the lasso estimator of Tibshirani (1996), defined by

β̂
λ
“ argmin

βPRm

1

2
}y ´Xβ}

2
2 ` λ ¨ }β}1 . (3)

In particular, Figure 1 shows that the lasso estimator does a better job of ordering the variables in
an instance of the MCC-Block problem with sparse β. This suggests that the BH method, which is
restricted to rejecting variables in order of their t-statistics, will be inherently limited in its statistical
power relative to a method that tracks the lasso estimator instead.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

FPP

T
P

P

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3 0.4 0.5

FDP

T
P

P variable ordering

OLS

LASSO

Figure 1: Lasso regression (3) achieves a better variable ordering than OLS regression (2) in the
MCC-Block problem with sparse β. Left: receiver operator characteristic (ROC) curve, TPP versus
FPP “ V {m0; Right: TPP versus FDP curve, both averaged over 100 realizations. In each realization

the variables are “rejected” in decreasing order of |β̂j |. For the lasso, we use λ “ 2σ̂, where σ̂2 is the

unbiased variance estimator, and break ties among variables with β̂j “ 0 according to the magnitude
of their correlation with the lasso residual. We simulate K “ 200 blocks, G “ 5 treatment groups
per block, and r “ 3 replicates per group. There are m1 “ 10 nonzero effects with equal strength,
distributed at random across the m “ KG “ 1000 total hypotheses, with the signal strength calibrated
so that BH at level α “ 0.2 attains TPR “ 0.5.

As shown in Figure 2, a version of the knockoff filter based on the lasso can likewise outperform
the OLS-based BH method, but its superior performance is only observed in this instance for α “ 0.2.
For smaller α values, a specific drawback of knockoffs — ironically, that knockoff methods break down
when the coefficient vector is too sparse — prevents the method from realizing its potential. This
drawback is resolved by our calibrated knockoff method, the main subject of this work.

1.3 Outline and contributions

In this work, we propose the calibrated Knockoff procedure (cKnockoff), a method that controls finite-
sample FDR in the Gaussian linear model with fixed design. Our method acts as a “wrapper” around
any implementation of fixed-X knockoffs, uniformly improving its power by means of a fallback test
that allows for the rejection of variables not rejected by knockoffs.

For a generic fallback test statistic Tjpyq, we calibrate a data-adaptive rejection threshold ĉjpyq,
and reject Hj for any j in the knockoff rejection set or which has Tjpyq ě ĉjpyq. That is,

RcKn “ RKn Y tj : Tjpyq ě ĉjpyqu,
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Figure 2: Performance of several multiple testing methods for the same instance of the MCC-Block
problem as in Figure 1, for varying FDR significance levels, α “ 0.01, 0.05, 0.1, and 0.2. The knockoff
method using lasso-based LCD feature statistics outperforms BH by a wide margin when α “ 0.2 by
successfully exploiting sparsity, but it fails for smaller values of α due to the threshold phenomenon.
The cKnockoff method described in this paper outperforms both BH and knockoffs.

where RKn and RcKn are respectively the rejection sets for the baseline and calibrated knockoff
methods.

The threshold ĉj is calibrated to control Hj ’s contribution to the overall FDR, using the conditional
FDR calibration method of Fithian and Lei (2020), which we review in more detail in Section 2.3. In
brief, define Sj “ pX

T
´jy, }y}

2
2q, the complete sufficient statistic for the submodel described by Hj .

Then under Hj , the distribution of y given Sj is known so that, for any fallback test threshold cj , we
can calculate the resulting conditional FDR contribution of Hj , defined as

FDRjpRcKn | Sjq :“ EHj

«

1
 

j P RcKn
(

|RcKn| _ 1

ˇ

ˇ

ˇ
Sj

ff

ď EHj

«

1
 

j P RKn
(

_ 1 tTj ě cju

|RKn Y tju|

ˇ

ˇ

ˇ
Sj

ff

.

We will choose the threshold ĉjpSjpyqq to set the last expression equal to a variable-specific, data-
adaptive budget that we obtain by analyzing the FDR control proof for knockoffs.

Because the cKnockoff rejection set almost surely includes the knockoff rejection set and sometimes
exceeds it, the method is uniformly more powerful than fixed-X knockoffs. We find in simulations
that the power gain is especially large when the true β vector is very sparse, in particular when we do
not have m1 " 1{α. The same ideas can be applied to model-X knockoffs, but efficiently extending
them to that context will require significant computational finesse, which we leave to future work.

The only downside of cKnockoff is the additional computation it requires. To reduce this burden,
we only carry out the fallback test on hypotheses that appear promising, and we use a conservative
approximation to speed the fallback test calculation. We prove that these speedup techniques do
not inflate the FDR, and we find numerically that the computation time of our implementation is a
small multiple of the knockoff computation time, which is further improved when parallel computing
is available.

Section 2 reviews the basics of knockoffs and conditional calibration, and Section 3 defines our
method in full detail. Section 4 gives more detail about how we implement the fallback test for a
given variable, using a single Monte Carlo integral. Sections 5–6 illustrate our method’s performance
on selected simulation scenarios, in addition to the HIV data from the original knockoff paper (Barber
and Candès, 2015), and Section 7 concludes.
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2 Review: knockoffs and conditional calibration

2.1 Knockoffs: a flexible framework

This section reviews the elements of knockoffs and conditional calibration. Our focus in this paper is
on fixed-X knockoffs, the original version of the knockoff filter proposed in Barber and Candès (2015)
for the Gaussian linear model with fixed design. In this setting, the requisite “indistinguishability”
is defined by the pairwise correlations between variables. Specifically, the knockoff design matrix
X̃ “ pX̃1, . . . , X̃dq P Rnˆm must satisfy

X̃
T
X̃ “XTX, and XTX̃ “XTX ´D, (4)

for some diagonal matrix D. Following Barber and Candès (2015), we require m ě 2n; in some cases
we will require further that m ě 2n` 1 so that σ2 is identifiable in the augmented linear model with
design matrix X` “ pX, X̃q P Rnˆ2m.

There are many ways to implement knockoffs, but every knockoff method yields common inter-
mediate outputs called feature statistics W1, . . . ,Wm P R which are inputs to an ordered multiple
testing algorithm called Selective SeqStep, also proposed in Barber and Candès (2015). The absolute
value |Wj | roughly quantifies how much overall importance the learning algorithm assigns to the pair

tXj , X̃ju, while the sign sgnpWjq is positive if the algorithm assigns a greater importance to Xj

than X̃j , and negative otherwise. Formally, each Wj must be a function of XT
`X` and XT

`y (the
sufficiency condition) and Wj must have the same absolute value but opposite sign whenever we swap

Xj with X̃j (the anti-symmetry condition).
The two most popular feature statistics in practice, proposed by Barber and Candès (2015) and

Candès et al. (2018) respectively, are both based on the Lasso estimator for the augmented model:

β̂
λ
“ argmin

βPR2m

1

2
}y ´X`β}

2
2 ` λ ¨ }β}1 .

The lasso signed-max (LSM) statistics are defined by variables’ entry points on the regularization
path:

WLSM
j “ pλ˚j _ λ

˚
j`mq ¨ sgnpλ˚j ´ λ

˚
j`mq, for λ˚j “ sup

!

λ : β̂λj ‰ 0
)

, (5)

while the lasso coefficient-difference (LCD) statistics are defined by the lasso estimator for a fixed λ:

WLCD
j “ |β̂λj | ´ |β̂

λ
j`m|. (6)

If βλj “ βλj`m “ 0, then WLCD
j “ 0. For the simulations in this paper we use a minor modification of

W LCD that breaks ties using the variables’ correlations with the lasso residuals

rλ “ y ´X`β̂
λ
. (7)

Formally, we define the LCD with tiebreaker (LCD-T) statistics as

WLCD-T
j “

$

&

%

WLCD
j ` 2λ sgnpWLCD

j q if WLCD
j ‰ 0

|XT
j r
λ| ´ |X̃

T

j r
λ| otherwise.

(8)

Applying the Karush–Kuhn–Tucker (KKT) condition, it is easy to verify that |WLCD-T
j | ą 2λ if and

only if WLCD
j ‰ 0.

The sufficiency and antisymmetry conditions can be relaxed slightly. If n ě 2m` 1, then W can
also take as input the unbiased variance estimator σ̃2 “ }r0}22{pn´2mq, which is independent of XT

`y
(Li and Fithian, 2021). This can help us to select λ in (6); we find that λ “ 2σ̃ is a practical choice,
where the predictor variables are standardized to have unit norm.
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Knockoff methods’ FDR control guarantee arises from a crucial stochastic property of the feature
statistics: conditional on their absolute values |W | “ p|W1|, . . . , |Wm|q, the signs for null variables are
independent Rademacher random variables:

sgnpWjq | |Wj |, W´j
Hj
„ Unift´1,`1u, (9)

where W´j encodes all entries other than Wj . To avoid trivialities, we assume all Wj ‰ 0 and
Wi ‰Wj for any i ‰ j.

Once the feature statistics are calculated, Selective SeqStep rejects Hj if Wj ě pw, for an adaptive
rejection threshold pw ě 0 that is based on a running estimator of FDP:

pw “ min
!

w ě 0 : zFDPpwq ď α
)

, for zFDPpwq “
1` |tj : Wj ď ´wu|

|tj : Wj ě wu|
, (10)

where pw “ 8 (no rejections) if zFDPpwq ą α for all w. Let RKn “ tWj ě pwu denote the knockoff
rejection set. This rejection rule controls FDR at level α whenever the feature statistics satisfy (9),
as Section 3.2 discusses in detail. Appendix A.1 includes a proof of (9) for fixed-X knockoffs.

2.2 Two limitations of knockoffs

Despite its deft exploitation of sparsity, the fixed-X knockoff filter has two major limitations that
can inhibit its performance in certain settings. One limitation, reflected in Figure 2, is the so-called
threshold phenomenon: because the denominator of zFDPw is the size of the candidate rejection set,
we cannot make any rejections at all unless we have R ě 1{α. For example, if α “ 0.1, we must make
at least 10 rejections or none at all, even if several p-values lie well below the Bonferroni threshold
α{m. Even when the number of potential rejections is above the 1{α threshold, the FDP estimator
can be highly variable and upwardly biased, adversely affecting the method’s power and stability.

Some recent proposals ameliorate this limitation by generating multiple negative controls (Gimenez
and Zou, 2019; Emery and Keich, 2019; Nguyen et al., 2020). However, they come at the price of a
higher correlation between the original variables and negative controls and a noisier ordering of the
variables passed into the Selective Seqstep filter, both of which potentially lead to reduced power
(Nguyen et al., 2020). Another proposal by Sarkar and Tang (2021) views fixed-X knockoffs as
“splitting” the data into two unbiased estimators of β, one of which has independent coordinates, and
applies a hybrid data-splitting method. This proposal can also mitigate the threshold phenomenon,
but is often less powerful than knockoffs. By contrast, our calibrated knockoff method is always more
powerful than a baseline knockoff method, and we find in simulations that it usually outperforms both
multiple knockoffs and the method of Sarkar and Tang (2021) as well.

A second issue is the whiteout phenomenon discussed by Li and Fithian (2021), who prove finite-
sample bounds on the power of any fixed-X knockoff method in terms of the eigenvalues and eigen-
vectors of XTX, and the coefficient vector β. When the eigenstructure is unfavorable, we may be
forced to make all but a few knockoff variables very highly correlated with their real variable coun-
terparts, and as a result sgnpWjq can be very noisy even for strong signal variables, severely biasing
zFDPw upwards. The MCC problem (Example 1.1 with K “ 1) is a prototypical example exhibiting
the whiteout phenomenon, and Li and Fithian (2021) prove that in large MCC problems even the
Bonferroni method is dramatically more powerful than the best possible knockoff method. More pro-
saically, even when the results of Li and Fithian (2021) do not cause catastrophic failure, the knockoff
variables still tend to interfere with one another, degrading each other’s quality. Multiple knockoff
methods tend to exacerbate these problems. As we will see, calibrated knockoffs partially address this
issue, delivering high power under some circumstances, but giving limited performance gains in other
settings.

