Minimax Estimation

Outline

- 1) Minimax risk, estimator
- 2) Least favorable priors

Minimex risk

Last idea for choosing an estimator: worst-case risk

minimize sup R(0,5)

The minimum achievable sup-risk is called the minimum risk of the estimation problem

 $\Gamma^* = \inf_{\delta} \sup_{\Theta} \mathcal{R}(\Theta; \delta)$

An estimator 5* is called <u>minimax</u> if it achieves the minimax risk, ie.

Sup R(Θ; 5*) = r*

Game theory interpretation:

- 1) Analyst chooses estimator 5
- 2) Nature chooses parameter O to max. risk

NB: Nature chooses & adversarially, not X

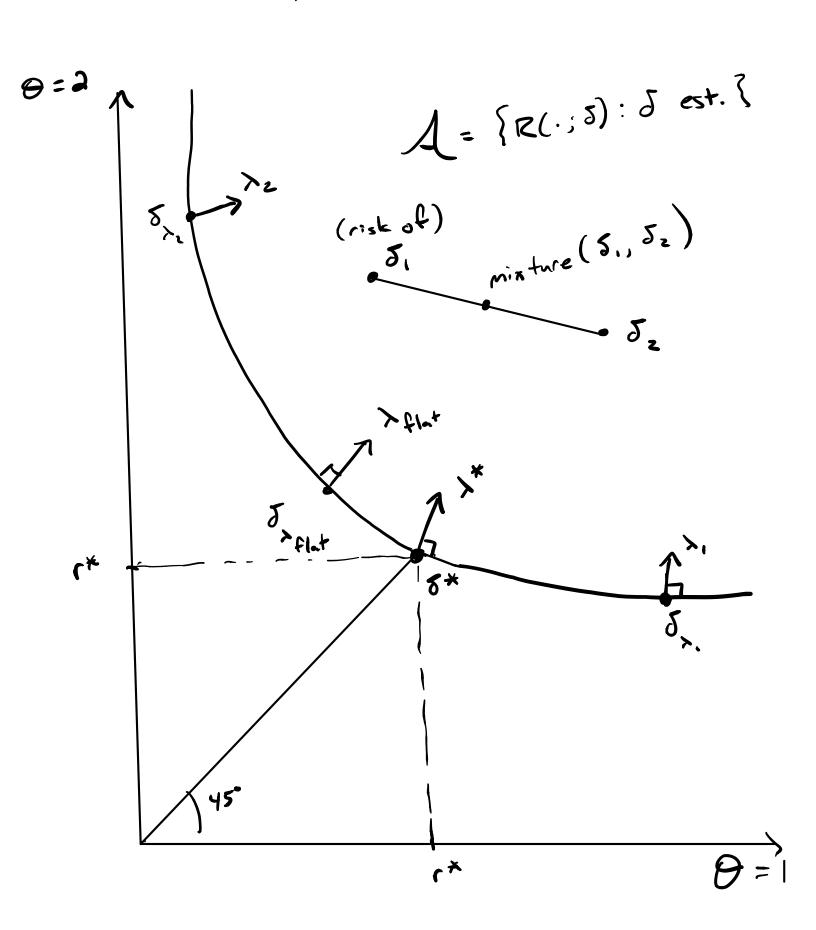
Compare to Bayes, where Nature chooses prior from a known distribution

>> Nature plays a specific mixed strategy
We will look for Nature's Norsh-equil. strategy

Least Favorable Priors Minimax closely related to Bayes Key observation: average-case risk ≤ worst-case risk For proper prior 1, the Bayes risk is $\Gamma_{\Lambda} = \inf_{\delta} \int R(\theta; \delta) d\Lambda(\theta)$ $\leq \inf_{\delta} \sup_{\delta} R(\theta; \delta) = r^*$ If δ_{Λ} 3-yes then $\Gamma_{\Lambda} = \int R(\theta; \delta_{\Lambda}) d\Lambda(\theta)$ Bayes risk of any Bayes estimator lower bounds 14 Least favorable prior 1st gives best lower bound: 1st = sup 1st Sup-risk of any estimator upper bounds 14 sup R(0; 5) ≥ r* ≥ 1/2 (any \wedge) (any 5)

