Outline

1) Score function
2) Fisher information
3) Cramér-Rao Lower Bound
4) Examples
Motivation: Tangent family

\[p_{\theta}(x) = e^{\gamma(\theta)'T(x) - A(\gamma(\theta))} \quad h(x) \quad \gamma: \mathbb{R} \to \mathbb{R}^2 \]

\[\Xi = \{ \gamma(\theta): \theta \in \mathbb{R}^2 \} \]

\[\eta(\theta) = \eta_0 + \theta \delta \]

\[\delta' T(x) \text{ complete suff.} \]

\[\gamma(\theta) \text{ non-linear} \]

\[T(x) \text{ minimal} \]

\[\gamma(\theta_0) = \frac{d\gamma}{d\theta}(\theta_0) \]

\[\Xi = \{ \gamma(\theta_0) + \varepsilon \gamma'(\theta_0): \varepsilon \in \mathbb{R} \} \]

\[q_\varepsilon(x) = e^{(\gamma(\theta_0) + \varepsilon \gamma'(\theta_0))'T(x) - A(\cdots) - h(x)} \]

\[= e^{\varepsilon \gamma'(\theta_0)'(T(x) - \mathbb{E}T)} - k(x) \]

Complete sufficient for tangent family at \(\theta_0 \)

Called Score function
Score function

Assume \(\mathcal{P} \) has densities \(p_\theta \) wrt \(\mu \), \(\Theta \subset \mathbb{R}^d \)
Common support: \(\{ x : p_\theta(x) > 0 \} \) same \(\forall \theta \)
Recall \(l(\theta; x) = \log p_\theta(x) \),
Thought of as random function of \(\Theta \)

Def The score is \(\nabla l(\theta; x) \); plays a key role in many areas of statistics, esp. asymptotics.

Can think of as "local complete sufficient statistic":
\[
p_{\theta + \eta}(x) = e^{l(\theta + \eta; x)} p_\theta(x) = e^{\eta^T \nabla l(\theta; x)} p_\theta(x) \quad \text{for } \eta \approx 0
\]

Differential identities (assuming enough regularity)
\[
1 = \int x e^{l(\theta; x)} \, d\mu(x)
\]
\[
\frac{\partial}{\partial \theta_j} \Rightarrow 0 = \int \frac{\partial}{\partial \theta_j} l(\theta; x) \, e^{l(\theta; x)} \, d\mu(x)
\]
\[
\Rightarrow \quad E_\theta \left[\nabla l(\theta; x) \right] = 0
\]

* Only true if these are the same value of \(\theta \)!
\[\frac{\partial}{\partial \theta_k} = 0 = \int \left(\frac{\partial^2 l}{\partial \theta_j \partial \theta_k} + \frac{\partial l}{\partial \theta_j} \cdot \frac{\partial l}{\partial \theta_k} \right) e^l \, dm \]

\[= E_\theta \left[\frac{\partial^2 l}{\partial \theta_j \partial \theta_k} \right] + E_\theta \left[\frac{\partial l}{\partial \theta_j} \frac{\partial l}{\partial \theta_k} \right] \]

\[\Rightarrow \quad \text{Var}_\theta \left[\nabla l(\theta; x) \right] = E_\theta \left[-\nabla^2 l(\theta; x) \right] \]

\[J(\theta) = \begin{cases} \text{same } \theta & \text{same } \theta \end{cases} \]

Called "Fisher Information"

It is possible to extend this definition to certain cases where \(l \) is not even differentiable, e.g. Laplace location family, but for our purposes we can just assume "sufficient regularity."

Try with another statistic \(\delta(X) \), let

\[g(\theta) = E_\theta [\delta(X)] \quad \text{("unbiased estimator")} \]

\[g(\theta) = \int \delta e^l \, dm \]

\[\Rightarrow \quad \nabla g(\theta) = \int \delta \nabla l e^l \, dm = E_\theta [\delta(X) \nabla l(\theta; x)] \]

\[\Rightarrow \quad \nabla g(\theta) = E_\theta [\delta(X) \nabla l(\theta; x)] = \text{Cov}_\theta (\delta(X), \nabla l(\theta; x)) \]

Since \(E l = 0 \)
Combining these results with Cauchy–Schwarz gives us the Cramér–Rao Lower Bound or Information Lower Bound:

1-param: \(\text{Var}_\theta(\delta) \cdot \text{Var}_\theta(\ell(\theta; x)) \geq \text{Cov}_\theta(\delta, \ell(\theta; x))^2 \)

\(\Rightarrow \text{Var}_\theta(\delta) = \frac{g(\theta)^2}{J(\theta)} \)

Multivariate: \(\Theta \in \mathbb{R}^d, \ g(\theta), \ \delta(x) \in \mathbb{R} \)

\(\text{Var}_\theta(\delta) \geq \nabla g(\theta)' J(\theta)^{-1} \nabla g(\theta) \)

\[\text{Proof:} \]