Note that these limitations do not conflict with recent theoretical analyses establishing positive
results in regimes where the design matrix is well-conditioned and the number of non-nulls diverges;
see e.g. Weinstein et al. (2017); Fan et al. (2019); Liu and Rigollet (2019); Wang and Janson (2020).
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2.3 Conditional calibration and dBH

Fithian and Lei (2020) introduced a novel technique called conditional calibration for proving and
achieving FDR control under dependence. They begin by decomposing the FDR into the contributions
from each null hypothesis:

FDRpRq “
ÿ

jPH0

FDRjpRq, where FDRjpRq “ EHj

„

1tj P Ru
R_ 1



, (11)

and propose controlling each FDR contribution at level α{m, so that FDR ď αm0{m ď α.
Just as we decomposed the FDR into the contributions from each null hypothesis, we can likewise

decompose the FDP as

FDP “
ÿ

jPH0

DPj , where DPjpRq “
1tj P Ru
R_ 1

“
1tj P Ru
|RY tju|

. (12)

We will call DPj the realized discovery proportion for Hj ; then FDRj “ EHj rDPjs. Note that DPj
only contributes to FDP if Hj is true, but it is a well-defined statistic whether Hj is true or false.

To control FDRj at level α{m, Fithian and Lei (2020) first condition on a sufficient statistic Sj for
the submodel described by Hj . By the sufficiency of Sj , the conditional expectation EHj

rDPjpRq | Sjs
can be calculated for any rejection rule R; as a result, a rejection rule with a tuning parameter can
also be calibrated to control the conditional expectation at α{m.

In particular, the dBH procedure thresholds the BH-adjusted p-value for Hj at an adaptive rejec-
tion cutoff ĉdBH

j . When ĉdBH
j ě α, dBH is more liberal than BH (at least concerning Hj), and when

ĉdBH
j ď α it is more conservative.

3 Our method: calibrated knockoffs

3.1 Conditional calibration for knockoffs

Our method is built upon the knockoff procedure. We reject any hypothesis that is rejected by
knockoff or by a fallback test with a data-adaptive threshold. The FDR is guaranteed to be controlled
via conditional calibration.

Formally, our calibrated knockoff procedure (cKnockoff) rejects Hj if j is in the index set

RcKn “ RKn Y tj : Tjpyq ě ĉjpyqu, (13)

where Tjpyq is some test statistic and ĉjpyq is a data-adaptive threshold which is calibrated to achieve
FDR control. For notational convenience, we will suppress the dependence on y when no confusion
can arise. We describe Tj and ĉj in detail next.

In principle, the test statistic Tj can be chosen arbitrarily by the analyst, with larger values
representing stronger evidence against the null. To avoid trivialities, we assume that Tj is non-negative
and continuously distributed. Our implementation of cKnockoff uses the test statistic

Tj “
ˇ

ˇ

ˇ
XT
j

´

y ´ ŷpjq
¯ˇ

ˇ

ˇ
, (14)

where ŷpjq is a vector of fitted values from lasso regression of y on X´j with regularization parameter

λpjq. Note that if we set λpjq “ 0, then y´ŷpjq is the vector of OLS residuals under Hj and, holding Sj
fixed, Tj is an increasing function of the OLS t-statistic’s absolute value. In this sense, (14) generalizes
the usual two-tailed t-statistic. Our reason for using λpjq ą 0 is that, in the sparse setting, the lasso
fitted values will likely yield a more accurate adjustment for the effects of the other predictor variables.
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As we will see in Section 4.2, it is computationally convenient for ŷpjq to be a function of Sj only.
For this reason, we take λpjq “ 2σ̂pjq, using the unbiased estimate of σ2 under Hj :

pσ̂pjqq2 “
}y ´Π´jy}

2

n´m` 1
, where Π´j “X´jpX

T
´jX´jq

´1XT
´j .

The rejection threshold ĉj is calibrated to ensure that the conditional expectation of DPj of our
method is below certain budget. Let ĉj be the minimal value cj P r0,8s satisfying

EHj

«

1
 

j P RKn
(

_ 1 tTj ě cju

|RKn Y tju|

ˇ

ˇ

ˇ
Sj

ff

ď EHj
rbj | Sjs, (15)

where bj , which we call adaptive budget of DPj , is a function of y that satisfies two conditions:

piq DPjpRKnq ď bj almost surely, and piiq
ÿ

jPH0

E r bj s ď α. (16)

We could trivially satisfy both conditions by choosing bj “ DPjpRKnq. But this would not yield any
improvement over knockoff since we would be forced to take ĉj “ 8 for all j. For any other choice of
budgets satisfying (i), cj “ 8 always satisfies (15), so the calibration problem is always solvable. We
defer the construction of the budgets to Section 3.2, giving the explicit formula in (19).

Recall Sj “ pXT
´jy, }y}

2
q is a complete sufficient statistic for the submodel described by Hj .

Hence the conditional distribution of y given Sj is fully known under Hj (see Appendix E.2) and the
conditional expectations in (15) are computable for any given cj .

Our method controls FDR in finite samples, as we see next.

Theorem 3.1. Assume the budgets b1, . . . , bm satisfy the two conditions in (16), and ĉj are chosen
to satisfy (15). Then FDRpRcKnq ď α.

Proof. By construction, RcKn Ě RKn, so

EHj
rDPjpRcKnq | Sjs “ EHj

«

1
 

j P RKn
(

_ 1 tTj ě ĉju

|RcKn Y tju|

ˇ

ˇ

ˇ
Sj

ff

ď EHj

«

1
 

j P RKn
(

_ 1 tTj ě ĉju

|RKn Y tju|

ˇ

ˇ

ˇ
Sj

ff

ď EHj
rbj | Sjs.

Marginalizing over Sj and applying condition (ii), we have

FDRpRcKnq “
ÿ

jPH0

ErDPjpRcKnq s ď
ÿ

jPH0

E r bj s ď α.

To implement cKnockoff efficiently, we will not calculate ĉj directly. Subtracting the right-hand
side of (15) yields an equivalent inequality for the excess FDR contribution of variable j, given by

Ejpc ;Sjq :“ EHj

«

1
 

j P RKn
(

_ 1 tTj ě cu

|RKn Y tju|
´ bj

ˇ

ˇ

ˇ
Sj

ff

ď 0. (17)

Because Ej is a continuous, non-increasing function of c, we have Tj ě ĉj if and only if EjpTj ;Sjq ď 0.
We thus obtain an equivalent, but more computationally useful, definition of calibrated knockoffs as

RcKn “ RKn Y tj : EjpTj ;Sjq ď 0u.

9



The cKnockoff procedure is adaptive to the choice of knockoff matrix X̃ and the choice of feature
statistics, and uniformly improves on any implementation of RKn we might choose. As we will see in
Section 3.2, the power is strictly larger than the power of knockoffs when bj are defined as in (19).

Remark 3.1. The same calibration scheme can be applied to any baseline FDR-controlling method
R as long as we can find budgets b1, . . . , bm satisfying (16). While we have assumed DPjpRq ď bj, it
is enough to have EHj

rDPjpRq ´ bj | Sjs ď 0 almost surely.

3.2 Finding budgets

We now review the proof that knockoff methods control FDR, with a view toward finding slack in the
proof that we can use to devise good budgets bj satisfying the two conditions in (16).

Recall that in knockoffs, we calculate the feature statistic Wj and reject Hj if Wj is above a
certain cutoff. Define the candidate set for rejection cutoff w as Cpwq “ tj : Wj ě wu, and let
Apwq “ tj : Wj ď ´wu, so that

zFDPpwq “
1` |Apwq|
|Cpwq|

.

Let w1 ă ¨ ¨ ¨ ă wm denote the order statistics of |W1|, . . . , |Wm|. It suffices to restrict our attention

to these order statistics because they are the only values of w where Cpwq or zFDPpwq change. Then
we can equivalently write

pw “ wτ , where τ “ min
!

t P t1, . . . ,m` 1u : zFDPpwtq ď α
)

,

where we set wm`1 “ 8 and zFDPp8q “ 0 to cover the case where no rejections are made. In these
terms, we can consider knockoffs as a stepwise algorithm with discrete “time” index t, which calculates
zFDPpwtq for each t “ 1, 2, . . ., and stops and rejects Cpwtq the first time zFDPpwtq ď α.

The FDR control proof for the knockoff filter is based on an optional stopping argument. Define

Mt :“
|Cpwtq XH0|

1` |Apwtq XH0|
ě
|Cpwtq XH0|

1` |Apwtq|
“

FDPpCpwtqq
zFDPpwtq

,

where we take the last expression to be zero by convention if Cpwtq “ H. Barber and Candès (2015)
show that Mt is a super-martingale with respect to the discrete-time filtration given by

Ft “ σ
´

|W |, pWj : j P Hc
0 or |Wj | ă wtq , |Cpwtq|

¯

, for t “ 1, . . . ,m` 1,

and they also show that ErM1s ď 1. We include proofs of both facts in Appendix A.1 for completeness.
Because τ is also a stopping time with respect to the same filtration, we have the chain of inequalities

FDRpRKnq “ ErFDPpCpwτ qqs ď αE

«

FDPpCpwτ qq
zFDPpwτ q

ff

ď αE rMτ s ď αE rM1s ď α. (18)

Because our goal is to find large budgets whose sum is controlled at α in expectation, the intermediate
expressions in (18) are natural places to look. Although we cannot calculate αMτ or αM1 without
knowing H0, we can decompose the next largest expression to obtain the budgets

b0j “ α
DPjpCpwτ qq
zFDPpwτ q

“ α
1tj P Cpwτ qu
1` |Apwτ q|

, since
ÿ

jPH0

b0j “ α
FDPpCpwτ qq
zFDPpwτ q

.

These budgets satisfy (i) because zFDPpwτ q ď α almost surely, and (ii) by the inequalities in (18).
The budgets b0j do yield a small improvement over baseline knockoffs by taking up the slack in the

first inequality of (18), but they do not resolve the main failure modes we discussed in Section 2.2,
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where knockoffs usually makes no rejections. In that case, most of the slack is in the second-to-last
inequality, since ErMτ s « 0 while ErM1s may be close to 1.

To understand how we might find better budgets, consider the method’s behavior, checking if
zFDPpwtq ď α for each t “ 1, 2, . . ., in realizations where no rejections are made. Then, as soon as
|Cpwtq| falls below 1{α, it becomes a foregone conclusion that τ “ m` 1 and Mτ “ 0, even while the
current value of Mt may still be fairly large. In that case, we should stop the algorithm early and
harvest as much of Mt as we can. That is, we can obtain larger budgets by replacing τ with another
stopping time τ1 that halts early in hopeless cases:

bj “ α
DPjpCpwτ1qq
zFDPpwτ1q

“ α
1tj P Cpwτ1qu
1` |Apwτ1q|

, for τ1 “ τ ^min tt : |Cpwtq| ă 1{αu . (19)

We have bj ě b0j ě DPjpRKnq almost surely because τ1 “ τ unless RKn “ H. Further, we have

ÿ

jPH0

bj “
FDPpCpwτ1qq
zFDPpwτ1q

ď αMτ1 ,

whose expectation is below α by optional stopping. As a result, the budgets defined in (19) satisfy
both conditions in (16).

To illustrate the improvement of bj over b0j , consider the problem setting in Figure 1. Averaging

over 100 simulations with α “ 0.05, we estimate
ř

jPH0
Erbjs « 0.99α, while

ř

jPH0
Erb0j s « 0. While

the increase is not always so dramatic, bj always yields a uniform power improvement, as we see next.

Theorem 3.2. Assume Hc
0 ‰ H. Let the budget be defined as in (19) and the nominal FDR level

α P p0, 0.5s. Then
TPRpRcKnq ą TPRpRKnq.

In short, the theorem follows from the fact that our fallback test always makes each hypothesis
strictly more likely to be rejected than the knockoffs, due to the construction of bj in (19). We defer the
detailed proof to Appendix E.3. It’s worth noticing that although theoretically, the null hypotheses
also get more likely to be rejected, the realized FDR is almost the same as knockoffs in our simulation
studies in Section 5, even when the power gain is significant. This is because most hypotheses rejected
by the fallback test are non-null.

