Lecture 5

Outline

- 1) Completeness
- 2) Ancillarity
- 3) Basis Theorem

Completeness

Def
$$T(x)$$
 is complete for $P = \{P_0: \Theta \in G\}$

if $E_0 f(T(x)) = O$ VO
 $P = \{P_0: \Theta \in G\}$

Name comes from a prior notion of $P = \{P_0: \Theta \in G\}$
 $P = \{P_0: \Theta \in G\}$ being "complete;"

[See Hw Prob]

[For now, think "minimal +"]

 $P = \{P_0: \Theta \in G\}$
 $P = \{P_0: \Theta \in$

Ex
$$X_{1},...,X_{n}$$
 iid $U[0,\Theta]$ $\Theta \in (0,\infty)$
Can show $T(x) = X_{(n)}$ min. suff. Complete?
Find density of $T(x)$:
$$P_{\Theta}(T \le t) = \left(\frac{t}{\Theta} \wedge I\right)^{n} = \left(\frac{t}{\Theta}\right)^{n} \wedge I$$

$$\Rightarrow P_{\Theta}(t) = \frac{d}{dt}P_{\Theta}(T \le t)$$

$$= n\frac{t^{n-1}}{\Theta^{n}} 1\{t \le \Theta\}$$

Suppose
$$0 = E_0 f(\tau)$$
 $\forall \theta > 0$

$$= \frac{n}{\theta^n} \int_0^{\theta} f(t) t^{n-1} dt \quad \forall \theta > 0$$

$$\Rightarrow \int_0^{\theta} f(t) t^{n-1} dt = 0 \quad \forall \theta > 0$$

$$\Rightarrow f(t) t^{n-1} = 0 \quad \text{a.e. } t > 0$$

Def Let $Y = \{P_0, 0 \in G\}$ be an exponential family with densities with M $\rho_{\theta}(x) = e^{\gamma(\theta)'T(x) - B(\theta)} h(x)$ Assume wlog $A \propto \epsilon R$, $\beta \in \mathbb{R}^s$ with $\beta^{1}T(x) = \alpha$ If so, replace T(x) with a linearly independent basis] It $\Xi = \gamma(\Omega) = \{\gamma(0) : \Theta \in \mathcal{H}\}$ contains an open set, we say P is full-rank. Otherwise we say I is curved.

Theorem If P is full rank then

T(X) is complete sufficient

Proof in Lehmann & Romano, Thm. 4.3.1

Theorem If T(x) complete sufficient for B then T(X) is minimal Game plan for completeness proofs: show two things are a.s. equal by showing they have expectation. Note $M(S(x)) = \mathbb{E}_{\Theta}[T(x)|S(x)]$

Proof Assume S(x) is minimal suff (*)

Then $S(x) \stackrel{q.s.}{=} f(T(x))$ (since T suff.)

Note $M(S(x)) = \mathbb{E}_{\Theta} [T(x) | S(x)]$ does not depend on Θ .

Let g(t) = t - M(f(t)) $\mathbb{E}_{\Theta} [g(T(x))] = \mathbb{E}_{\Theta} T(x) - \mathbb{E}_{\Theta} [M(S(x))]$ $= \mathbb{E}_{\Theta} T(x) - \mathbb{E}_{\Theta} [M(S(x))]$

 $= \mathbb{E}_{o}^{T}(x) - \mathbb{E}_{o}^{T}(\mathbb{E}[T|S]]$ = 0

 $\Rightarrow g(T(x)) \stackrel{q.s.}{=} 0$ (completeness)

Ancillarity

Det V(X) is ancillary for P= [Po: 0=0] if its distribution does not depend Theorem (Basn) If T(X) is complete sufficient and V(X) is ancillary for J, then V(x) II T(x) for all $\theta \in \Theta$ Proof Want to show (Y A, B, YO) Po(VEA, TEB) = Po(VEA) Po(TEB) Equiv: PO(VEAITEB) = PO(VEA) (A PO(TEB) > 0) Let $q_A(T(x)) = P(V \in A \mid T)$ [suff.] $\rho_A = P(V \in A)$ [anc.] $\mathbb{E}_{\mathcal{O}}\left[q_{A}(T) - \rho_{A}\right] = \rho_{A} - \rho_{A} = 0, \forall 0$

 $=) q_A(\tau) \stackrel{q.s.}{=} \rho_A \quad \forall \Theta$

Remark Keep in mind while trying to use Basi. Ancillarity, Completeness, Sufficiency are all properties of a statistic with a family P. Independence is a property with a particular distribution Po => If T, V don't have the desired properties relative to B, they might have them relative to subfamilies. Ex. X_1, \dots, X_n id $N(n, \sigma^2)$ $n \in \mathbb{R}$ $\sigma^2 > 0$ Let Q = {N(m, o) : m ∈ R}

et $Q_{\sigma^{2}} = \{N(n,\sigma^{2})^{n} : n \in \mathbb{R}\}$ $X = \frac{1}{n} \sum X_{i}$ is complete suff. for $Q_{\sigma^{2}}$ $S^{2} = \frac{1}{n-1} \sum (X_{i} - X_{i})^{2}$ is ancillary:

Let $Z_{i} = X_{i} - n$ $N(0,\sigma^{2})$ Statistics! $X_{i} - X_{i} = Z_{i} - \overline{Z}_{i} \Rightarrow S^{2} = \frac{1}{n-1} \sum (Z_{i} - \overline{Z}_{i})^{2}$

Therefore $X \coprod S^2$ for all $\mu \in \mathbb{R}$, $\sigma^2 > 0$ Note S^2 is not ancillary in the full

family $S = SN(n, \sigma^2)^n : \mu \in \mathbb{R}$, $\sigma^2 > 0$ so we couldn't have applied Basu without breaking S up into U Q.