Outline

- 1) Causality
- 2) Potential Outcomes
- 3) Randonized Experiments

Causality

Correlation + Causation

So far, course has focused on drawing inferences about probability distis

Ex $D_i = 1$ Student i gets scholarship? $Y_i = College GPA$ of student i

Given iid sample of (Di. Yi) pairs, could estimate E[YiIDi]

· get interval for $\Theta = \mathbb{E}[Y_i | D_i = 1] - \mathbb{E}[Y_i | D_i = 0]$

· test Ho: dist(Y: 1 D:=1) = dist (Y: 1 D:=0)

But Suppose CI for D is [0.7,0.8]

Still con't conclude scholarship consod GPA boost

(Why not?)

People often interpret regression coeffis cansally,
"all other things equal" - usually who just ification

We can never draw causal conclusions from joint dist. <u>alone</u> But causal questions are often very interesting, drive policy, etc. When can we draw causel condusions? Two questions about causelity: Hard question: what caused an outcome? "Why couldn't he find a job?" - very few things are monocausal - causes may interact w/ each other Easier: what effect does an intervention have? Does a specific job training program help people find jobs?" - more tractable - could imagine experiment - only meaningful relative to specific counterfactual

(same person, no training program)

Effect of a cause" not "Cause of an effect"

Potential Outcomes

Idea: Define causal effect in terms of outcomes that would happen in alt. universe

$$Y_i(1) = GPA$$
 of student i with schol.
 $Y_i(0) = GPA$ 1' w/o schol.

Observed
$$Y_i = Y_i(D_i)$$
 (Sutva)

$$S = \mathbb{E}\left[Y_{i}(1) - Y_{i}(0)\right]$$

Different from 0:

$$\Theta = \mathbb{E}[Y_{i}(1) | D_{i} = 1] - \mathbb{E}[Y_{i}(0) | D_{i} = 0]$$

$$= \mathbb{E}[Y_{i}(l) - Y_{i}(0) \mid D_{i} = l] + \mathbb{E}[Y_{i}(0) \mid D_{i} = l] - \mathbb{E}[Y_{i}(0) \mid D_{i} = l]$$

selection bies

Randomized Experiments

Suppose Di assigned at random, w/o regard to any attributes

Then,
$$\mathbb{E}\left[Y_{i}(1) \mid D_{i}=1\right] = \mathbb{E}\left[Y_{i}(1)\right]$$

$$\Rightarrow \Theta = 5$$

Can use usual two-sample methods, interpret causally.

For exemple, can get unbiased estimate of J=0:

$$\delta = \frac{1}{n_i} \sum_{i: D_i = i} Y_i - \frac{1}{n_o} \sum_{i: D_i = o} Y_i$$

Usually can't observe both potential outcomes in social science applications

Randomization Tests

What if we want to test whether

treatment has any effect (on any

unit)?

Fisher's sharp null:

 $H_o: Y_i(i) = Y_i(o) \quad \forall i = 1,...,n$

Note: statement about (unobserved) aspect
of these n units (no sampling model)

Idea: Use randomness of treatment
assignment to our benefit

Under Ho, Yi (Di) = Yi (Di) under

any treatment assignment (null)

We know dist. of D => know dist of

any test stat T(0, Y(D))

For
$$b=1,...,B$$
:

 $D^{*b} = permute(D)$
 $\hat{S}^{*k} = \frac{1}{n!} \sum_{i:D_i \neq k} Y_i - \frac{1}{n_0} \sum_{i:D_i \neq k} Y_i$

Under H_0 , \hat{S} , \hat{S}^{*k} , ..., \hat{S}^{*k} are

 $e \times changeable \Rightarrow use p = \frac{1}{k+1} \left(1 + \# \left\{ \hat{S}^{*k} \geq S \right\} \right)$

Can extend to CI for constant

 $+ centiment$ effect:

 H_0^{S} : $Y_i(1) - Y_i(0) = J$ Y_i
 $Under H_0$, $Y_i(D_i^{*k}) - Y_i(D_i) = S(D_i^{*k} - D_i)$
 $T^{*k} = \frac{1}{n!} \sum_{i:D_i^{*k} = 1} \left(Y_i + S(1 - D_i) \right)$

 $-\frac{1}{200}\sum_{D_{i},p=0}^{\infty}(\lambda^{i}-2D^{i})$

Experimental Design

Often can improve precision of estimator if we randomite

More rarefully

e.g. Suppose pre-treatment covariate

Xi is highly predictive of outcome

Say, Xi = age

Yi = 18 recovers from illness?