3.3 Refined cKnockoff procedure

The proof of Theorem 3.1 indicates that RKn in the denominator in (15) can be replaced by any
R˚ satisfying RKn Ď R˚ Ď RcKn to obtain an even more powerful procedure. In particular, we
could use R˚ “ RcKn and apply the calibration scheme recursively; this would be an example of
recursive refinement as proposed in Fithian and Lei (2020). However, the computational cost of
recursive refinement may be prohibitive since RcKn, which is already a computationally intensive
method, becomes part of the integrand.

A computationally feasible alternative is for R˚ to augment RKn only with a set of very promising
variables whose inclusion in RcKn can be quickly verified. Informally, we use

R˚ “ RKn Y tj : EjpTj ;Sjq ď 0, and pj is tinyu Ď RcKn,

where pj is the p-value from the standard two-sided t-test, a computationally cheap substitute for Tj .
We defer our exact formulation of R˚ and additional computational tricks to Appendix D. Using R˚
leads to the refined calibrated knockoff (cKnockoff˚) procedure rejecting

RcKn˚ “ RKn Y
 

j : Tj ě ĉ˚j
(

“ RKn Y
 

j : E˚j pTj ;Sjq ď 0
(

, (20)

11



where

E˚j pc ;Sjq “ EHj

«

1
 

j P RKn
(

_ 1 tTj ě cu

|R˚ Y tju|
´ bj

ˇ

ˇ

ˇ
Sj

ff

ď Ejpc ;Sjq, (21)

and ĉ˚j “ min
 

c : E˚j pc ;Sjq ď 0
(

ď ĉj .
cKnockoff˚ controls FDR and is uniformly more powerful than cKnockoff, as we show next. How-

ever, as a price of handling its additional computational complexity, we will lose the theoretical upper
bound of the numerical error in our implementation of cKnockoff˚, although simulation studies show
the calculation is precise and reliable.

Theorem 3.3. Assume RKn Ď R˚ Ď RcKn, and the budgets b1, . . . , bm satisfy the two conditions in
(16). Then RcKn˚ Ě RcKn, and RcKn˚ controls FDR at level α.

Proof. Because E˚j pc ;Sjq ď Ejpc ;Sjq, we have

RcKn˚ Ě RcKn Ě R˚.

Recall ĉ˚j “ min
 

c : E˚j pc ;Sjq ď 0
(

, so that E˚j ď 0 if and only if Tj ě ĉ˚j . Then we have

EHj rDPjpRcKn˚q | Sjs ď EHj

»

–

1
!

j P RcKn˚
)

|R˚ Y tju|

ˇ

ˇ

ˇ
Sj

fi

fl

“ EHj

«

1
 

j P RKn
(

_ 1
 

Tj ě ĉ˚j
(

|R˚ Y tju|

ˇ

ˇ

ˇ
Sj

ff

ď EHj rbj | Sjs,

so that FDRpRcKn˚q ď
ř

jPH0
Erbjs ď α.

3.4 Robustness to filtering

A nice property of our methods is that they are robust to filtering. Namely, we can filter the fallback
test rejections arbitrarily without damaging the FDR control, as stated formally for cKnockoff in
Theorem 3.4. This is nontrivial because, in general, the FDR can increase after filtering the rejection
set; see e.g. Katsevich et al. (2021).

Theorem 3.4 (Sandwich). For any rejection rule R with RKn Ď R Ď RcKn almost surely, we have
FDRpRq ď α.

Proof. Recall
RcKn “ RKn Y tj : Tj ě ĉju.

Hence RKn Ď R Ď RcKn implies

EHj rDPjpRq | Sjs ď EHj

«

1
 

j P RKn
(

_ 1 tTj ě ĉju

|RKn Y tju|

ˇ

ˇ

ˇ
Sj

ff

ď EHj rbj | Sjs,

so that FDRpRq ď
ř

jPH0
Erbjs ď α.

The Sandwich property plays a central role in implementing our methods in a fast and reliable
way. One important and direct example is filtering. Formally, we reject

R “ RKn Y tj P S : EjpTj ;Sjq ď 0u Ď RcKn

12



for a subset S of hypotheses for which a simple calculation suggests a high likelihood of rejection by
the fallback test. For example, we need not invest computational resources in calculating Ej if pj « 1.
We defer discussion of our particular choice of S to Appendix C, where we also prove a generalized
version of Theorem 3.4 that also applies to cKnockoff˚.

4 Implementation

4.1 Integrating excess FDR

This section discusses implementation details for the core calculation for cKnockoff: evaluating the
conditional expectation EjpTj ;Sjq for each variable.

LetQjp¨ | Sjq denote the conditional distribution of the response vector y given Sjpyq “ pX
T
´jy, }y}

2
2q.

The support of Qj is the preimage of Sjpyq, a sphere of dimension n´m embedded in Rn, on which
y is conditionally uniform under Hj ; see Appendix B. We can write the conditional expectation as

Ejpc ;Sjq “ EHj
rfjpy; cq | Sjs “

ż

fjpz; cq dQjpz | Sjq, (22)

where the integrand is given by

fjpz; cq “
1
 

j P RKnpzq
(

_ 1 tTjpzq ě cu

|RKnpzq Y tju|
´ bjpzq, (23)

with bj as defined in (19). Note that the analogous calculation for cKnockoff˚, where we calculate
E˚j pTj ;Sjq instead, is exactly the same except with R˚ replacing RKn in the denominator of (23).

Throughout this section we are only concerned with calculating EjpTjpyq;Sjpyqq once the response
y has already been observed. As such, we regard Sjpyq, c “ Tjpyq, and Qjp¨ | Sjpyqq as fixed inputs
to the integral Ejpc ;Sjpyqq, and suppress their dependence on y. To avoid confusion, we use z to
denote a generic response vector drawn from the conditional null distribution Qj . We will use Monte
Carlo methods to evaluate the integral (22), using an importance sampling scheme we describe next.

4.2 Conservative importance sampling

While it is easy to sample z „ Qj , standard Monte Carlo sampling is highly inefficient since we
commonly have fjpzq “ 0 over most of SupppQjq. Instead, it would be more efficient to restrict our
sampling to the region where the integrand is nonzero:

Ωjpyq “ tz P SupppQjq : fjpz; cq ‰ 0u. (24)

Again, we will suppress the dependence on y when no confusion can arise. The function fjpz; cq has
two terms. The budget bjpzq is zero unless j P Cpwτ1q, and the other term is zero unless Tjpzq ě c
or j P RKnpzq Ď Cpwτ1q. Recall the definition of set Cpwτ1q as a function of z in Section 3.2. As a

result, we have Ωj “ Ω
p1q
j Y Ω

p2q
j with

Ω
p1q
j “ tz P SupppQjq : Tjpzq ě cu, and Ω

p2q
j “ tz P SupppQjq : j P Cpwτ1qu. (25)

For our fallback test statistic defined in (14), Ω
p1q
j amounts to a simple constraint on XT

jz:

Tjpzq ě c ðñ

ˇ

ˇ

ˇ
XT
j

´

z ´ ŷpjqpSjq
¯
ˇ

ˇ

ˇ
ě c ðñ XT

jz R
´

a
p1q
j , a

p2q
j

¯

. (26)

where the bounds of the interval depend only on y. Unfortunately, however, Ω
p2q
j admits no such

simple description since it is defined implicitly in terms of the feature statistics. Instead, we will use a
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conservative importance sampling scheme that approximates Ω
p2q
j by an estimator rΩ

p2q
j and resulting

in the approximate integral

rEjpc ;Sjq “

ż

rΩj

fjpz; cq dQjpz | Sjq, for rΩj “ Ω
p1q
j Y rΩ

p2q
j . (27)

Proposition 4.1 shows that this approximation does not inflate the FDR, since Ω
p1q
j covers the entire

region where fjpz; cq ą 0.

Proposition 4.1 (Conservative calibration). Assume that, for each j “ 1, . . . ,m, we calculate rEj

using Ω
p1q
j and a (possibly randomized) estimate rΩ

p2q
j . Define the approximate rejection set

rR “ RKn Y

!

j : rEjpTjpyq;Sjpyqq ď 0
)

.

Then FDRp rRq ď α, and RKn Ď rR Ď RcKn.

Proof. Fix some j and let c “ Tjpyq. If Tjpzq ă c, then we have fjpz; cq “ DPjpRKnpzqq ´ bjpzq ď 0
almost surely. As a result,

tz P SupppQjq : fjpz; cq ą 0u Ď Ω
p1q
j Ď rΩj ,

so rEj is a conservative approximation for Ej :

Ejpc ;Sjq ´ rEjpc ;Sjq “

ż

SupppQjqzrΩj

fjpz; cq dQjpz | Sjq ď 0.

Since j was arbitrary, this establishes that RKn Ď rR Ď RcKn, hence FDRp rRq ď α by Theorem 3.4.

In practice, we approximate Ω
p2q
j as another constraint on XT

jz using local linear regression:

rΩ
p2q
j “ tz P SupppQjq : XT

jz P A
p2q
j u

for some A
p2q
j specified in Appendix B. Our approximation yields the set

rΩj “ tz P SupppQjq : XT
jz P Aju, for Aj “ A

p2q
j Y pa

p1q
j , a

p2q
j q

c.

As long as Aj is simple enough to quickly evaluate whether XT
jz P Aj , we can use rejection sampling

to rapidly generate a stream of independent samples z1, z2, . . . from Qj conditional on XT
jzk P Aj .

After evaluating (23) on each zk, we obtain an independent stream of values fjpz1; cq, fjpz2; cq, . . .

from the conditional distribution of fjpzk; cq given XT
jzk P Aj . As a result, Erfjpzk; cqs “ rEj{QjprΩjq.

We then average them to obtain a Monte Carlo estimate of Erfjpzk; cqs to decide if rEj ď 0.
The naive Monte-Carlo estimation requires a sufficiently large sample size to achieve desired ac-

curacy. In the case where most fjpzk; cqs are positive with large magnitude, one should be able to

declare rEj ą 0 with high confidence even with a handful of samples. To be more prudent in sampling,

we formulate the problem of deciding if rEj ď 0 into a one-sided hypothesis test that Erfjpzk; cqs ď 0
and apply a sequential testing method proposed by Waudby-Smith and Ramdas (2020). We observe

empirically that it reduces the Monte-Carlo samples substantially for variables with a sizable rEj .

Appendix B gives further details on the local linear regression algorithm to compute A
p2q
j , the

Monte Carlo sampler for zk, the sequential testing method, and a theoretical analysis of the FDR
accounting for the Monte-Carlo uncertainty.
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5 Numerical Studies

In this section we provide selected experiments that compare cKnockoff with competing procedures.
Extensions of these simulations under other settings can be found in Appendix F.

5.1 FDR and TPR

We show simulations on the following design matrices X P Rnˆm with m “ 1000 and n “ 3000.

1. IID normal: Xij
i.i.d.
„ N p0, 1q.

2. MCC: the setting in Example 1.1 with G “ 1000 and K “ 1.1

3. MCC-Block: the setting in Example 1.1 with G “ 5 and K “ 200.

The response vector is generated by

y “Xβ ` ε, ε „ N p0, I1000q,

where β has
βj “ β˚, @j P Hc

0.

The signal strength β˚ is calibrated such that the BH procedure RBH with nominal FDR level α “ 0.2
will have power TPR “ 0.5 under the particular design matrix setting. And the alternative hypotheses
set Hc

0 is a random subset of rms that has cardinality 10, uniformly distributed among all such subsets.
The following procedures will be compared in our experiments:

1. BH: The Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995). It has no provable
FDR control for all these design matrix settings we consider.

2. dBH: The dependence-adjusted Benjamini-Hochberg procedure introduced by Fithian and Lei
(2020). We set γ “ 0.9 in the method and do no recursive refinement. It performs similarly to
BH but has provable FDR control in this context.

3. knockoff : The fixed-X Knockoff method (Barber and Candès, 2015).

