
 

MinimaxEstimation

Outline
1 Minimax risk estimator

2 Least favorable priors



Minimaxriske
Last idea for choosing an estimator worst case risk

minimize sup RCO DS O
The minimum achievable sup risk is called the

minimaxrisky of the estimation problem

r int Sff RCO D
An estimator 8 is called minimax if

it achieves the minimax risk i.e

Sff RCO s r

Game theory interpretation
1 Analyst chooses estimator 8

2 Nature chooses parameter 0 to max risk

NB_ Nature chooses 0 adversarially not X

Compare to Bayes where Nature chooses prior
from a known distribution

Nature plays a specific mixed strategy
We will look for Nature's Nash equil strategy



Least Favorable Priors

Minimax closely related to Bayes
Key obsevation average case risk E worst case risk

For proper prior d the Bayes risk is

rs int f Rio 8 disco

E int que RCO
o r

If Bayes then ra frcoids daco

Bayes risk of oney Bayes estimator

lower bounds r

Leastfavorabter µ gives best

lower bound rs Sune rs

sup risk of any estimator upper bounds r

Sfp Rco D I r z r
s

Z rs
p t

any A
any

5



theorem If Rs sfp RCO Es with
Bayes estimator 8 then
a is minimax
b If Es is unique Bayes up to
for A it is unique minimax

E A is least fav

Proof a Any other 8

Sff RCO D z S RCO 8 1110
Z FRIO 5 disco x

r s

Sff RCO D by assumption

r is minimax risk is minimax

b Replace z with S in 2nd ineq X

c Any other prior J
if

rz g f RIO 8 disco
E RIO g disco
E
sff RIO Es rs DX
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The above theorem gives a checkable condition

does avg risk sup risk

True f mistake on frnali saying rn
is const doesn't prove anything

1 RIO Js is constant

2 ALSO RCO
imax RCS 3 I
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Exampled Binomial

X Biron n O estimate 0 sq err

Try Beta qp hope to get one with const
risk

plX Btn
Rio I BCxD Eo O

Varo ftp.T t Ip n of
at 13th

2
NOG O t o 6 13305

do otp n O t n 21 13330 42

set D Set 0

Set otp en 2 Gtp n

a 1 3 1 2e rn n

p 542
Beta E Is is LF

Tnk We got lucky
is minimax



Bounding minimaxrisk

Our theorem gives an idea of how to bound
rt for a problem

Upperbound i If J is any estimator then
r't E soup R O d if 8 minimax

Lower bound If A is any prior then

M Z FRIO E dello if ALF

Minimax estimators are very hard to find but

minimax bounds are often used in Stat

theory to characterize hardness esp lower

E Propose practical estimator 8 fund S

for which rs close to
soup Rco o

or same rate or cugs asymptotically

Conclude 8 can't be improved much

EI Quantify hardness of a problem by its

minimax rate in some asy regime
Caveat A problem might be easy throughout

most of par Space but very hard in some

bizarre corner you never encounter in practice



Least Favorable Sequence

Sometimes there is no least favorable prior
e.g if par space isn't compact

X NCO 1 LF prior should spread me

everywhere but that is not a proper prior

Def A sequence I Az is LF

if rsn sneers
The Suppose I Az is a prior sequence
and 8 satisfies

soup RCO 5 lion ran

Then a J is minimax

b A Az is LF

Proof a Other est F Then Fn

Sfp RCO F I frcofddb.CO
z r

Sn

soup Rco E she Isn
z Iif Isn
SffRCOD



b Prior A

RIO disco

E f RIO 5 Oslo
2

snap Rco D

line rs
DX

Basic Picture

Sff RCO 8 generic 8

inf soup RCO D Sgp RCO
if minimax est exists

zgy rs rs
if LF prior exists

2 rs generic A