If treatment assigned unit. randomly, treatment group will get more or less older people by chance Could be main driver of veriance!

Better: Match 2 oldest, next 2, ---, 2 younger
Randomite win phirs

Different randomization test.

Unconformdedness

In observational studies, we don't randomise, just observe world as it is.

Assume (Xi, Di, Yi(0), Yi(1)) ind P

Pre-treatment freatment P.O.s

Di

we want $\delta = \mathbb{E}\left\{Y_{i}(i) - y_{i}(o)\right\}$

Suppose (Y:(1), Y:(0)) II D: 1 X:

then I becomes identifiable from obs. list.

 $\mathbb{E}\left\{Y_{i}(1)-Y_{i}(0)\right\} = \mathbb{E}\left\{\mathbb{E}\left\{Y_{i}(1)\mid X_{i}\right\}-\mathbb{E}\left\{Y_{i}(0)\mid X_{i}\right\}\right\}$ $=\mathbb{E}\left\{\mathbb{E}\left\{Y_{i}\mid X_{i}, D_{i}=1\right\}-\mathbb{E}\left\{Y_{i}\mid X_{i}, D_{i}=0\right\}\right\}$ observed Y_{i}

 $= \mathbb{E} \left[f_i(x_i) - f_i(x_i) \right]$ $f_d(x_i) = \mathbb{E} \left[Y_i(X_i, D_i = d) \right] \quad identifiable.$

Dist (4 (DEE1) f(x)= E[y/x, 0=1] Dist (41 pizo) Dist(X10= 1 fo(x)= F[Y1x, Di=o]

Example of <u>Simpson's Peradox</u>: apparent effect is reversed after we condition on something.

Propensity Scores

Sometimes can't randomize ourselves, but can estimate how "nature" randomized treatment assignment.

Suppose we observe covariates x_i , know $e(x) = P(D_i = 1 \mid X_i = x)$ Propensity Score function And assume unconfoundedness: $(e(x) \in (0,1))$ $(Y_i(0), Y_i(1)) \perp D_i \mid X_i$

Then also true that (Y:(0), Y:(11) II Dile(Xi)

Why? $P(Y_i \in A, D_i = 1 \mid e(x_i)) = \mathbb{E} \left[P(Y_i \in A, D_i = 1 \mid x_i) \mid e(x_i) \right]$ $= \mathbb{E} \left[P(Y_i \in A \mid x_i) P(D_i = 1 \mid x_i) \mid e(x_i) \right]$ $= e(X_i) \mathbb{E} \left[P(Y_i \in A \mid x_i) \mid e(x_i) \right]$ $= e(X_i) P(Y_i \in A \mid e(x_i))$

We could use regression adjustment $M_{J} = \mathbb{E}\left[\mathbb{E}\left(Y_{i} \mid e(X_{i}), D_{i} = d\right)\right]$

But an actually make exact adj.

Inverse Propensity Weighting

Suppose we actually know
$$e(x) = P(D_{i-1} | X_{i} = x)$$

$$\hat{J} = \frac{1}{n} \sum_{D_i=1}^{\infty} \frac{Y_i}{e(x_i)} - \frac{1}{n} \sum_{D_i=0}^{\infty} \frac{Y_i}{1-e(x_i)}$$

Informally: for each (Xi, Yi(0), Yi(1)) we have an e(Xi) chance of observing Yi(1), (otherwise Di=0 and Yi(1) missing).

Informally: for each (Xi, Yi(0), Yi(1)) we have have have an expression of the property of the proper

(works as long as
$$e(x) \in (0,1) \ \forall x$$
)

$$\frac{1}{n}\sum_{D_{i}=1}^{n}\frac{Y_{i}}{e(X_{i})}=\frac{1}{n}\sum_{i=1}^{n}\frac{Y_{i}(i)D_{i}}{e(X_{i})}$$

$$\mathbb{E}\left[\frac{Y_{i}(i)D_{i}}{e(x_{i})}\mid X_{i}\right] = \mathbb{E}\left[Y_{i}(i)\mid X_{i}\right] \cdot \mathbb{E}\left[\frac{D_{i}}{e(x_{i})}\mid X_{i}\right]$$

$$\Rightarrow \mathbb{E} \frac{Y:D_i}{e(X:)} = \mathbb{E} Y_i(i)$$

Similarly,
$$\frac{1}{n} \sum_{i=0}^{n} \frac{y_i}{1-e(x_i)} = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i(0)(1-D_i)}{1-e(x_i)}$$