4. BonBH: The adaptive Bonferroni-BH method (Sarkar and Tang, 2021).

5. cKnockoff : Our method as defined in Section 3.1.

6. cKnockoff*: Our refined method using R˚ as defined in Section 3.3.

For knockoff, cKnockoff, and cKnockoff*, we construct the knockoff matrix via the default semidefinite
programming procedure and employ the LCD-T feature statistics (8).

For each trial, we generateX (a realization if it is random), β, and y, and then apply all procedures
above. We estimate the FDR and TPR of the results from each procedure by averaging over 400
independent trials. The results are shown in Figure 3.

We observe that cKnockoff controls FDR and dominates knockoff as indicated by our theory. In
particular, when knockoff suffers from the threshold phenomenon (small α) or the whiteout phe-
nomenon (MCC problem), cKnockoff and cKnockoff˚ are able to make as many as or even more
correct rejections than BH/dBH in average; when knockoff performs well, cKnockoff/cKnockoff˚ is
even better.

The readers might be puzzled by the non-monotone power curve for cKnockoff in the MCC case.
This is mainly driven by the shrinking advantage of cKnockoff over knockoffs as α increases. The

1Formally, Example 1.1 would give n “ 3002. See Appendix E.1 for how we can set n “ 3000. Similar processing
applies to the MCC-Block case.
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Figure 3: Estimated FDR and TPR under different design matrix settings. cKnockoff/cKnockoff˚

outperform the other procedures in general.

power gain of cKnockoff over knockoffs is mostly given by the realizations for which τ1 ă τ (i.e.,
RKn “ H) and hence bj is substantially larger than b0j . This event happens less likely with a larger
α. Furthermore, when the signal-to-noise ratio is large to the extent that the ordering of knockoff
statistics is relatively stable, only the top Op1{αq variables could gain an extra budget, thus limiting
the power boost. This heuristic analysis also suggests that cKnockoff/cKnockoff˚ only alleviates the
whiteout phenomenon to a limited extent because knockoffs, the baseline procedure that cKnockoff
wraps around, suffers even when m1 " 1{α. See Appendix F.1.2 for a numerical study. We briefly
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discuss alternative strategies to handle whiteout in Section 7.
We do not include multiple knockoffs in the comparison here since it requires a larger aspect

ratio than 3. We show the comparison with multiple knockoffs under a different problem setting in
Appendix F.1.3. To summarize the results, when m1 ă 1{α, multiple knockoffs relieves the threshold
phenomenon but underperforms cKnockoff/cKnockoff˚; when m1 " 1{α, multiple knockoffs is even
less powerful than the vanilla knockoffs. Therefore, multiple knockoffs is not as competent as our
method in spite of the stronger condition on the sample size.

5.2 Distributions of FDP and TPP

Figure 4 and 5 show the empirical cumulative distribution functions (ECDF) of the FDP and TPP,
respectively, of selected procedures, under the same setting as the experiments in Section 5.1.
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Figure 4: Empirical CDF of FDP from different procedures. Different columns represent different
nominal FDR level α, whose value is also indicated by a vertical dashed line.

For FDP, we see that knockoffs, cKnockoff, and cKnockoff˚ all work well, in the sense that the
FDP is smaller than α with high probability in most cases. By contrast, BH and dBH both have
stochastically larger FDP in all these cases even when their power is lower. In particular, in the MCC
problem, the FDP distribution of BH/dBH puts large mass at both 0 and 1, rendering the rejection
sets less reliable.

For TPP, all procedures perform similarly and the TPP is not concentrated at the TPR. Moreover,
when knockoffs make some rejections, cKnockoff/cKnockoff˚ makes a bit more; and when knockoffs
fails to reject anything (a flat TPP CDF towards TPP “ 0), the CDF of cKnockoff/cKnockoff˚ keeps
its trend. This indicates that our methods fully unleash the potential power of the knockoffs when it
suffers.
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Figure 5: Empirical CDF of TPP from different procedures. Different columns represent different
nominal FDR level α.

5.3 Scalability

The computation complexity of cKnockoff/cKnockoff˚ is highly instance-specific and the worst-case
complexity is uninformative. Nevertheless, we can provide a rough analysis of the instance-specific
complexity. For every variable that is being examined after the filtering step described in Appendix D,
the amount of computation is roughly the same as running a bounded number of rounds of knockoffs
with a given knockoff matrix; see Appendix B-D for detail. As a result, if we let A denote the number
of variables after filtering, CKn,f denote the complexity of knockoffs with a given knockoff matrix, and
CKn,m denote the complexity of generating a knockoff matrix, the complexity of our methods is

OpA ¨ CKn,fq ` CKn,m,

because the knockoff matrix is only computed once. By contrast, the complexity of knockoffs is
OpCKn,fq ` CKn,m. Note that when A “ Op1q, our method has the same complexity as knockoffs up
to a multiplicative constant. In many cases, A is small because our method would only examine a
handful of promising variables not rejected by knockoffs. Furthermore, we can force A to be small by
exploiting a more stringent filtering step.

Figure 6 shows the averaged running time of knockoffs and cKnockoff on a single-core 3.6GHz
CPU. In these experiments, we set the signal strength, construct the knockoff matrix, and produce
the feature statistics in the same way as in Section 5.1. We set α “ 0.05 and n “ 3m where m varies
from 100 to 1000. The left panel of the figure has a fixed number of true alternatives “ 10 as m
increases; while the right panel has a fixed proportion of true alternatives π1 :“ m1{m “ 0.1. As
suggested by the heuristic complexity analysis above, the computation time of cKnockoff/cKnockoff˚

is a small multiple of that of knockoffs in all settings, even with a single core. When multiple cores
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Figure 6: Averaged running time of knockoff, cKnockoff, and cKnockoff˚ as the problem size increases.
The left panel has a fixed number of true alternatives “ 10 as m increases; the right panel has a fixed
proportion of true alternatives “ 0.1. All three methods show a roughly Opm3q time complexity in
the figure.

are available, we can easily parallelize the computation to decide Ej ď 0 for different variables or the
computation to calculate each Ej ; see our R package for detail.

Figure 7 demonstrates the scalability in the sample size in an experiment with α “ 0.05, m “

100, and n varies from 300 to 2000. The computation time of our methods is almost flat because

cKnockoff/cKnockoff˚ only depends on the sufficient statistic pXTy, X̃
T
y, }y}q, which is of dimension

2m`1. Unlike the implementation of knockoffs in R, which runs LASSO on the full data pX, X̃,yq, we
implement it to be only based on the lower-dimensional sufficient statistic. Thus, only the computation

time of pXTy, X̃
T
yq grows linearly in n while the majority of computation is independent of n.

6 HIV drug resistance data

In this section we apply cKnockoff and cKnockoff˚ to detect the mutations in the Human Immun-
odeficiency Virus (HIV) associated with drug resistance (Rhee et al., 2006), following the analysis in
Barber and Candès (2015) and Fithian and Lei (2020).

The dataset include experimental results on 16 different drugs, each falling into one of three
different categories: protease inhibitors (PIs), nucleoside reverse transcriptase inhibitors (NRTIs),
and nonnucleoside reverse transcriptase inhibitors (NNRTIs). In each experiment, we have access to
a set of genetic mutations and a measure of resistance to each drug for a sample of HIV patients.
Following Barber and Candès (2015), we construct a design matrix, without an intercept term, by
one-hot encoding the mutation so that Xij “ 1 iff the jth mutation is present in the ith sample
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Figure 7: Averaged running time of knockoff, cKnockoff and cKnockoff˚ as the number of data points
n increases. cKnockoff and cKnockoff˚ scale constantly in n.

and preprocess the data by discarding mutations that occur fewer than three times and removing
duplicated columns. Since the ground truth is not available, we evaluate replicability in the same
way as Barber and Candès (2015) by comparing the selected mutations to those identified in an
independent treatment-selected mutation (TSM) panel of Rhee et al. (2006); see Section 4 of Barber
and Candès (2015) for further detail. For each dataset, we will compare BH, knockoffs, cKnockoff,
and cKnockoff˚ described in Section 5.1.

Figure 8 presents the results for α “ 0.05. Not surprisingly, knockoffs suffers from the threshold
phenomenon and makes no rejections for nearly all drugs. Instead, BH makes many rejections but the
fraction of rejections that are not replicated in the TSM panel is high for certain drugs. By contrast,
cKnockoff and cKnockoff˚ make a decent number of rejections with a small fraction of non-replicable
ones for most drugs.

Figure 9 presents the results for α “ 0.2. 2 In this case, knockoffs is able to make rejections
in half of the problems but is dominated by cKnockoff and cKnockoff˚. The other comparisons are
qualitatively similar to Figure 8.

7 Discussion

7.1 Summary

We have presented a new approach, the calibrated knockoff procedure, for simultaneously testing if
the explanatory variables are relevant to the outcome in the Gaussian linear model y “Xβ` ε. Our
cKnockoff procedure controls FDR and is strictly more powerful than the fixed-X knockoff procedure.
And the power gain is especially large when the unknown β vector is very sparse, in particular
when the number of nonzeros in β is not much larger than 1{α. While our new approach is more
computationally intensive in principle, we introduce computational tricks that accelerates the method
substantially without sacrificing FDR control in theory. Our implementation of cKnockoff turns out

2Readers may have noticed that the rejections made by knockoffs shown here are not exactly the same as the ones
shown in Fithian and Lei (2020) or Barber and Candès (2015). This is because that knockoff is implemented as a
random method in their R package. In particular, they randomly swap Xj and X̃j to protect the FDR control from
the bias that Lasso, implemented in the glmnet R package, prefers to select a feature with a smaller index. To avoid
the interference of such random noise, the results we show are averaged over 20 times applying each procedure.
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Figure 8: Results on the HIV drug resistance data with α “ 0.05. The darker segments represent the
number of discoveries that were replicated in the TSM panel, while the lighter segments represent the
number that were not. Results are shown for the BH, fixed-X knockoffs, cKnockoff and cKnockoff˚.

to be quite efficient in our numerical experiments in the sense that the computation time is only a
small multiple of that of knockoffs, and it can be further accelerated by parallelization.

7.2 Generalization to model-X knockoffs

Candès et al. (2018) introduced a different version of knockoffs called model-X knockoffs under the
model-X setting where px1, y1q, . . . , pxn, ynq P Rm`1 are i.i.d. with a known distribution of xi P Rm
and no assumption on the conditional distribution of yi given xi (Candès et al., 2018; Katsevich and
Ramdas, 2020; Ren and Candès, 2020; Zhang and Janson, 2020; Li et al., 2021). For j “ 1, . . . ,m, we
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Figure 9: Results on the HIV drug resistance data with α “ 0.2. The darker segments represent the
number of discoveries that were replicated in the TSM panel, while the lighter segments represent the
number that were not. Results are shown for the BH, fixed-X knockoffs, cKnockoff and cKnockoff˚.

test the null hypothesis Hj that Xj and y are conditionally independent given X´j .
Under the model-X setting, Sj “ pX´j ,yq is a sufficient statistic for the null model under Hj .

Following the same argument as in Section 3, we can calibrate the model-X knockoffs with any fallback
test statistic TjpX,yq by rejecting

RcKn “ RKn Y tj : Tj ě ĉju “ RKn Y tj : EjpTj ;Sjq ď 0u,

where Ej and ĉj are defined analogous to the fixed-X knockoffs.
Although the generalization from fixed-X to model-X knockoffs is straightforward, efficient im-

plementation is nontrivial. For example, it is unclear which fallback test statistic would be powerful.
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While we can continue to use the same one as in calibrated fixed-X knockoffs, there are other poten-
tially powerful alternatives such as the p-value from the conditional randomization test (Candès et al.,
2018). Moreover, many computational tricks we developed for calibrated fixed-X knockoffs exploit the
rotational invariance of Gaussian errors, which is no longer available under a general model-X setting.
We leave these problems for future work.

