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Called Fisherinfor mation

It is possible to extend this definition to certain

cases where he is not even differentiable
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Combining these results with Cauchy Schwarz

gives us the Cramet LowerBound

or Information Lower Bound

1paray Vards varocl.comDZCovoCS Ico xD2

Varo 501 70

OEIRD gCG4R Var d I Tgco Tco bgco

Inter If g
o is estimand no unbiased estimator

can have smaller variance than Fgco JcojygCo

EI i i d sample

X X dpdC Oe

X pdx Ipo Cxi
Let L co x logoff xi

LCOix El.co xi
i

TCO Varocolco x
Varocqolfoixi
NJ 10 where J.CO is Fisher info

in single observation
Lower bound scales like n t SDI n Ye for regular famili



Efficiency

CR LB is not nec attainable

We define the efficiency of an unbiased estimator as

effs grafts f YI.gg ifgcos oe1R

effoco E 1

We say SCX is efficient if effoco L FO

Depends on Corro Stx Peco X

Corio Kx Ico x

effold
Vargo VargCIco

Conf Edo

El

MX is efficient Carrots Eco I FO

Rarely achieved in finite samples but we can

approach it asymptotically as n co



ltanmesley.ch RoobinsIneq

CR LB requires
differentiation under integral

Can make more general statement if we

replace TKO D with finite difference
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EI Exponential Families
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Doubts about unbiasedness

The 4M VUE might be very inefficient
or inadmissible or just dumb in cases where

another approach makes much more sense
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This is not epistemically reasonable
Could do much better with e.g ML E or a

Bayes estimator

In fact our theorem should make us
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Gaussian Sequence Model
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Gets worse Ex 4.7 in Keener
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Sometimes insisting on unbiased ness leads
us to absurd results

Unbiasedness has bad reputation but other
methods have their problems too


