Outline

1) Conjugate Priors
2) Where does the prior come from?
3) Bayesian pros and cons
Conjugate Priors

If the posterior is from the same family as the prior, we say the prior is conjugate to the likelihood.

Most common in exp. fam.s: Suppose

\[\frac{X_i \mid \eta}{\text{id}} \sim \rho_{\eta}(x) = e^{\gamma' \theta(x) - A(\eta)} h(x) \quad \forall \eta \in \Omega \subseteq \mathbb{R}^s, \quad i = 1, \ldots, n \]

For carrier \(\lambda_0(\eta) \), define \(s+1 \)-dim family:

\[\lambda_{k^n, k}(\eta) = e^{k\mu' \eta - kA(\eta) - B(k\mu, k) \lambda_0(\eta)} \]

Suff. stat \((-A(\eta)) \in \mathbb{R}^{s+1} \)

Nat. param. \((k^n) \)

Then

\[\lambda(\eta \mid x_1, \ldots, x_n) \propto \left(\prod_{i=1}^{n} e^{\gamma' \theta(x_i) - A(\eta)} h(x_i) \right)^{-1} \]

\[\cdot e^{k\mu' \eta - kA(\eta) - B(k\mu, k) \lambda_0(\eta)} \]

\[\cdot e^{(k\mu + \Sigma \theta(x_i))' \eta - (k+n)A(\eta)} \lambda_0(\eta) \]

\[= \lambda_{k\mu + n \bar{T}, k+n}(\eta) \]

where \(\bar{T}(x) = \frac{1}{n} \sum_{i=1}^{n} \theta(x_i) \)
Interp.: If we:

1) Take prior $\lambda_{k_n, k}$, observe avg. suff. stat. \bar{T} on sample size n

OR 2) Take prior λ_0, observe avg. suff. stat.
 a) \bar{T} on sample size k (pseudo-data)
 b) \bar{T} on sample size n

We get posterior $\lambda_{k_m+n\bar{T}, k+n}$

Often $\frac{km + n\bar{T}}{k+n}$ is Bayes est. for E_{x_i}, then

\[\hat{M}_{post} = \bar{T} \cdot \frac{n}{k+n} + M \cdot \frac{k}{k+n} \]

UMVUE from data \hspace{1cm} UMVUE from pseudo data

(If so then λ_0 not a proper prior. Why?)
Conjugate Prior Examples

<table>
<thead>
<tr>
<th>Likelihood</th>
<th>Prior</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_i \mid \theta \sim \text{Binom}(n, \theta)$</td>
<td>$\theta \sim \text{Beta}(\alpha, \beta)$</td>
</tr>
<tr>
<td>$= \theta^x (1-\theta)^{n-x} \binom{n}{x}$</td>
<td>$= \theta^{\alpha-1} (1-\theta)^{\beta-1} \frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}$</td>
</tr>
<tr>
<td>$X_i \mid \theta \sim \mathcal{N}(\theta, \sigma^2)$ (known)</td>
<td>$\theta \sim \mathcal{N}(\mu, \tau^2)$</td>
</tr>
<tr>
<td>$= \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(\theta-x)^2}{2\sigma^2}}$</td>
<td>$= \frac{1}{\sqrt{2\pi\tau^2}} e^{-\frac{(\theta-\mu)^2}{2\tau^2}}$</td>
</tr>
<tr>
<td>$X_i \mid \theta \sim \text{Pois}(\theta)$</td>
<td>$\theta \sim \text{Gamma}(v, s)$, $\theta > 0$</td>
</tr>
<tr>
<td>$= \frac{\theta^x e^{-\theta}}{x!}$</td>
<td>$= \frac{1}{\Gamma(v)s^v} \theta^{v-1} e^{-\frac{\theta}{s}}$</td>
</tr>
</tbody>
</table>

Gamma / Poisson:

$\lambda(\theta|X) \propto \theta^{v-1} e^{-\frac{\theta}{s}}$

$= \text{Gamma}(v + \sum X_i, \left(\frac{1}{s} + n\right)^{-1})$

$\Rightarrow k = s^{-1}, \quad \mu = vs$

$\lambda_0(\theta) = \theta^{-1}$ (not normalizable)
Where does prior come from?

Biggest issue with Bayes in practice is how to choose prior

In general, can't check goodness of fit:
1 draw of θ ~ Λ, not even directly observed.

Various ideas of how to do it:

1) Prior experience:

Ex. A/B testing in tech. co.s,
estimating eff. of 400,000 SNPs on trait,
estimating "true" 3PT% for basketball players

Prior is (relatively) non-controversial

• Can fit from data
 (leads to hierarchical / Empirical Bayes)
• Can test validity of prior b/c we have many draws from it

Works when encountering similar problems repeatedly (but are they really similar?)
2) **Subjective beliefs:**

Prior reflects epistemic uncertainty

Posterior = rational updating of beliefs.