7.3 Remedies for whiteout

As discussed earlier, cKnockoff only alleviates the whiteout issue (Li and Fithian, 2021) to a limited
extent because the signs of knockoff feature statistics are too noisy to be useful for the Selective-
Seqstep filter even though the ordering of variables is satisfactory. Meanwhile, BH and dBH are
not ideal either because they have bimodal FDP distributions with large masses at around 0 and
1. On the other hand, Example 1.1 indicates that the high correlation could help, instead of hurt,
inference largely in the presence of sparsity. It would be interesting to investigate the possibility to
take advantage of the sparsity which can help inform the ordering of variables without relying making
the sparsity assumption explicitly and resorting to asymptotics.

Reproducibility

Calibrated knockoffs are implemented in an R package available online at the Github repository
https://github.com/yixiangLuo/cknockoff. And the R code to reproduce all simulations and
figures in this paper can be found at https://github.com/yixiangLuo/cknockoff expr.
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A Knockoff details

A.1 Deferred proofs

Here, for the sake of completeness, we prove several results that appeared first in Barber and Candès
(2015) and other works.

24



Theorem A.1. Suppose the feature statistics W “ pW1,W2, . . . ,Wmq satisfy the sufficiency condition
and the anti-symmetry condition. Then

sgnpWjq | |Wj |, W´j
Hj
„ Unift´1,`1u

for any j P H0.

Proof. It suffices to show for a given arbitrary j P rms,

W
d
“ pW1, . . . ,Wj´1,´Wj ,Wj`1, . . . ,Wmq,

where we denote the right-hand-side vector as W´ for simplicity.
The sufficiency condition allow us to write

W “ gpXT
`X`,X

T
`yq

for some function g. And the anti-symmetry condition gives

W´
“ gppXswap

` qTXswap
` , pXswap

` qTyq,

where Xswap is modified from matrix X` by swapping Xj and X̃j , i.e.

pXswap
` qj “ pX`qj`m, pXswap

` qj`m “ pX`qj , pXswap
` qi “ pX`qi for i ‰ j, j `m.

Notice
pXswap

` qTXswap
` “XT

`X`, pXswap
` qTXβ “XT

`Xβ

due to XT
jXi “ X̃

T

jXi for all i ‰ j and βj “ 0. We further have

pXswap
` qTy

d
“ N ppXswap

` qTXβ, pXswap
` qTXswap

` q
d
“ N pXT

`Xβ,X
T
`X`q

d
“ XT

`y.

Therefore
W´

“ gppXswap
` qTXswap

` , pXswap
` qTyq

d
“ gpXT

`X`,X
T
`yq “W .

Theorem A.2. Suppose the feature statistics satisfy the sufficiency condition and the anti-symmetry
condition. Then

Mt “
|Cpwtq XH0|

1` |Apwtq XH0|

is a supermartingale with respect to the filtration

Ft “ σ
´

|W |, pWj : j P Hc
0 or |Wj | ă wtq , |Cpwtq|

¯

.

Moreover, we have EM1 ď 1.

Proof. Without loss of generality, assume |W1| ă ¨ ¨ ¨ ă |Wm| for easier notations. So wt “ Wt and
|Wj | ă wt is equivalent to j ă t. Let V `t :“ |Cpwtq XH0| and V ´t :“ |Apwtq XH0| for short. Since
the non-null feature statistics are known given Ft, it’s easy to see V `t and V ´t are measurable with
respect to Ft. Hence Mt P Ft.

It remains to show ErMt`1 | Fts ďMt. By construction, Mt`1 “Mt if t P Hc
0. Otherwise

Mt`1 “
V `t ´ 1 tWt ą 0u

1` V ´t ´ p1´ 1 tWt ą 0uq
“

V `t ´ 1 tWt ą 0u

pV ´t ` 1 tWt ą 0uq _ 1
.
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Theorem A.1 implies that

sgnpWjq | |W |, pWi : i P Hc
0 or i ă tq

i.i.d.
„ Unift´1,`1u, for j P H0 and j ě t.

Hence

PpWt ą 0 | Ftq “
V `t

V `t ` V ´t
.

Therefore

ErMt`1 | Fts “
1

V `t ` V ´t

„

V `t
V `t ´ 1

V ´t ` 1
` V ´t

V `t
V ´t _ 1



“

#

V `t
1`V ´t

“Mt, V ´t ą 0

V `t ´ 1 “Mt ´ 1, V ´t “ 0
.

So Mt is s supermartingale.
To show EM1 ď 1, note V `1 | |W | „ Binomialpm0, 1{2q. We have

E rM1 | |W |s “ E
„

V `1
1`m0 ´ V

`
1

| |W |



“

m0
ÿ

i“1

PpV `1 “ iq ¨
i

1`m0 ´ i

“

m0
ÿ

i“1

1

2m0

m0!

i!pm0 ´ iq!
¨

i

1`m0 ´ i
“

m0
ÿ

i“1

1

2m0

m0!

pi´ 1q!pm0 ´ i` 1q!

“

m0
ÿ

i“1

PpV `1 “ i´ 1q ď 1.

Then EM1 “ E rE rM1 | |W |ss ď 1.

A.2 A faster version of the LSM statistic

The LSM statistic defined in (5) is computationally burdensome because it requires calculating the
entire lasso path. Even if the great majority of variables are null, they will eventually enter and leave
the model in a chaotic process once λ becomes small enough. If we stop too early, most variables will
never enter, so their feature statistics will be zero and there will be no chance to discover them, but
if we stop too late, we will consume most of our computational resources fitting null variables at the
end of the path. In practice, the path is also calculated only for a fine grid of λ values, which has the
added undesirable effect of introducing artificial ties between variables.

This section introduces a more computationally efficient alternative that uses a coarser grid of λ
values and also stops the path early, but breaks ties by using variables’ correlations using the residuals

at each stage. Assume we calculate the lasso fit β̂
λp`q

for ` “ 0, . . . , L on a coarse grid defined by:

max
1ďjď2m

λ˚j “ λmax “ λp0q ą λp1q ą ¨ ¨ ¨ ą λpLq “ λmin “ 2σ̃ ^
λmax

2
.

We stop the path at 2σ̃ because we find it tends to set most null variables’ coefficients to zero, we
take λp0q, . . . , λpLq to be a decreasing geometric sequence:

λp`q “ λp0q ¨ ζ`, for ζ “

ˆ

λpLq

λp0q

˙1{L

.

Then for variable j “ 1, . . . , 2m, define its (discrete) time of entry as

`˚j “ min
!

` P t1, . . . , Lu : β̂
λp`q
j ‰ 0

)

,
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with `˚j “ L`1 if the set is empty. To break ties between these discrete values, we use each variable’s

correlation with the lasso residuals at λ`j “ λp`˚j ´ 1q, the last fit in the discrete path before variable
j enters:

ρj “
ˇ

ˇ

ˇ
pX`q

T
j r
λ`j

ˇ

ˇ

ˇ
ď λ`j , where rλ “ y ´X`β̂

λ
.

ρj can be considered an estimate of λ˚j , since we have

λ˚j “
ˇ

ˇ

ˇ
pX`q

T
j r
λ˚j

ˇ

ˇ

ˇ
«

ˇ

ˇ

ˇ
pX`q

T
j r
λ`j

ˇ

ˇ

ˇ
.

To combine these, we can use any transform that orders variables first by λ`j and then by ρj . We
use a transform that also aids the accuracy of the local linear regression approximation of Wjpzq on

XT
jz. Let ι denote a small positive quantity and λpL` 1q “ 0, and define

λ̂j “ maxtρj ´ ι, λp`
˚
j qu ` ιρj{λ

`
j « maxtρj , λp`

˚
j qu.

Finally, we define the coarse LSM (C-LSM) feature statistics by substituting λ̂j for λ˚j in (5):

WC-LSM
j “ pλ̂j _ λ̂j`mq ¨ sgnpλ̂j ´ λ̂j`mq.

A.3 numerical comparisons

Here we compare the performance of the vanilla LSM feature statistics with our LCD-T and C-LSM.
The settings are the same as in Section 5.1. Figure 10 shows the results. We see all three feature
statistics perform equally well.

B Implementation: calculations to check if Ẽj ď 0

In this section we continue Section 4, regarding Sjpyq, c “ Tjpyq, and Qjp¨ | Sjpyqq as fixed and use z
to denote a generic response vector drawn from the conditional null distribution Qj . We will explain

the sampling scheme, the construction of rΩj , and the way to control numerical error when checking

if Ẽj ď 0.

B.1 The sampling scheme

We first fix a basis to make our calculations convenient. Let V ´j P Rnˆpm´1q denote an orthonormal

basis for the column span of X´j , so that Π´j “ V ´jV
T
´j . Next, for the projection of Xj orthogonal

to the span of X´j , define the unit vector in that direction:

vj “
ΠK
´jXj

}ΠK
´jXj}

, where ΠK
´j “ I ´Π´j

Finally, let V res P Rnˆpn´mq denote an orthonormal basis for the subspace orthogonal to the span of
X. Then we can decompose z as

z “ V ´jV
T
´jz ` vj ¨ η ` V res ¨ r,

where η “ vTjz P R is the component of z in the direction vj , and r “ V T
resz P Rn´m is the residual

component.
Recall that Qj is uniform on its support tz : Sjpzq “ Sjpyqu. Fixing Sjpzq “ Sjpyq is equivalent

to constraining
V T
´jz “ V

T
´jy, and η2 ` }r}2 “ }ΠK

´jz}
2 “ }ΠK

´jy}
2.

27



● ●

●

●

● ● ● ●

● ●
●

●

● ●

●

●

● ● ●

●

● ●

●

●

FDR Power

IID
−

N
orm

al
M

C
C

M
C

C
−

B
lock

0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2

0.0

0.2

0.4

0.6

0.00

0.05

0.10

0.15

0.20

0.0

0.2

0.4

0.6

nominal FDR level

E
st

im
at

ed
 F

D
R

/P
ow

er

methods

●

LSM

C−LSM

LCD−T

Figure 10: Estimated FDR and TPR of knockoffs employing LSM, LCD-T or C-LSM as feature
statistics.

Let ρ2 “ }ΠK
´jy}

2, which depends only on Sjpyq. We can sample z „ Qj by first sampling

pη, rq „ Unif
`

ρ ¨ Sn´m
˘

,

where Sn´m Ď Rn´m`1 is the unit sphere of dimension n ´ m, and then reconstructing z using
equation (29).

To sample from rΩj , we add a further constraint on η, that it lies in some union of intervals
Uj Ď r´ρ, ρs. See Appendix B.2 for details. In order to sample z satisfying this constraint efficiently,
we first sample η marginally obeying the constraint and then r conditional on η. Standard calculations
show the cumulative distribution function (CDF) of η is

Fηpx;Sjq :“ Ppη ď xq “ Ftn´m

˜

x
?
n´m

a

pρ2 ´ x2q

¸

for |x| ă ρ, (28)

where Ftn´m
is the CDF of the t-distribution with degree of freedom n´m. Now write r “ }r}¨u with

u being the direction of r. Given η, we have }r} “
a

ρ2 ´ η2 and u „ UnifpSn´m´1q is independent
of η.
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To conclude, we sample η „ Fη in the desired union of intervals and u „ UnifpSn´m´1q indepen-
dently. The z is given by

zpη,uq “ V ´jV
T
´jy ` vj ¨ η `

a

ρ2 ´ η2 ¨ V resu. (29)

B.2 The construction of rΩj

Section 4 describes rΩj in terms of XT
jz. To be consistent with the sampling scheme, we first rephrase

rΩj in terms of η as used in (29).
We decompose

XT
j z “X

T
j Π´jz ` pv

T
jXjq ¨ η, (30)

which establishes a linear relationship equation XT
jz and η (recall Π´jz “ Π´jy is fixed). Thus we

can write
rΩj “ tzpη,uq P SupppQjq : η P Aju, for Aj “ A

p2q
j Y pa

p1q
j , a

p2q
j q

c,

where a
p1q
j and a

p2q
j are solved from

Ω
p1q
j pyq “ tz P SupppQjq : Tjpzq ě cu “ tzpη,uq P SupppQjq : η P pa

p1q
j , a

p2q
j q

cu (31)

and A
p2q
j is a union of intervals in order to have

Ω
p2q
j pyq « tzpη,uq P SupppQjq : η P A

p2q
j u.

