
Homework #1
Stat 212A, Fall 2015: Topics in Selective Inference

Instructor: Will Fithian

Assigned Sep. 17, 2015. Due 11:59pm Oct. 6, 2015

You are welcome to work with each other or consult articles or textbooks online, but you should then
go away and write up the problem by yourself. If you collaborate or use other resources, please list your
collaborators and cite the resources you used. Please show your work and include code where appropriate.

You can turn in the problem set in class Oct. 6 or under my door (Evans 301) Tuesday night.

1. Derived Intervals for µ You are working with a scientist, who has one-way layout data:

yi = µi + εi, i = 1, . . . ,m, with εi
i.i.d.∼ N(0, 1),

The scientist asks you to come up with FWER-controlling confidence intervals for µ1, . . . , µm. You construct

Ci = yi ± zα̃m/2, where α̃m = 1− (1− α)1/m. (1)

(a) After the scientist sees the results, she notices an interesting fact: even though only a few of the intervals
exclude 0, most of the yi are larger than zero. This makes her curious about the value of the parameter

µ =
1

m

m∑
i=1

µi,

and she expresses regret that she didn’t think of asking about it before seeing the data. “Aha!” you
exclaim, “but we can use the intervals we just constructed to derive an interval for µ.”

(i) Give an explicit expression akin to (1) for the interval you report.

Solution: We can use derived intervals. As long as µi ∈ Ci for every i (which happens with
probability 1− α), we also have

µ ∈ inf S, supS, where S =

{
1

m

∑
i

µi : µi ∈ Ci, ∀i

}

We have

inf S =
1

m

∑
i

(yi − zα̃m/2) = y − zα̃m/2

and similarly supS = y + zα̃m/2, giving interval y ± zα̃m/2.

(ii) What is the approximate asymptotic radius of this interval as m→∞?1

Solution: We showed in class that zα̃/2 is approximately
√

2 logm.

(iii) What is its radius for α = 0.05 and m = 3, 5, 10, and 100? (Give numbers e.g. 3.45).

Solution: See R output below:

> m.vals <- c(3, 5, 10, 100)

> alpha.tilde <- 1 - (1-.05)^(1/m.vals)

> qnorm(alpha.tilde/2, lower.tail=FALSE)

[1] 2.39 2.57 2.80 3.47

1Remember, the radius of the interval is half its width; e.g. the width of the Šidák interval is 2zα̃/2 while the radius is zα̃/2.
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(b) Your collaborator explains in her paper that she got interested in µ only after looking at the Šidák
intervals. One of the referees cries foul: he claims that she is guilty of data dredging and she should
remove the interval for µ from the paper. Do you agree that the finding is not properly adjusted for
multiplicity? Why or why not?

Solution: There is nothing wrong with what your collaborator has done. Derived intervals control the
FWER even if we make a post-hoc decision about what contrasts to derive intervals for. The algorithm “1:
construct level-α FWER-controlling intervals; 2: derive intervals for any linear combination of µ1, . . . , µm
that we want;” controls the FWER at level α no matter how we decide what linear combinations to
construct intervals for in step 2. The only way for the derived intervals to be wrong is if one of the
intervals in step 1 is wrong, and that happens with probability less than α, by construction.

(c) Same question as (a), except suppose that instead of Šidák intervals for all µi, the scientist asked you
initially to construct Scheffé intervals for all linear contrasts. Then, as in (a), she gets interested after
the experiment in µ and wants an interval for it.

(i) Give an explicit expression akin to (1) for the interval you report.

Solution: If we made Scheffè intervals, then we have already made an interval for µ. Let 1m ∈ Rm
denote the vector with every coordinate equal to 1, and note that µ = ν′µ, where ν = 1

m1m. Thus
the Scheffé interval for µ is y ± ‖ν‖χm(α) = y ± 1√

m
χm(α).

(ii) What is the approximate asymptotic radius of this interval as m→∞?