\(\text{Var}_\theta(\delta) \cdot a' J(\theta) a = \text{Var}_\theta(\delta) \text{Var}(a' V l(\theta)) \)

\(\geq \text{Cov}_\theta(\delta, a' V l(\theta))^2 \)

\(= a' \nabla g \nabla g a, \text{ for all } a \in \mathbb{R}^d \)

\(\Rightarrow \text{Var}_\theta(\delta) \geq \max_{a \neq 0} \frac{a' \nabla g \nabla g a}{a' J(\theta) a} \quad \text{(Exercise)} \)

\(\nabla g \quad J(\theta)^{-1} \quad \nabla g \)

Interp: If \(g(\theta) \) is estimand, no unbiased estimator can have smaller variance than \(\nabla g(\theta)' J(\theta)^{-1} \nabla g(\theta) \)
Example: (i.i.d. sample)
\[X_1, \ldots, X_n \overset{i.i.d.}{\sim} \rho_\theta^{(i)}(x) \quad \Theta \in \Theta \subseteq \mathbb{R}^d \]

\(\rho_\theta \) "regular": common support, finite derivative w.r.t. \(\Theta \)

\[X \sim \rho_\theta(x) = \prod_i \rho_\theta^{(i)}(x_i) \]

Let \(l_1(\theta; x_i) = \log \rho_\theta^{(i)}(x_i) \)
\[l(\theta; x) = \sum_i l_i(\theta; x_i) \]
\[\bar{J}(\theta) = \text{Var}_\theta(\nabla l(\theta; x)) \]
\[= \text{Var}_\theta(\sum_i \nabla l_i(\theta; x_i)) \]
\[= n \bar{J}_1(\theta) \quad \text{where } \bar{J}_1(\theta) \text{ is Fisher info} \]

\(\Rightarrow \) Lower bound scales like \(n^{-1} \) (SD \(\approx n^{-1/2} \) for "regular" families)
Efficiency

CRLB is not necessarily attainable.

We define the efficiency of an unbiased estimator as:

\[\text{eff}_T(\delta) = \frac{\text{CRLB}}{\text{Var}_\theta(\delta)} \left(= \frac{1}{\text{Var}_\theta(\delta)} \text{ if } g(\theta) = \Theta e^R \right) \]

\[\text{eff}_\theta(\delta) \leq 1 \]

We say \(\delta(X) \) is efficient if \(\text{eff}_\theta(\delta) = 1 \ \forall \theta \)

Depends on \(\text{Corr}_\theta(\delta(X), \nabla \ell(\theta; X)) \):

\[\text{eff}_\theta(\delta) = \frac{\text{Cov}_\theta^2(\delta(X), \nabla \ell(\theta; X))}{\text{Var}_\theta(\delta) \cdot \text{Var}_\theta(\nabla \ell(\theta))} \]

\[= \text{Corr}_\theta^2(\delta, \nabla \ell(\theta)) \leq 1 \]

\(\delta(X) \) is efficient \(\iff \text{Corr}_\theta(\delta, \nabla \ell(\theta)) = 1 \ \forall \theta \)

Rarely achieved in finite samples but we can approach it asymptotically as \(n \to \infty \)
Ex. Exponential Families

\[\rho_\eta(x) = e^{\eta^T T(x) - A(\eta)} h(x) \]

\[l(\eta; x) = \eta^T T(x) - A(\eta) + \log h(x) \]

\[\nabla l(\eta; x) = T(x) - \nabla A(\eta) \]

\[= T(x) - \mathbb{E}_\eta T(x) \]

\[\text{Var}_\eta(\nabla l(\eta)) = \text{Var}_\eta(T(x)) = \nabla^2 A(\eta) \]

\[\nabla^2 l(\eta; x) = -\nabla^2 A(\eta) \]

\[\mathbb{E}_\eta[-\nabla^2 l(\eta; x)] = \nabla^2 A(\eta) \quad \checkmark \]

So any unbiased est. of \(\eta \) has

\[\text{Var}_\eta(\hat{\eta}) \geq \nabla^2 A(\eta)^{-1} \]
Curved family: \[p_\theta(x) = e^{\gamma(\theta)'T(x) - B(\theta)} h(x), \quad \theta \in \mathbb{R} \]

\[B(\theta) = A(\gamma(\theta)) \]

\[l(\theta; x) = \gamma(\theta)' T(x) - B(\theta) + \log h(x) \]

\[\dot{l}(\theta; x) = \dot{\gamma}(\theta)' T(x) - \dot{\gamma}(\theta)' \nabla_{\gamma} A(\gamma(\theta)) \]

\[= \dot{\gamma}(\theta)' \left(T(x) - \nabla_{\gamma} A(\gamma(\theta)) \right) \]

\[= \dot{\gamma}(\theta)' \left(T(x) - \mathbb{E}_\theta T(x) \right) \]

\[\Rightarrow \dot{\gamma}(\theta)' T(x) \text{ is "locally complete suff. stat."} \]