Note we reuse the notation Aj , A
p2q
j , a

p1q
j , and a

p2q
j as the constraint sets or boundaries for η and they

shouldn’t be confused with those in Section 4.
In the rest of this section, we give explicit way to obtain a

p1q
j , a

p2q
j , and A

p2q
j .

For a
p1q
j and a

p2q
j , note

Ω
p1q
j pyq “

!

z P SupppQjq :
ˇ

ˇ

ˇ
XT
j

´

z ´ ŷpjqpSjq
¯
ˇ

ˇ

ˇ
ě c

)

.

Using (30), direct calculation shows

a
p1q
j “

ŷpjqpSjq ´X
T
jΠ´jy ´ c

vTjXj
, a

p2q
j “

ŷpjqpSjq ´X
T
jΠ´jy ` c

vTjXj
.

For A
p2q
j , note

tOmega
p2q
j “ tz P SupppQjq : j P Cpwτ1qu Ď tz P SupppQjq : |Wj | ě wτ1u .

Hence we over-estimate Ω
p2q
j by tz P SupppQjq : |Wj | ě wτ1u, which is approximately identified by

local linear regression.
Specifically, we treat z “ zpη,uq as a one-dimensional random function of η with u being an

independent random noise. Our local linear regression scheme then regresses |Wj | and wτ1 on η, and
solve for the region where |Wj | ě wτ1 numerically.

The effectiveness of this method is based on the following observations we see in simulation studies.

1. Given a fixed u, for the lasso-based LSM (C-LSM ) and LCD (LCD-T ) feature statistics we
consider, |Wjpzq| is roughly a piecewise linear function of η;

2. |Wj | « E r|Wj | | ηs if E r|Wj | | ηs is large. Specifically, the standard deviation of |Wj | conditional
on η is typically at most 10% of the conditional mean when E r|Wj | | ηs ě E rwτ1 | ηs.
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Heuristically, the first observation is because that the KKT conditions of Lasso is a piecewise linear
system. And the second is that the randomness in u contributes to the correlation between y and
the knockoff variables, which is considered noise. When |Wj | is large, such a noise is expected to be
dominated by the signal from the original variable. wτ1 shares a similar behavior, though its value is
determined by a more complicated mechanism.

These observations then allow us to approximate

tz P SupppQjq : |Wj | ě wτ1u « tz P SupppQjq : E r|Wj | | ηs ě E rwτ1 | ηsu ,

with the conditional expectation estimated by the local linear regression.

To be specific, the construction of rΩ
p2q
j is done as follows.

1. sample z1pη1, u1q, . . . ,zkpηk, ukq such that η1, . . . , ηk are equi-spaced nodes in r´ρ, ρs.

2. compute |Wjpziq| and wτ1pziq for each i.

3. estimate Er|Wjpzq| | ηs, denoted as xWjpηq, by a local linear regression on |Wjpziq| for i “
1, . . . , k. We use the Gaussian kernel and set the bandwidth as the distance between consecutive
nodes ηi ´ ηi´1. Similarly, estimate Erwτ1pzq | ηs as pwpηq.

4. rΩ
p2q
j is then

rΩ
p2q
j “ tz P SupppQjq : η P A

p2q
j u, A

p2q
j :“

!

η : xWjpηq ě pwpηq
)

,

where the inequality xWjpηq ě pwpηq is solved numerically.

B.3 Numerical error control

With enough computational budget, we can compute rEj at arbitrary precision. While in practice, we
should tolerate some level of numerical error introduced by Monte-Carlo. The key idea for such error
control is to upper bound the probability of mistakenly claiming the sign of rEj at some αc.

Our process of deciding sgnp rEjq can be formalized as constructing a confidence interval for rEj
from a sequence of i.i.d. samples fjpz1q, fjpz2q, . . . , fjpzkq, with a common mean rEj{QjprΩjq. For
each k “ 1, 2, . . ., such a confidence interval at level αc, Ckpfjpz1q, . . . , fjpzkq; αcq, is computed and

once we see it excludes 0, we stop the calculation and decide if rEj ď 0 accordingly.

To control the probability of deciding sgnp rEjq wrongly, it suffices to have the sequence of confidence
intervals Ck hold for all (infinite many) k simultaneously,

PpDk : rEj R Ckpfjpz1q, . . . , fjpzkqq ď αc.

We can further control the inflation of the FDR due to the Monte-Carlo error, as shown next.
This bound is rather loose and we found the inflation is ignorable in practice.

Proposition B.1. Let αcpyq “ RKnpαqpyq ¨ α0{m for some constant α0 and reject

R “ RKnpαq Y tj : Dk, s.t. x ď 0 for all x P Ckpfjpz1q, . . . , fjpzkq; αcqu .

Note R is the cKnockoff rejection set if we compute Ej and claim its sign with confidence as described
above. Then

FDRpRq ď α` α0.
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Proof. Denote event Dj :“ tDk, s.t. x ď 0 for all x P Ckpfjpz1q, . . . , fjpzkq; αcqu and

Din
j :“ D X

!

@k, rEj P Ck

)

, Dout
j :“ D X

!

Dk, rEj R Ck

)

.

Recall Din
j implies Tj ě ĉj . And we have PpDout

j | yq ď αc by the construction of Ck. Therefore, we
have

EHj rDPjpRq | Sjs “ EHj

«

1
 

j P RKn
(

_ 1 tDju

|RY tju|

ˇ

ˇ

ˇ
Sj

ff

ď EHj

«

1
 

j P RKn
(

_ 1 tTj ě ĉju _ 1
 

Dout
j

(

|RKn Y tju|

ˇ

ˇ

ˇ
Sj

ff

ď EHj rbj | Sjs ` EHj

«

1
 

Dout
j

(

|RKn Y tju|

ˇ

ˇ

ˇ
Sj

ff

.

Marginalizing over Sj , we have

FDRpRq “
ÿ

jPH0

ErDPjpRq s ď
ÿ

jPH0

Erbjs `
ÿ

jPH0

E

«

E

«

1
 

Dout
j

(

|RKnpyq Y tju|

ˇ

ˇ

ˇ
y

ffff

ď α` α0.

Remark B.1. The denominator m in our choice of αc can be replaced by the number of hypotheses
that survived after filtering (see Appendix C), which would increase αc and save some computation
time while keeping the same FDR control.

Remark B.2. In our implementation, we truncate the Monte-Carlo sample sequence and use their
sample mean to decide if rEj ď 0 once we already have 500 samples but still 0 P Ck for all k “
1, . . . , 500.

In particular, since the values of fjpzkq are bounded, we apply Theorem 3 in Waudby-Smith and
Ramdas (2020) to construct such a confidence sequence Ck, which is adaptive to the sample variance
and achieves state-of-the-art performance for bounded random variables.

C Implementation: filtering the rejection set beforehand

As suggested in section 3.4, we reject the filtered cKnockoff rejection set

R “ RKn Y tj P S : EjpTj ;Sjq ď 0u Ď RcKn

for some set S that only contains the hypotheses likely to be non-null. In practice, we find it is a good
choice to set

Sps;yq “ pSBHps;yq X Spps;yqq Y SKnps;yqzRKnpyq, (32)

where

SBH “ RBHps¨4αq, Sp “ tj : pj ď s ¨ α{2u , SKn “
 

j : |Wj | ě wm´|SBHXSp| ^ wτ
(

with s “ 1. It almost doesn’t exclude any rejections in the vanilla cKnockoff among our simulations
and achieves |S| ! m. That is to say, it preserves the power of cKnockoff when accelerating it a lot
by filtering out many non-promising hypotheses.
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Moreover, such filtering can be done in an online manner. Let

s`j pyq “ min ts : j P Sps;yqu . (33)

Then s`j , which we call promising score, roughly measures how likely Hj will be rejected. Then we
can check EjpTj ;Sjq ď 0 sequentially on the hypotheses ranked by their promising scores. Theorem
3.4 allows us to stop at any time we like and report the rejection set with a valid FDR control. This
feature is available in our R package but not employed in the numerical experiments shown in this
paper.

To apply filtering to cKnockoff˚, we reject the filtered cKnockoff˚ rejection set

R “ RKn Y tj P S : E˚j pTj ;Sjq ď 0u Ď RcKn˚

where S is further required to satisfy RKn Y S Ě R˚. Like in cKnockoff, Theorem C.1 shows such
filtering doesn’t hurt the FDR control.

Theorem C.1. For any rejection rule R with R˚ Ď R Ď RcKn˚ almost surely, we have FDRpRq ď α.

Proof. Recall

RcKn˚ “ RKn Y tj : Tj ě ĉ˚j u.

Hence R˚ Ď R Ď RcKn˚ implies

EHj
rDPjpRq | Sjs ď EHj

«

1
 

j P RKn
(

_ 1
 

Tj ě ĉ˚j
(

|R˚ Y tju|

ˇ

ˇ

ˇ
Sj

ff

ď EHj
rbj | Sjs,

so that FDRpRq ď
ř

jPH0
Erbjs ď α.

For cKnockoff˚, S is set again by (32). The condition RKn Y S Ě R˚ is made true by the
construction of R˚ in Appendix D.

D Implementation: efficient cKnockoff˚

The core in implementing cKnockoff˚ is the calculation related to R˚. In this section, we introduce
how we construct, compute, and apply R˚ in cKnockoff˚.

D.1 Construct R˚

To make R˚ easy to compute while bringing in additional power, we need a delicate construction. Let

R˚ “ RKn Y tj P S˚ : EjpTj ;Sjq ď 0u ,

with

S˚ “
"

j P S : pj ď
α

m
^

0.01α

r1{α´ 1s
, s`j has rank no larger than Kcand

*

,

where S is the filtering set in (32), s`j is the promising score in (33), and Kcand is a pre-specified

constant to restrict the size of S˚. In words, we construct S˚ by picking the Kcand-most promising
hypotheses in S who have p-values below certain threshold. We will explain the rationale behind
this p-value cutoff in the next two sections. By construction, we have RKn Ď R˚ Ď RcKn and
RKn Y S Ě R˚.
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D.2 Compute R˚

Computing R˚ shares the same goal as computing RcKn. That is, we want to calculate

Ejpc;Sjq “

ż

fjpz; cq dQjpzq

with c “ Tjpyq. Let’s adopt the same narrative as in Section 4, regarding Sjpyq, c “ Tjpyq, and
Qjp¨ | Sjpyqq as fixed and use z to denote a generic response vector drawn from the conditional null
distribution Qj . But this time, we will use numerical integration instead of Monte-Carlo to compute
Ej approximately.

D.2.1 Formulation of the numerical scheme

To formulate the calculation as a numerical integration, recall (29) that z can be written as

z “ zpη,uq “ V ´jV
T
´jy ` vj ¨ η `

a

ρ2 ´ η2 ¨ V resu.

given Sj , where the two random variables η “ vTjz and u “ V T
resz{

›

›

›
V T

resz
›

›

›
are independent.

Following the idea in Appendix B.2, we treat fjpzpη,uqq as a random function of η with an
independent random noise u. Then

Ej “

ż

Eu„UnifpSn´m´1q rfjpzpη,uqqs dFηpηq,

where Fηp¨;Sjq is the CDF of η given in (28).
This motivates computing Ej approximately by

Ej «

1{h
ÿ

i“1

fjpzpηi,uiqq ¨ h,

where
ηi “ F´1

η pihq, ui
i.i.d.
„ UnifpSn´m´1q

In words, we numerically integrate over the variable η and use Monte-Carlo for the leftover noise
variable u. When h is tiny, we have fine grid for the numerical integration and many samples for
Monte-Carlo and hence the calculation would be accurate.

D.2.2 Check if Ej ď 0 efficiently

Since fj ď 1, we have
ż

Ω
p1q
j

fj dQj ď QjpΩ
p1q
j q :“ B`j .

The bound B`j is easy to compute, referring to Appendix B.2. Therefore, to conclude Ej ď 0, it
suffices to show

B`j `

ż

´

Ω
p1q
j

¯c
fj dQj ď 0.