=)
$$\mathbb{E} \frac{Y_{i}(1-D_{i})}{1-e(x_{i})} = \mathbb{E} Y_{i}(0)$$

So,
$$\mathbb{E} \hat{S} = \mathbb{E}(Y_{i}(i) - Y_{i}(0)) = \mathcal{S}$$

Practical issues: if
$$e(X:)\approx 0$$
 or ≈ 1
for some Xi , IPW estimator can have

extremely high variance. Called "poor overlap"

Estimated Prop. Scores

Problem: we don't know e(Xi)

Use
$$\hat{e}(x) = \frac{e^{\hat{k}'x}}{1+e^{\hat{k}'x}}$$

Bias >0, & still consistent

If propensity score model is misspecified,

Bias +0, 3 not consistent

Unsurprising since our model was wrong

More surprising: we can (sometimes) correct it!

What is the bias? Assume for

Write
$$\hat{\mathcal{U}}_{i} = \frac{1}{n} \sum_{i=1}^{n} \frac{Y_{i}D_{i}}{e(X_{i})}$$
, $\hat{\mathcal{U}}_{o} = \frac{1}{n} \sum_{i=1}^{n} \frac{Y_{i}(1-D_{i})}{1-e(X_{i})}$
then $\hat{S} = \hat{\mathcal{U}}_{i} - \hat{\mathcal{U}}_{o}$

$$\operatorname{Bias}(\hat{\Lambda}_{i}) = \mathbb{E}\left[\frac{Y_{i}(i)D_{i}}{\hat{e}(X_{i})} - Y_{i}(i)\right]$$

Assume for simplicity ê(.) IL (Xi,Di,Yi) i=1
(e.g. data splitting)

$$\mathbb{E}\left[\frac{Y_{i}(i)D_{i}}{\hat{e}(x_{i})} - Y_{i}(i) \mid X_{i}\right] = \mathbb{E}\left[Y_{i}(i) \cdot \frac{D_{i} - \hat{e}(x_{i})}{\hat{e}(x_{i})} \mid X_{i}\right]$$

$$= \mathbb{E}\left[Y_{i}(i)\mid X_{i}\right] = \mathbb{E}\left[\frac{D_{i} - \hat{e}(x_{i})}{\hat{e}(x_{i})} \mid X_{i}\right]$$

$$\Rightarrow \mathbb{B}_{ias}(\hat{n}_{i}) = \mathbb{E}\left\{f_{i}(x_{i}) \cdot \frac{D_{i} - \hat{e}(x_{i})}{\hat{e}(x_{i})}\right\}$$

Similarly,
$$B_{1-s}(\hat{n}_0) = \mathbb{E}\left[f_0(x_i) \cdot \frac{\hat{e}(x_i) - D_i}{1 - e(x_i)}\right]$$

We can estimate/correct Bias using regression?

Double Robustness

$$\hat{\mathcal{M}}_{i}^{DR} = \frac{1}{n} \sum_{i=1}^{n} \frac{Y_{i} D_{i}}{\hat{e}(x_{i})} - \frac{1}{n} \sum_{i=1}^{n} \frac{D_{i} - \hat{e}(x_{i})}{\hat{e}(x_{i})} \hat{f}_{i}(x_{i})$$

$$\hat{M}_{o}^{DR} = \frac{1}{N} \hat{S}_{i=1} \frac{Y_{i}(1-D_{i})}{1-\hat{e}(X_{i})} - \frac{1}{N} \hat{S}_{i=1} \frac{\hat{e}(X_{i})-D_{i}}{1-\hat{e}(X_{i})} \hat{S}_{o}(X_{i})$$

0(

$$\cdot \hat{e}(x) = e(x) \left(+ o_{\rho}(1) \right)$$

$$\hat{f}_{d}(x) = f_{d}(x) \quad (+ o_{\rho}(1)) \quad , \text{ for } d=0.1$$

Then
$$\mathbb{E} \hat{S}^{DR} = \mathcal{S} \left(+ o_{\rho}(1) \right)$$

1. Suppose
$$\hat{f}_{J}(x) = \hat{f}_{J}(x)$$
 for $d = 0$, 1

2. Suppose
$$\hat{e}(x) = e(x)$$
, \hat{f}_{o} , \hat{f}_{o} , \hat{f}_{o} , possibly wrong

So
$$\mathbb{E} \hat{\mathcal{A}}_{1}^{PR} = \mathbb{E} \hat{\mathcal{A}}_{1} = \mathcal{M}_{1}$$

Similar for $\hat{\mathcal{A}}_{0}^{PR}$