
 

fmpiric.IR ames S1ein

Outline
1 Empirical Bayes
2 James Stein Paradox

3 Stein's Lemma
4 Stein's unbiased risk estimator SURE



EmpiricalBayesy
Common situation in hierarchical Bayes models

f g one draw hard to justifypro
lots of info prior doesn't matter
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many draws
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Hybrid approach is possible

Estimate 5 based on all data e.g
via MLE

Plug in as though known
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If we knew the value of T
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James Stein Estimator

James Stein proposed instead d 33
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James Stein Paradox

Back to non Bayesian Gaussian seq model

X
d
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shocking result of James Stein 1956

For dz3 the sample mean X IE Xi
is i as an estimator of 0

under squared error loss
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Note this result holds without assumption of

Bayes model on 0 true for 0 509 1094
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Deep implication shrinkage makes sense even

without Bayes justification



Stemma
Useful tool for computing leslinsting risk in

Gaussian estimation problems

theorem Stein's Lemma univariate

Suppose X NCO o

Hx IR IR differentiable Ethical as

Then ELCx o hCxB o Ethan
Cov X hCX

Proof Note we can assume wlog h o 0 why

First assume 0 0 02 1
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In the last step we have used

F ftp.ei x e

Similar argument shows fjhkdoaddx fjh.CH x dx

Result holds for 0 0 02 1
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Multivarialesteiislemmatef
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theorem Stein's Lemma Multivariate
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Stein's Unbiased Risk Estimator SURI

Can use Stein's Lemma to get unbiased

estimator of the MSE of any dCX

apply Stein's Lemma with h X X ex
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EI Sfx I 5 X for fixed 5

hCX SX Dh SID
d t 511 112 251
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bias variance
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Note no Bayesian assumptions
Vanilla Gaussian seq model fixed OEIRD

5 0 is never optimal can we estimate 5 6



RiskofJames Stein
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If 0 0 then Eof D 2

Rco cfs d Cd 2 2

Possibly sad

O is then Eoi x
RCO ofs d

110112

d
Smaller and smaller advantage but always better

Note cfs x also inadmissible

Esfx l
d
f X is strictly better

Practically more useful version

Essex l x Ita
Dominates 8CX X for d 24

Taken to logical extreme suggestion seems dumb
should everyone Berkeley pool their estimates

Note Ell is improved but lE Xi Oi5 may get
worse for individual coordinates