We use our numerical scheme derived in the previous section to compute the integral. Recall (31),

´

Ω
p1q
j

¯c

“

!

zpη,uq : η P
´

a
p1q
j , a

p2q
j

¯)

.
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It’s easy to see that vTjy is equal to either a
p1q
j or a

p2q
j since we have T pzq “ T pyq on the boundary of

Ω
p1q
j . Assuming vTjy “ a

p1q
j without loss of generality, we have

ż

´

Ω
p1q
j

¯c
fj dQj «

p1´B`j q{h
ÿ

i“1

fjpzpηi,uiqq ¨ h,

where
ηi “ F´1

η pFηpv
T
jyq ` ihq, ui

i.i.d.
„ UnifpSn´m´1q. (34)

The key of our fast algorithm is to recall that fjpzpη,uqq ď 0 on
´

Ω
p1q
j

¯c

. That is to say,

fjpzpηi,uiqq ď 0 for all ηi and ui considered in (34). Therefore, once we see

k
ÿ

i“1

fjpzpηi,uiqq ¨ h ď ´B
`
j

for some k ď p1 ´ B`j q{h, we can claim Ej ď 0 without further calculation. Setting the starting

point of the numerical integration nodes as η0 “ v
T
jy rather than the other endpoint a

p2q
j makes fj

at zpη1,u1q, zpη2,u2q, . . . more likely to be nonzero, hence earlier to conclude Ej ď 0, when Hj is
nonnull.

In particular, we try k “ 1, 2, . . . ,Kstep sequentially, once we see
řk
i“1 fjpzpηi, uiqq ¨ h ď ´B

`
j , we

add j into R˚ and stop the calculation; otherwise we still stop but don’t include j.
The overall running time of R˚ is upper bounded by Kcand ¨Kstep times the time of evaluating

the knockoff feature statistics. In our implementation, we set Kcand “ Kstep “ 3.

D.2.3 Choose a proper h

Now the only question that remains is how to choose a proper h. The choice of h is driven by a
tradeoff — a smaller h yields a more accurate estimate of Ej and a larger h allows us to determine if
Ej ď 0 within a few steps.

There are only two cases for z P
´

Ω
p1q
j

¯c

where fjpzq ‰ 0: when j P RKnpzq or j P Cpwτ1q. As

we will see, the computational tricks introduced in Appendix D.3 implies the first case is uncommon
when we need to compute R˚. So considering j P Cpwτ1q but j R RKnpzq, we have

fj “ ´bjpα; zq « ´
α

r1{α´ 1s

since |Cpwτ1q| “ r1{α´ 1s and zFDPpwτ1q Æ 1. Therefore, if we set

h “ B`j {
α

r1{α´ 1s
,

we expect to see
řk
i“1 fjpzpηi,uiqq ¨ h ď ´B

`
j with k “ 1 or 2, if j is to be rejected.

Moreover, by noticing a monotone bijection between η “ vTjz and the t-statistic tj ,

tj “
vTjz

b

p}y}2 ´ }Π´jy}2 ´ pvTjzq
2q{pn´mq

, vTjz “ tj ¨

d

}y}2 ´ }Π´jy}2

t2j ` n´m
,

simple calculation shows

Qj

´!

vTjz R
´

a
p1q
j , a

p2q
j

¯)¯

“ B`j ď pj “ 2Ftn´mp´|tj |q.
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Recall we have

pj ď
α

m
^

0.01α

r1{α´ 1s
, @j P S˚.

This guarantees

h “ B`j {
α

r1{α´ 1s
ď 0.01,

which is reasonably small.
It is worth pointing out here that with calculating R˚ in this way, we don’t have an estimation of

the error in computing Ej , unlike in cKnockoff where we have a confidence sequence for this purpose.
Although our current implementation of cKnockoff˚ works very well in simulations, analysts can
choose a smaller h or just stick to cKnockoff if they don’t want to rely on a numerical integration
without an error estimation.

D.3 Computational tricks in applying R˚

Now we have an algorithm to compute R˚ efficiently. When computing RcKn˚ , we need to calculate
E˚j pTj ;Sjq. This is done in the same way as calculating EjpTj ;Sjq in cKnockoff, but replacing

fjpziq :“
1
 

j P RKnpziq
(

_ 1 tTjpziq ě Tjpyqu

|RKnpziq Y tju|
´ bjpziq

by a smaller value

f˚j pziq :“
1
 

j P RKnpziq
(

_ 1 tTjpziq ě Tjpyqu

|R˚pziq Y tju|
´ bjpziq

for all Monte-Carlo samples z1, z2, ¨ ¨ ¨ .
Although computing R˚ is now affordable, it’s still heavier comparing to RKn. Hence we want

to spend our computational budget where such a replacement is most likely to gives us additional
rejections. In particular, suppose

z1, z2, . . . ,zk P rΩj

is the sequence of Monte-Carlo samples we use to compute rE˚j , where rE˚j is the conservative approx-
imation of E˚j , defined in the same way as in (27). Our computational trick is to replace fjpziq by
f˚j pziq only for those i P I, where I Ď rks is a subset of the index set of all the Monte-Carlo samples.
So if |I| is small, we only need to compute R˚ for a few Monte-Carlo samples. Formally, let

pEjpIq :“
1

k

˜

ÿ

iPI

f˚j pziq `
ÿ

iRI

fjpziq

¸

.

Then pEjpIq for I “ H is our Monte-Carlo calculation of rEj and pEjpIq for I “ rks is the Monte-Carlo

calculation of rE˚j . The trick is to use pEjpIq for some I Ď rks, instead of pEjprksq, as the computed

approximation of rE˚j .

In principle, we want a small set I that makes pEjpHq´ pEjpIq large. Then R˚ needs being evaluated

only on a small set of Monte-Carlo samples but still it is very likely pEjpIq ď 0 even if pEjpHq ą 0.
Specifically, the choice of set I follows the steps below.

1. Note if we want to compute pEjpIq, the value of pEjpHq is an inevitable by-product. Hence it

doesn’t hurt to compute pEjpHq before we decide I. Therefore, we set I “ H if pEjpHq ď 0,

since it already implies pEjpIq ď 0.
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2. If the previous step doesn’t set I “ H, we propose to set I “ Ī and trim it in the next step,
where

Ī :“

#

i :
1
 

j P RKnpziq
(

_ 1 tTjpziq ě cu

|RKnpziq Y tju|
“ 1

+

.

In words, we include i in I only if RKnpziq “ H and Tjpziq ě c for c “ Tjpyq. The idea behinds

is that, in this case, including i in I may introduce the largest decline in the value of pEjpIq.

Since RKnpziq “ H implies that Knockoff is having a hard time to make any rejections, it’s
uncommon to see j P RKn in computing R˚, as mentioned in Appendix D.2.3.

3. Following step 2, if the denominators |R˚pziq Y tju | take the same value for all i, then we can

easily solve for the desired smallest value of them, denoted as R˚, so as to make pEjpĪq below

zero given pEjpHq ą 0. We set R˚ “ 8 if we can’t have pEjpĪq ď 0.

If R˚ ą Kcand ` 1, it’s impossible that the computed R˚ can be large enough to make Hj

rejected, since the computed |R˚pziq Y tju | ď Kcand ` 1 by construction. If this is the case, we
trim all elements in the proposed I “ Ī. That is, we set I “ H.

If R˚ ď Kcand ` 1, we trim I in an online manner. That is, we compute R˚pziq one by one for
i P I. Once we see most R˚pziq computed so far have |R˚pziq Y tju | ă R˚, we trim the rest
elements in I.

Details of the implementation of this trick can be found in https://github.com/yixiangLuo/cknockoff.
Note this computational trick doesn’t hurt the FDR control of cKnockoff˚ no matter how we choose

set I. Since pEjpIq is in between the Monte-Carlo calculation of rEj and rE˚j , the resulting rejection

set is in between RcKn and the vanilla RcKn˚ without this trick. Theorem C.1 then ensures its FDR
control.

E Deferred proofs

E.1 Formulating MCC as a linear model

In this section we formulate Example 1.1 as a linear model. Since all blocks in the experiment are
mutually independent, it suffices to show this formulation under K “ 1, the classical MCC problem.
Hence we suppress the subscript k for simplicity of notation. For example, we denote zg,k,i as zg,i in
this section.

Denote zi “ pz0,i, z1,i, . . . , zG,iq
T P RG`1 as the vector of observed outcome in the ith replicate from

the control and treatment groups and denote εi “ pε0,i, ε1,i, . . . , εG,iq
T P RG`1 as the corresponding

noise vector. Define

ǏG “

ˆ

0T

IG

˙

“

¨

˚

˚

˚

˝

0 . . . 0
1

. . .

1

˛

‹

‹

‹

‚

P RpG`1qˆG

as the matrix obtained by padding the identity matrix of dimension G on top with a row vector of all
zeros. Then let

z “

¨

˚

˚

˚

˝

z1

z2

...
zr

˛

‹

‹

‹

‚

P RrpG`1q, X̌ “

¨

˚

˚

˚

˝

ǏG
ǏG
...
ǏG

˛

‹

‹

‹

‚

P RrpG`1qˆG, β “

¨

˚

˝

δ1
...
δG

˛

‹

‚

P RG, ε̌ “

¨

˚

˚

˚

˝

ε1

ε2

...
εr

˛

‹

‹

‹

‚

P RrpG`1q.

We have
z “ X̌β ` 1µ` ε̌,
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where 1 “ p1, 1, . . . , 1qT P RrpG`1q is a vector of all ones. This is a linear model with an intercept
term. So we can project everything onto the subspace orthogonal to 1 to get rid of the intercept.
Specifically, let V 1,res P RrpG`1qˆprpG`1q´1q be an orthonormal basis for the subspace orthogonal to
1. Define

y :“ V T
1,resz, X :“ V T

1,resX̌, ε :“ V T
1,resε̌.

We have
y “Xβ ` ε

follows the Gaussian linear model (1) with m “ G and n “ rpG` 1q ´ 1.
More generally, if K ą 1, we do the same thing for each experiment block and concatenate the

linear models derived from them. Specifically, the resulting X P RKprpG`1q´1qˆKG for K ą 1 is
block-diagonal with K blocks of dimension prpG ` 1q ´ 1q-by-G. Each block of X comes from the
same procedure as above applying to each block of the experiments.

In our simulations of Section 5.1, to maintain consistent dimensions n “ 3000,m “ 1000 as we
used for the i.i.d. Gaussian case, we slightly modify the linear model construction by removing a
few extra residual degrees of freedom, while maintaining the same correlation structure XTX for
the explanatory variables. For example, in the MCC problem with m “ G “ 1000, K “ 1, and
r “ 3, the canonical construction above would give n “ rpG ` 1q ´ 1 “ 3002. In our simulation, we
remove the extra 2 residual degrees of freedom, while maintaining the correlation structure of XTX,
thus ensuring that β̂ has the same positively equicorrelated covariance structure, and rXX̃sTy has
the same distribution when we make an equivalent choice of X̃. However, the distribution of the
residual variance estimators σ̂2 and σ̃2 both change slightly because they are based on 2002 and 1002
residual degrees of freedom, respectively, instead of 2000 and 1000 residual degrees of freedom. A
direct comparison confirms the results have no observable difference. For consistency, we also use the
construction with n “ 3000 for the simulation in Figure 2.

E.2 Null distribution of y conditional on Sj

Recall we define
Π´j “X´jpX

T
´jX´jq

´1XT
´j , ΠK

´j “ I ´Π´j

as the projection onto the column span of X´j and its orthogonal projection, respectively. The

bijection between Sj “ pX
T
´jy, }y}

2
q and pΠ´jy,

›

›

›
ΠK
´jy

›

›

›

2

q

Π´jy “ pX´jpX
T
´jX´jq

´1q ¨ pXT
´jyq,

›

›

›
ΠK
´jy

›

›

›

2

“ }y}
2
´ }Π´jy}

2

XT
´jy “ XT

´jpΠ´jyq, }y}
2
“

›

›

›
ΠK
´jy

›

›

›

2

` }Π´jy}
2

shows that conditioning on Sj is equivalent to conditioning on pΠ´jy,
›

›

›
ΠK
´jy

›

›

›

2

q. Then we have the

following null conditional distribution.