Pros:
- Can't be wrong about your own opinion!
- Can bring to bear hard-to-formalize knowledge from outside the data

Issues:
- Philosophical conundrum: is the mass of a particle really "random"?
- Scientists find subjectivity offputting (reporting posterior is just reporting an opinion)
- Generally impossible to write down your beliefs about joint dist. of $\Theta \in \mathcal{R}^1$
- What if people are systematically overconfident?

But this is the most philosophically coherent account of statistics. *(Coin flip demo)*
3) Convenience Prior

Bayes computations can be very hard: generically, it's very hard to compute the normalizing constant $\int \lambda(\theta) p(x) d\theta$

If $\dim(\Omega)$ large, posterior $\propto 0$ for most of Ω

Lots of Bayesian research is computational (e.g., MCMC) and great progress has been made.

Helps to use conjugate priors where possible.

But then the subjective account basically falls apart.
4) "Objective" Priors

Suppose $X_i \sim \mathcal{N}(\theta, 1)$, $i = 1 \ldots n$

"Natural" choice is $\theta \sim "flat prior"

$\lambda(\theta) \propto 1$

This prior is improper but it's ok:

$\lambda(\theta | x) \propto e^{\theta x_i - n\theta^2}$

$\propto N(\bar{X}, n^{-1})$

More generally, could always use flat prior

Arises naturally as limit of $\theta \sim \mathcal{N}(0, \tau^2)$, $\tau \to 0$

Problem: Flat prior is not flat anymore if we reparameterize θ!

Jeffreys proposed using $\lambda(\theta) \propto |J(\theta)|^{1/2}$

This is also the Jeffreys prior after any reparameterization

Binomial: Jeffreys prior looks like

![Graph](image-url)
Gaussian Sequence Model

\[X \sim N_d(\mu, I_d) \quad \mu \in \mathbb{R}^d \]

Jeffereys prior is flat: \(\lambda(m) = 1 \)

\[\lambda(m|x) = N_d(X, I_d) \]

\[\Rightarrow \quad \mathbb{E}[m|x] = X \]

Reasonable estimator: coincides with \(\text{UMVUE}, \text{MLE}, \text{minimax} \), ...

(But inadmissible)

What about \(\nu^2 = \|m\|^2 \) ?

\[m \sim N_d(x, I_d) \Rightarrow \mathbb{E}[\|m\|^2 | x] = \|x\|^2 + d \]

Recall \(\text{UMVUE} \) was \(\|x\|^2 - d \)

So Bayes est. = \(\text{UMVUE} + 2d \)

\[\text{MSE}(\theta; \sigma_\lambda) = \text{Var}_\theta(\hat{\sigma}_{\text{UMVUE}}) + 4d^2 \]

What went wrong?

\[m \sim N_d(0, \tau^2 I_d) \Rightarrow \nu^2 \sim \tau^2 X_d^2 \]

Jeffereys prior takes \(\tau^2 \to \infty \)

\[\lambda(\nu^2) \propto \nu^2 \left(\nu^2 \right)^{(d-1)/2} \]

\[\lambda(\nu^2) \]

\(\nu^2 \)

"Agnostic"?
Advantages of Bayes

Despite difficulties above, Bayes has some major advantages over other approaches:

1) Estimator is defined straightforwardly:

\[\hat{\theta}(x) = \arg\min_{\theta} \int L(\theta, d) \lambda(\theta|x) d\theta \]

Problem is reduced entirely to computation

May be difficult to compute but in principle we can find it for generic \(L, \lambda, P, g(\theta) \)

Don’t need to rely on special structure like complete suff. stat, \(\text{u-estimable } g \), exp. fam., simple \(L \)

Gives us freedom to:

- Use highly expressive & complex models
- Use the \(L \) we actually care about
- Incorporate background subject matter knowledge

Unparalleled expressive power for systems we know a lot abt. already
2) Appealing optimality property:
 Even if we don’t "believe" prior, Bayes est. has best avg. case risk
 Bayes estimators are usually admissible

3) Detailed output: entire posterior, joint distr. over all parameters
 One computation (e.g. large sample from posterior) leads to estimates of any g(θ) we can think of

... many more
Cons

1. Difficulty of choosing Λ, esp. in high dim.
 Avg.-case performance doesn't ensure good performance for the real (distribution of) Θ
 If we choose Λ poorly, we might get no mass near true Θ

2. Flipside of ability to specify model in full detail is requirement that we must do so.
 E.g., nonparametric estimation of $g(p)=E_pX_i$
 $X_i \sim P$. \bar{X} is UMVUE, natural choice.
 To get started on Bayes, must define prior over all dist. on Θ.
 Frequentist approaches let us stay more parsimonious with our assumptions.

... many more