Solution: We showed in class that χm(α) is approximately
√
m, so the interval radius converges

to 1.

(iii) What is its radius for α = 0.05 and m = 3, 5, 10, and 100?

Solution: See R output below:

> m.vals <- c(3, 5, 10, 100)

> sqrt(qchisq(1-.05, m.vals))/sqrt(m.vals)

[1] 1.61 1.49 1.35 1.12

(d) If you were to redo the analysis for a new data set, knowing ahead of time that the scientist is going
to be interested in µ as well as the univariate means µi, how could you devise a more powerful FWER-
controlling procedure than the one you used here? (Note: There could be more than one right answer).

(i) Explain how you would construct the intervals Ci for µi and C0 for µ, and give a relatively explicit
expression for their lengths (e.g. in terms of a quantile of a random variable you can simulate).

Solution: We can form simultaneous confidence intervals for the contrasts N = (ν1, . . . , νm+1)
where νi = ei, the ith coordinate basis vector, for i ≤ m, and νm+1 = 1

m1m. Then we can set

Ci = ν′iy ± ‖νi‖rα,

taking rα to be the upper α quantile of the random variable

R =
m+1
max
i=1

|ν′iε|
‖νi‖

,

whose distribution we can simulate. Then the interval for µ is

Cm+1 = ν′m+1y ± ‖νm+1‖rα = y ± 1√
m
rα

(ii) What is the approximate asymptotic radius of this interval as m→∞?

Solution: The radius should be no smaller than zα̃m/2 ≈
√

2 logm, since zα̃m/2 is the upper α
quantile of the largest of the first m contrasts. Meanwhile, note that (ν′iε)/‖νi‖ ∼ N(0, 1) for each
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i, so the Bonferroni radius of zα/2(m+1) ≈
√

2 log(m+ 1) is conservative and must be a little wider
than rα.

Because
√

2 logm ≈
√

2 log(m+ 1) for large m, then rα is roughly
√

2 logm, and the radius is

roughly
√

2 logm
m .

(iii) What is its radius for α = 0.05 and m = 3, 5, 10, and 100?

Solution: See R output below:

> m.vals <- c(3, 5, 10, 100)

> r.alpha <- numeric()

> for(m in m.vals) {

+ n <- 10001

+ sim.y <- matrix(rnorm(n*m),n)

+ sim.R <- apply(sim.y, 1, function(y) max(abs(y), abs(mean(y)*sqrt(m))))

+ r.alpha[as.character(m)] <- quantile(sim.R, probs=.95)

+ }

> r.alpha # Radius for i <= m (||nu_i|| = 1)

3 5 10 100

2.46 2.62 2.83 3.46

> r.alpha/sqrt(m.vals) # Radius for i = m+1 (||nu_{m+1}|| = 1/sqrt(m))

3 5 10 100

1.421 1.172 0.895 0.346

(e) Same question as (a), except suppose that instead of Šidák intervals for all µi, the scientist asked
you initially to construct Tukey’s HSD intervals for all pairwise comparisons. Show that the derived
confidence interval for µ has infinite length.

Solution: Let C = {µ : µi − µj ∈ (yi − yj) ± rα} denote the confidence region of all µ that are not
rejected by any of the

(
m
2

)
Tukey HSD intervals. Note that, for any real number a, µ(a) = y+ a1m ∈ C,

because µ
(a)
i − µ

(a)
j = yi − yj for every (i, j). But then,

sup
µ∈C

1

m

∑
µi ≥ sup

a∈R

1

m

∑
(yi + a) =∞,

and similarly infµ∈C
1
m

∑
µi = −∞. Hence the derived interval for µ has infinite radius.

2. PoSI vs. Scheffé For regression with p variables and n observations, with known σ2 = 1, prove that
the PoSI interval radius rα is always strictly smaller than χp(α) (which is roughly

√
p).