Proposition E.1. Assume the linear model (1) and that Hj is true. Then

y | Π´jy,
›

›

›
ΠK
´jy

›

›

›

2
d
“ Π´jy `

›

›

›
ΠK
´jy

›

›

›
¨ V ´j,resu,

where V ´j,res P Rnˆpn´m`1q is an orthonormal basis for the subspace orthogonal to the span of X´j,
and u „ UnifpSn´mq is a vector uniformly distributed on the unit sphere of dimension n´m.

Proof. Since y „ N pXβ, σ2Inq is isotropic Gaussian, Π´jy and ΠK
´jy are independent. So it suffices

to show

V T
´j,res ¨Π

K
´jy |

›

›

›
ΠK
´jy

›

›

›

2
d
“

›

›

›
ΠK
´jy

›

›

›
¨UnifpSn´mq.
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This is true since
›

›

›
V T
´j,res ¨Π

K
´jy

›

›

›
“

›

›

›
ΠK
´jy

›

›

›

and
V T
´j,res ¨Π

K
´jy „ N p0, σ2In´m`1q.

The second claim is by

ΠK
´jy „ N pΠK

´jXβ, σ
2ΠK

´jInq
Hj
„ N p0, σ2ΠK

´jq

and noticing
ΠK
´j “ V ´j,resV

T
´j,res.

E.3 Proof of Theorem 3.2

The proof of Theorem 3.2 first needs a technical lemma.

Lemma E.1. Let the budget be defined as in (19). Suppose PHj
pbj ą DPjpRKnq | Sjq ą 0 and

PHj
pj R RKn | Sjq ą 0, then

EHj

”

1
 

j P RKn
(

ˇ

ˇ

ˇ
Sj

ı

ă EHj

”

1
 

j P RKn
(

_ 1 tTj ě ĉju
ˇ

ˇ

ˇ
Sj

ı

.

Proof. Recall

Ejpc ;Sjq :“ EHj

«

1
 

j P RKn
(

_ 1 tTj ě cu

|RKn Y tju|
´ bj

ˇ

ˇ

ˇ
Sj

ff

.

Since bj ě DPjpRKnq almost surely and PHj
pbj ą DPjpRKnq | Sjq ą 0, we have

Ejp8 ;Sjq ă 0.

Moreover, PHj
pj R RKn | Sjq ą 0 gives

Ejp8 ;Sjq ă Ejp0 ;Sjq.

Recall Ejpc ;Sjq is a continuous, non-increasing function of c and

ĉj “ min
cě0

tEjpc ;Sjq ď 0u .

We have
Ejp8 ;Sjq ă Ejpĉj ;Sjq.

That is

EHj

«

1
 

j P RKn
(

|RKn Y tju|

ˇ

ˇ

ˇ
Sj

ff

ă EHj

«

1
 

j P RKn
(

_ 1 tTj ě ĉju

|RKn Y tju|

ˇ

ˇ

ˇ
Sj

ff

.

Now we prove our claim by contradiction. Note

1
 

j P RKn
(

ď 1
 

j P RKn
(

_ 1 tTj ě ĉju , almost surely.

So the opposite of our proposition implies

PHj

”

1
 

j P RKn
(

“ 1
 

j P RKn
(

_ 1 tTj ě ĉju
ˇ

ˇ

ˇ
Sj

ı

“ 1,

which further yields

EHj

«

1
 

j P RKn
(

|RKn Y tju|

ˇ

ˇ

ˇ
Sj

ff

“ EHj

«

1
 

j P RKn
(

_ 1 tTj ě ĉju

|RKn Y tju|

ˇ

ˇ

ˇ
Sj

ff

since the denominators of both sides are the same. This contradicts with what we have derived.
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Then we can prove Theorem 3.2.

Proof of Theorem 3.2. For a general testing procedure that produces rejection set Rpyq, define its
Hj-rejection region as

Gj “ ty : j P Rpyqu .

In words, Gj is the set of observed data y such that Hj is rejected. Note Gj is determined by the
testing procedure R itself and is not affected by the unknown value of β or σ.

By construction, the cKnockoff rejection region is always no smaller than the knockoffs, i.e. GcKn
j Ě

GKn
j for all j. So

TPRpRcKnq “
1

m1

ÿ

jPHc
0

Ppj P GcKn
j q ě

1

m1

ÿ

jPHc
0

Ppj P GKn
j q “ TPRpRKnq.

To show the inequality is strict, it suffices to prove

GKn
j Ĺ GcKn

j

for some j P Hc
0, because the support of the density of y is the whole Rn space no matter what β is.

By the same reason, this is equivalent to show

P0pj P RKnq “ P0pGKn
j q ă P0pGcKn

j q “ P0pj P RcKnq,

where P0 is the probability measure under the global null model H0 “ rms.
Recall that under the global null and conditional on |W |, sgnpWiq are independent Bernoulli for

all i. Hence P0pA | |W |q ą 0, where

A “ tWj ą 0 and | ti : Wi ą 0u | “ pr1{αs´ 1q ^mu .

Note A implies RKn “ H (hence DPjpRKnq “ 0) and bj ą 0. We have

P0

` 

bj ą DPjpRKnq
(

X
 

j R RKn
(˘

ą 0

by the tower property.
As a consequence, there exist a set C Ď Rm´1 ˆ R such that P0pSjpyq P Cq ą 0 and

P0

` 

bj ą DPjpRKnq
(

X
 

j R RKn
(

| Sj
˘

ą 0

for all Sj P C. Then by Lemma E.1, for any Sj P C,

E0

”

1
 

j P RKn
(

ˇ

ˇ

ˇ
Sj

ı

ă E0

”

1
 

j P RKn
(

_ 1 tTj ě ĉju
ˇ

ˇ

ˇ
Sj

ı

,

where E0 is taking expectation over the global null distribution. So

E0

”

1
 

j P RKn
(

ˇ

ˇ

ˇ
Sj P C

ı

ă E0

”

1
 

j P RKn
(

_ 1 tTj ě ĉju
ˇ

ˇ

ˇ
Sj P C

ı

.

Note
1
 

j P RKn
(

ď 1
 

j P RKn
(

_ 1 tTj ě ĉju

and P0pSj P Cq ą 0. We have

E0

“

1
 

j P RKn
(‰

ă E0

“

1
 

j P RKn
(

_ 1 tTj ě ĉju
‰

.

That is
P0pj P RKnq ă P0pj P RcKnq.
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F Numerical simulations

The simulation settings in this section are the same as in Section 5.1 if not specified.

F.1 Extensions of simulations in Section 5.1

F.1.1 Additional design matrix settings

Consider the following two design matrix settings.

1. OLS β̂j positively auto-regression (Coef-AR): Set X such that the OLS fitted β̂j is AR(1)

with covpβ̂j , β̂j`1q “ 0.5.

2. Xj positively auto-regression (X-AR): SetX such thatXj is AR(1) with covpXj ,Xj`1q “

0.5.

Figure 11 shows the results. They are similar to the ones from the MCC-Block problem.
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Figure 11: Estimated FDR and TPR for additional design matrix settings.

F.1.2 Cases where m1 " 1{α

We show the performance of the procedures in the case where β is not too sparse. Figure 11 shows the
results with m1 “ 30 non-null hypotheses, instead of m1 “ 10 in Section 5.1. The general behavior of
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the procedures remains the same, but

1. the power-gain of cKnockoff over knockoffs is smaller;

2. the knockoff-like methods are less powerful comparing to the BH-like methods. This is because
that the extra power of knockoff-like methods come from sparsity (when lasso-based feature
statistics are used).
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Figure 12: Estimated FDR and TPR with 30 non-null hypotheses.
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F.1.3 Comparison with multiple knockoffs

Multiple knockoffs has more implementation choices than the vanilla knockoffs, e.g. the number of
knockoff variables to employ and the threshold for deciding whether the original variable “wins” the
competition with its knockoffs. There is no known best choice for them, but we implement multiple
knockoffs as follows:

1. We employ 5-multiple knockoffs. That is, we generate 5 knockoff matrices X̃piq for i “ 1, . . . , 5

such thatXTX “ X̃
T

piqX̃piq for all i andXTX´X̃
T
X̃pjq “X

TX´X̃
T

piqX̃pjq is certain diagonal
matrix for all i ‰ j.

2. For the feature statistics, we run lasso on the augmented model

y “ rX, X̃p1q, . . . , X̃p5qsβ ` ε

with regularity parameter λ determined in the same way as in LCD-T. And let

sgnpWjq :“

#

1 if |β̂j,p0q| ą |β̂j,piq| for all i P r5s

´1 otherwise
, |Wj | :“ max

i“0,...,5

!

|β̂j,piq|
)

,

where β̂j,piq is the fitted lasso coefficient of the ith knockoffs of the variable Xj and β̂j,p0q is the
fitted lasso coefficient of the original variable Xj .

To make multiple knockoffs applicable, we set n “ 7m with m “ 300. The number of hypotheses
is smaller than our usual setting, so as to save memory space in our laptop. The number of non-null
hypotheses is set to be m1 “ 30 so as to show the performance of multiple knockoffs in the region
where m " 1{α.

Figure 13 shows the results. Whenm1 ă 1{α, multiple knockoffs relieves the threshold phenomenon
but performs worse than cKnockoff/cKnockoff˚; when m1 " 1{α, multiple knockoffs is even worse than
the vanilla knockoffs. Moreover, multiple knockoffs doesn’t help the whiteout phenomenon.

In addition, we see the knockoff-like methods are even less powerful, comparing to the BH-like
methods, in Figure 13 than in Figure 12. This is because π1 “ m1{m “ 0.1 in this setting. That is,
β is less sparse.

F.2 Variations of cKnockoff

Figure 14 shows the estimated FDR and power when we use C-LSM rather than LCD-T as the feature
statistics. The behavior of cKnockoff/cKnockoff˚ is almost the same as in Figure 3.

F.3 Robustness tests

In this section, we test the robustness of our methods, especially if the FDR is still controlled when
certain model assumptions don’t hold.

F.3.1 Noisy signal

First consider the case where β is noisy. That is, the null hypotheses now have

βj
i.i.d.
„ Unifp´a, aq, j P H0

for some a ą 0. And we set α “ 0.2 so that knockoffs can make a decent number of rejections.
Figure 15 shows the results as a{β˚ increases. The behavior of the estimated FDR are the same

for knockoff, cKnockoff, and cKnockoff˚. They all roughly controls FDR when a{β˚ ď 0.1.
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Figure 13: Estimated FDR and TPR with multiple knockoffs included.

F.3.2 Heavy-tailed noise

Consider a t-noise instead of a Gaussian noise in the linear model (1), i.e.

y “Xβ ` ε, εi
i.i.d.
„ tk

with certain degree of freedom k. We set α “ 0.2 as before and apply the procedures on an additional
design matrix setting:

Sparse: Set X to have diagonal Xii “ 1 and off-diagonal entries Xij
i.i.d.
„ Bernoullip0.01q for i ‰ j.

Figure 16 shows the results as the degree of freedom k decreases (noise more heavy-tailed). For
the dense design matrices like IID-Normal, MCC, and MCC-Block, cKnockoff/cKnockoff˚ is robust
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Figure 14: Estimated FDR and TPR under settings using C-LSM as the feature statistics.

in the same way as knockoffs. But for the sparse design matrix, cKnockoff/cKnockoff˚ doesn’t control
FDR when k is small, in a way similar to the p-value based methods BH and dBH. This is because
XTy is now heavy-tailed. So some null hypotheses have p-values stochastically smaller than uniform.
Recall our calibration statistic Tj is roughly a proxy of the one-sided p-value. Such a deviation in the
p-value distribution is expected to affect our methods more than knockoffs.
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Figure 15: Estimated FDR and TPR as the signal becomes noisy.
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Figure 16: Estimated FDR and TPR when the noise is a heavy-tailed t-distribution.
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