# Bayes Estimation

#### Outline

- i) Bayes risk, Bayes estimator
- 2) Examples
- 3) Conjugate priors

#### Frequentist Motivation

Model P= {Po:0€ 52} for data X

Notation change: for now, reserving (A) to denote random variable

Loss L(0,1), Risk R(0; 3)

The Bayes risk is the average-case risk, integrated with some measure 1, called prior

For now, assume  $\triangle(\Omega) = 1$  (prob. meas.) Later we will allow to be improper  $\triangle(\Omega) = \infty$ ) (Note  $\triangle$  and  $\triangle$  for  $\triangle$  functionally equiv.)

 $R_{\text{Bayes}}(\Lambda, \delta) = \int_{\Omega} R(\Theta, \delta) d\Lambda(\Theta)$ 

= 压 尺(④; 5)

whore  $\Theta \sim \Delta$ 

 $= \mathbb{E} L(\widehat{\mathbf{w}}, \mathfrak{Z}(\mathbf{x}))$ 

(A) ~ A XIQ=0~Po

An estimator of minimizing Rayes (1) is called

Bayes ( a Bayes estimator).

Depends on B, A, L

Note any-case loss makes sense even if we don't believe" the parameter is random.

## Bayes Estimator

Then Suppose  $\Theta \sim \Lambda_{\delta}$   $X/\Theta = \Theta \sim P_{\Theta}$   $L(\Theta, d) = O \quad \forall \Theta, d$   $R_{3aye}(\Lambda; \delta_{\delta}) \in \infty \quad \text{for some} \quad \delta_{\delta}(x)$ Then  $\delta_{\Lambda}(x) \in \operatorname{argmin} \quad \mathbb{E}\left[L(\Theta, d) \mid \chi_{\epsilon x}\right] \quad \text{q.e.} \quad x$  $\iff \delta_{\Lambda}(x) \quad \text{is} \quad \text{Bayes} \quad \text{with} \quad R_{8aye}(\Lambda; \delta_{\Lambda}) < \infty$ 

Interpretation: we can find the Bayes estimator by minimizing  $\mathbb{E}[L(Q,d)|X=x]$  "one x at a time."

Proof (=) Let J be any other estimator  $R_{\text{Baves}}(\Lambda; \delta) = \mathbb{E} L(\Theta, \delta(x))$ = E[E[L(Q, 5(x))|X=x]]  $\geq \mathbb{E}[\mathbb{E}[L(\omega, \sigma_{\Lambda}(x))|X=x]]$ = R<sub>Bayes</sub> (A, 5,)  $(< \sim if = 5)$ ( $\leftarrow$ ) Let  $E_x(d) = \mathbb{E}[L(Q, d)|_{X=x}]$ Define  $\delta^*(x) = \begin{cases}
\delta_{\Lambda}(x) & \text{if } \int_{\Lambda}(x) \in \text{argmin } E_x \\
\delta_{\delta}(x) & \text{if } E_x(\delta_{\delta}(x)) < E_x(\delta_{\Lambda}(x)) \\
d^*(x) & \text{otherwise}
\end{cases}$ where  $E_{\mathbf{x}}(d^*) < E_{\mathbf{x}}(\delta_{\mathbf{x}}(\mathbf{x}))$ Ex (5\*(x)) = Ex (50(x)) Then  $E_{x}(S^{*}(x)) \stackrel{a.s.}{\leq} E_{x}(S_{x}(x))$ and with ineq. strict on a set of measure > 0.

M

### Prior, Posterior

Usual interp. of 1 is prior belief about 4 before seeing the data

Epistemic uncertainty: "I think there is a 50% chance that..."

Mathematically, it makes no more or less sense to take of as fixed or random, but a matter of philosophy whether this is scientifically appropriate?

More on this later...

Conditional dist. of (H) given X, which we will write 2 (H) (X) (1aw); called the posterior distribution, also our beliefs after seeing the data.