Solution: Let N = {νj·M : M ⊆ {1, . . . , p}, j ∈ M}, and recall that rα is the upper α quantile of the
random variable

R = max
ν∈N

|ν′ε|
‖ν‖

First, we observe that for all M ⊆ {1, . . . , p} and j ∈M , we have

νj·M ∝ Xj·M

= Xj − PXM\jXj

∈ span(X).

Set d = dim(span(X)) ≤ min(n, p), and let U = [u1, . . . , ud] be a matrix whose columns form an
orthonormal basis of span(X). Then U ′ε ∼ N(0, Id), U

′U = Id, and for ν ∈ span(X), UU ′ν = ν.
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Define W as

W = sup
ν∈span(X)

|ν′ε|
‖ν‖

= sup
ν∈span(X)

|ν′UU ′ε|
‖U ′ν‖

= sup
θ∈Rd

|θ′U ′ε|
‖θ‖

= ‖U ′ε‖
∼ χd,

Because R ≤W , rα ≤ χd(α) ≤ χp(α).
Next we show why rα < χp(α). Let Θ = {U ′ν : ν ∈ N}, and note that

R/W = max
θ∈Θ

|θ′U ′ε|
‖θ‖ ‖U ′ε‖

≤ 1,

R/W = 1 if and only if ‖U ′ε‖ is exactly proportional to one of the finitely many ν ∈ N , which occurs with
probability 0. Thus, for some δ > 0 we have

P(R/W < 1− δ) > δ

Furthermore, R/W is a function of U ′ε/‖U ′ε‖, which is independent of ‖U ′ε‖, a property of the multi-
variate Gaussian distribution. Thus,

P(R ≤ χd(α)) ≥ P(W ≤ χd(α)) + P(W/χd(α) ∈ (1, (1− δ)−1], R/W ≤ 1− δ)
= α+ δP(W/χd(α) ∈ (1, (1− δ)−1])

which is strictly larger than α; hence the upper α quantile of R is strictly smaller than χd(α).

3. Closing ANOVA We saw that closing the Simes and Bonferroni procedures resulted in pretty good
FWER-controlling multiple-testing procedures (Hochberg’s and Holm’s procedures, respectively). A natural
question to ask is, what if we closed the ANOVA test of the intersection null?

It turns out this is a pretty bad idea! Assume we have the scenario in class where

µ1 = · · · = µkm = ρm, µkm+1 = · · · = µm = 0

(a) Show that even with O(m) non-nulls (quite dense), we need ρm to be on the order of
√
m to get any

rejections. More precisely, assume that km = m/2, and that ρm = o(
√
m). Show that P(any rejections)→

0 as m→∞.

Solution: The problem is that there are O(m) null observations with relatively small values of |yi|,
and any non-null signal will have to generate a χ2-test rejection even when combined with the small
observations.

Let IS = {i : y2
i < 1/4}. If φIS∪{i} = 0 for every i = 1, . . . ,m, then the closed-test procedure will not

reject any Hi.

To get φIS∪{i} = 1 we must have ∑
j∈IS∪{i}

y2
j ≥ χ2

|IS∪{i}|(α) > |IS |.

In that case, we have

y2
i > |IS | −

∑
j∈IS

y2
j > |IS | − |IS |/4
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So we will not reject the set IS ∪ {i} unless y2
i > 3|IS |/4. Therefore the whole procedure doesn’t reject

any Hi unless
max
i
y2
i > 3|IS |/4

Now, because
P(ε2

i < 1/4) = Φ(1/2)− Φ(−1/2) ≈ 0.38,

and there are m− k = m/2 null observations,

|IS | ≥ #{i > m/2 : ε2
i < 1/4}

∼ Binom(m/2, 0.38)

So as m→∞, P(|IS |/m < 1/6)→ 0.