Theorem If in = sup R(0; 5) with Bayes estimator on their (a) of is minimax (b) If on is unique Bayes (up to a.s.) for A, it is unique minimax (C) A is least fav. Roof a) Any other d: Sup R(0;5) 2) R(0;5) 1 A(0) > \ R(0; 5/) d \ (0) (*)= sup R(0;5) by assumption) rs is minimen risk, of is minimex, b) Replace ">" with ">" in 2nd ineq. (*) c) Any other prior ? : $r_{\chi} = i \int R(\theta; \tau) d\chi(\theta)$ $\leq \int R(\theta; \, \delta_{\Lambda}) \, d\tilde{\Lambda}(\theta)$ $\leq \sup_{\theta} R(\theta; \delta_{\Lambda}) = c_{\Lambda}$

Picture (1) = \$1,23



The above theorem gives a checkable condition: does any risk = sup risk? mistake on final: saying ra is const. doesn't prove anything True if: 1) $R(\theta; \delta_{\Lambda})$ is constant 2) $\Lambda(\{\theta: R(\theta; \delta_{\Lambda}) = \max_{\xi} R(\xi; \delta_{\Lambda})\}) = 1$ R(8;5,) **>**(0)

Example (Binomial)

$$X \sim \text{Binom}(n, \theta)$$
, estimate Θ , sq. err.

Try Beta(x, β), hope to get one with const.

 $S_{\alpha,\beta}(X) = \frac{x+X}{\alpha+\beta+n}$
 $R(\theta; S_{\alpha,\beta}(X)) = \mathbb{E}_{\Theta}\left[\left(\frac{\alpha+X}{\alpha+\beta+n} - \theta\right)^2\right]$
 $= V_{\text{ar}}\left(\frac{X}{\alpha+\beta+n}\right) + \left(\frac{\alpha+\theta n}{\alpha+\beta+n} - \theta\right)^2$
 $= (\alpha+\beta+n)^{-2} \cdot \left[n\theta(1-\theta) + (\alpha-(\alpha+\beta)\theta)^2\right]$
 $\propto_{\Theta}\left[\left(x+\beta\right)^2 - n\right]\theta^2 + \left[n-2x(x+\beta)\theta + x^2\right]$
 $S_{\text{eff}} = 0$
 $S_{\text{eff}} = \sqrt{n}$
 $\Rightarrow x+\beta = \sqrt{n}$

Bounding minimax risk

Our theorem gives an idea of how to bound rx for a problem:

Lower bound: If A is any prior then $r^* \geq \int R(\theta; \delta_A) dA(0) \quad (= if A LF)$

Minimum estimators are very hard to find but minimum bounds are often used in stat theory to characterize hardness (esp. lower)

Ex: Propose practical estimator of find 1s
for which is close to sup R(0; 5)
(or same rate, or cugs asymptotically)

=> Conclude 5 can't be improved "much" (*)

[Ex: Quantify hardness of a problem by 16

minimax rate in some asy. régime.

Cavest: A problem might be easy throughout most of par. space but very head in some bizarre corner you never encounter in practice!

Least Favorable Sequence

Sometimes there is no least favorable prior, e.g. if par. space isn't compact.

X ~ N(0,1): LF prior should spread mers everywhere, but that is not a proper prior.

Def: A sequence Λ_1 , Λ_2 , ... is LF

if $\Lambda_n \longrightarrow \sup_{\Lambda} \Lambda$

Thm: Suppose $\Lambda_1, \Lambda_2, \ldots$ is a prior sequence and J satisfies $\sup_{\Theta} R(\Theta; J) = \lim_{n \to \infty} \Gamma_{\Lambda_n}$

Then a) 5 is minimax

b) A,, Az, is LF

Proof a) Other est. $\tilde{\xi}$. Then $\forall n$, $\sup_{\theta} R(\theta; \tilde{\xi}) \geq \int R(\theta; \tilde{\xi}) dA_n(\theta)$ $\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} R(\theta; \tilde{\xi}) dA_n(\theta)$

 $\Rightarrow \sup_{\Theta} R(\Theta; \tilde{s}) \geq \sup_{S \to 0} r_{\Delta_{n}}$

= syp R(0;5)

Basic Picture:

> 1

generic s