Densities: prior  $\lambda(\theta)$ , likelihood  $\rho_{\theta}(x)$   $\Rightarrow q(x) = \int_{\Lambda} \lambda(\theta) \rho_{\theta}(x) d\theta \quad \text{marginal density of } x$   $\lambda(\theta | x) = \frac{\lambda(\theta) \rho_{\theta}(x)}{q(x)} \quad \text{posterior density}$ 

Bayes est:  $\delta_{\Lambda}(x) = argmin \int_{\Omega} L(\theta, d) \lambda(\theta | x) d\theta$ 

If 
$$L(0,d) = (g(0)-d)^2$$
 then the Bayes estimator is the posterior mean:

$$E[(g(\Theta)-d)^{2}|X]$$

$$= E[(g(\Theta)-E[g(\Theta)|X]+E[g(\Theta)|X]-d)^{2}|X]$$

$$= Var(g(\Theta)|X)+(E[g(\Theta)|X]-d)^{2}$$
(why is the cass-term 0?)

$$\Rightarrow \delta_{\Lambda}(x) = \mathbb{E}[g(\omega)|X=x]$$

Weighted sq. error:

$$L(\Theta,d) = w(\Theta)(g(\Theta)-d)^2$$
 e.g.  $(\frac{\Theta-d}{\Theta})^2$  sq. rel. error

$$\mathbb{E}\left[\left(d-g(\Theta)\right)^{2}\omega(\Theta)\mid X\right]$$

$$=d^{2}\mathbb{E}\left[\omega(\Theta)\mid X\right]-2J\mathbb{E}\left[\omega(\Theta)\cdot X\right]$$

$$+\mathbb{E}\left[\omega(\Theta)\cdot g(\Theta)\cdot X\right]$$

$$+\mathbb{E}\left[\omega(\Theta)\cdot g(\Theta)\cdot X\right]$$

min at 
$$d = \frac{\mathbb{E}\left[\omega(\Theta)_{9}(\Theta) \mid x\right]}{\mathbb{E}\left[\omega(\Theta) \mid x\right]} \left(= \frac{\delta_{\Lambda}(x)}{\delta_{\Lambda}(x)}\right)$$

$$X | \omega = \Theta \sim Binom(n, \Theta) = \Theta^{\times} (1-\Theta)^{n-\times} \binom{n}{x}$$

$$(4) \sim Beta(\alpha, \beta) = O^{\alpha-1} (1-\Theta)^{\beta-1} \frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}$$

$$\Theta \text{ is CV. here}$$

$$\text{normaliting const.}$$

Marginal dist. of X called Beta-Binomia

Posterior:

$$\lambda(\Theta | x) = \lambda(\Theta) \rho_{\Theta}(x) / q(x)$$
we can drop  $\Theta = \Theta^{\times -1} (1-\Theta)^{\beta -1} \Theta^{\times} (1-\Theta)^{n-x}$ 
depend on  $\Theta = \Theta^{\times +\alpha -1} (1-\Theta)^{n-x+\beta -1}$ 

$$\mathbb{E}[\Omega \mid X] = \frac{X + \alpha}{n + \alpha + \beta}$$

Convex combo 
$$=$$
  $\frac{X}{N}$ .  $\frac{N}{N+\alpha+\beta}$   $+$   $\frac{A+\beta}{A+\beta}$ .  $\frac{N}{N+\alpha+\beta}$ 

Interp.: 
$$k = \alpha + \beta$$
 "pseudo-trials," or successes

(Recall  $\frac{\chi + 3}{n+6}$  from Lec. 2)