Next, because ρm <
√
m/6 for sufficiently large m, we have

P(max
i
|yi| >

√
m/3) ≤ P(max

i
|εi| >

√
m/6)→ 0

Tying it all together,

P(any rejections) ≤ P(max
i
y2
i > 3|IS |/4)

≤ P(max
i
y2
i > m/9) + P(3|IS |/4 < m/8)

= P(max
i
|yi| >

√
m/3) + P(|IS | < m/6) → 0 + 0

(b) Show that if instead we used Bonferroni’s procedure with km = m/2 and ρm ≥ δ
√

2 logm for any
constant δ > 0, then P(any rejections)→ 1 as m→∞.

Solution: From class, we know the largest of the m/2 non-null observations will be roughly of size
ρm+

√
2 log(m/2) ≈ (1+δ)

√
2 logm for sufficiently large m. But zα/2m ≈

√
2 logm, so maxi |yi| > zα/2m

with high probability.

4. Testing Hypotheses in Fixed Order Suppose someone gives us an a priori ordering on hypotheses
H0,1, . . . ,H0,m with p-values p1, . . . pm (i.e. the order is specified in advance of looking at the data). We
then use the following procedure: If p1 ≥ α, stop and accept all null hypotheses. Otherwise, reject H0,1 and
keep going. Then, if p2 ≥ α, stop and accept H0,2 through H0,m. Otherwise, reject H0,2 and keep going,
etc. In other words, if k is the index of the first p-value that is larger than α, we reject H0,i for each i < k
and accept the rest.

(a) Prove that this procedure controls the FWER, regardless of the dependence structure of the p-values.

Solution: Let i∗0 = min I0, the index of the first true null hypothesis in the list. We cannot make any
mistakes unless pi∗0 ≤ α, which happens with probability at most α.

(b) Challenge (Optional) Can you formulate this problem as a special case of a closed-test procedure? That
is, what intersection-null test is it the closure of? (Note: this part suffices to prove part (a) so you can
just write “see answer to (b)”).

Solution: This procedure is a closed-test procedure where we use φI(p) = 1{pmin I < α} as our
intersection-null test. That is, we reject HI (in step 1) if pmin I < α.

We need to show that

this closed-test procedure rejects Hi ⇐⇒ the ordered testing procedure above rejects Hi

The ordered testing procedure rejects Hi if and only if all of the first i p-values are ≤ α. If pj > α for
some j ≤ i, then the intersection null test doesn’t reject for {j, i} because pmin{j,i} = pj > α; thus the
closed-test procedure does not reject Hi. Conversely, if pj ≤ α for all j ≤ i, then for any I 3 i, min I ≤ i
and therefore pmin I ≤ α; thus the closed-test procedure does reject Hi.
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5. A Bit of Philosophy (Note: Graded for completion only; write as little or as much as you want, but
write something. Also note I don’t know the answer to this question!)

Suppose a journal decides to embrace statistical rigor and requires that in each submitted paper, all of
the hypothesis tests / confidence intervals, taken together, must control the FWER at level α = 0.05. In
other words, if ten confidence intervals appear in your paper, they must have been generated according to a
procedure guaranteeing that, with 95% probability, all ten cover their true parameters.

In a meeting of the editors, one particularly conservative editor pipes up saying “this is a good start, but
really we should be controlling the FWER across all of the inferences in all of the articles in each issue of
the journal.” Discuss the feasibility of this proposal. Aside from feasibility, do you think this is a good goal?
Why stop at FWER for each issue, as opposed to FWER control for each year, or over the entire life of the
journal? If you think these proposals are too conservative, is there a principled reason to require FWER
control for each article but not for each issue of the journal?

Solution: I think arguably there is not really a principled reason to do it for each article but not for
each journal issue: just as the “best” results in a study will be singled out to be highlighted in the journal
version, it is also true that the “best” findings in the whole journal will be singled out and perhaps reported
widely in the media. In that sense, I think that “all p-values in the journal” is arguably a relevant family.

In my opinion, this sort of conundrum argues for the “selective” error rates we will study during most
of the rest of the class: it is OK if some of the p-values in the article, or in the journal are wrong, even if
many are wrong. The problem comes when the highlighted (selected) findings do not satisfy their advertised
frequency properties.
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