$$\begin{array}{lll}
\times |\Theta = \Theta & \sim N(\Theta, \sigma^2) & \subset_{\Theta} e^{-(x-\Theta)^2} \\
\Theta & \sim N(M, \tau^2) & \subset_{\Theta} e^{-(\Theta-M)^2/2\tau^2} \\
\times (\Theta | x) & \subset_{\Theta} e \times \rho \left\{ -\frac{(x-\Theta)^2}{2\sigma^2} - \frac{(\Theta-M)^2}{2\tau^2} \right\} \\
& \subset_{\Theta} e \times \rho \left\{ \frac{X\Theta}{\sigma^2} - \frac{\Theta^2}{2\sigma^2} - \frac{\Theta^2}{2\tau^2} + \frac{\Theta M}{\tau^2} \right\} \\
& = e \times \rho \left\{ \Theta \left( \frac{X}{\sigma^2} + \frac{M}{\tau^2} \right) - \Theta^2 \left( \frac{\sigma^2 + \tau^2}{2\tau^2} \right) \right\} \\
& \subset_{\Theta} \text{Complete square:} \\
& Complete square:} \\
\end{array}$$

$$a\theta^{2} - b\theta = \left(\theta a - \frac{b}{2a}\right)^{2} - c(a, b)$$

$$= \left(\theta - \frac{b}{2a^{2}}\right)^{2} a^{2} - c$$

$$\rightarrow \propto_{\Theta} \exp \left\{-\left(\Theta - \frac{\times \sigma^{2} + n\tau^{2}}{\sigma^{2} + \tau^{2}}\right)^{2} / 2\left(\sigma^{2} + \tau^{2}\right)^{2}\right\}$$

$$\frac{\sigma}{\theta} N\left(\frac{x\sigma^{-2}+n\tau^{-2}}{\sigma^{-2}+\tau^{-2}}, \frac{1}{\sigma^{-2}+\tau^{-2}}\right)$$

precision-weighted harmonic mean average of x, m of o², t²

$$\mathbb{E}\left[\Theta\left[X\right] = X \cdot \frac{\sigma^{2}}{\sigma^{2} + \varepsilon^{2}} + M \cdot \frac{\varepsilon^{2}}{\sigma^{2} + \varepsilon^{2}}\right]$$

Gaussian iid sample 0 ~ N(n, z2) (dropping ( for computations)  $X_i \mid \theta \stackrel{iid}{\sim} N(\theta, \sigma^2)$ , z=1,...,nX | 0 ~ N(0, 5)  $\Rightarrow \mathbb{E}[\Theta/X] = X \cdot \frac{n\sigma^{-2}}{n\sigma^{-2} + \tau^{-1}} + M \cdot \frac{\tau^{-2}}{n\sigma^{-2} + \tau^{-2}}$  $= \chi \cdot \frac{n}{n+\sigma_{1}^{2}} + u \cdot \frac{\sigma_{1}^{2}}{n+\sigma_{1}^{2}}$ Interp:  $k = \sigma_{\ell}^2$  pseudo-observations, mean M If n>>k, "data swamps prior" If neck, "prior swamps data"

Note in both examples:

- · Prior & Likelihood have similar fan. form
  · Posterior comes from same exp. fam. as prior
- · Prior can be interp. as "pseudo-obs."

This is because we chose conjugate priors for the parameter; topic for next lecture.

### Bis and Bayes

Bayes estimators are almost always biased, especially when the parameter value is extreme relative to the prior ]

Theorem The posterior mean is biased unless  $\int_{\Delta} (x)^{a.s.} = q(\Omega)$ 

Proof Suppose of is unbiased. Then

$$J(\Theta) = \mathbb{E}[J(x)|\Theta]$$

$$J_{\Lambda}(x) = \mathbb{E}[g(\Theta)|X]$$
 (by def.)

Condition on X:

$$\mathbb{E}\left[J_{\Delta}(x)g(\Theta)|X\right]=J_{\Delta}(X)\mathbb{E}[g(\Theta)|X]$$

Cond. on  $\omega$ :

$$\mathbb{E}\left[J_{\Lambda}(X)g(\Theta)|\Theta\right]=g(\Theta)^{2}$$

$$\Rightarrow \mathbb{E}[J_{\lambda}(\Theta)] = \mathbb{E}[J_{\lambda}^{2}] = \mathbb{E}[g(\Theta)^{2}]$$