Sufficiency

Outline

1) Review
2) Sufficiency
3) Factorization Theorem

Review

Exp. Fam : \(\rho_\theta(x) = e^{\gamma(\theta)'x} - B(\theta) h(x) \)

Canonical form : \(\rho_\eta(x) = e^{\gamma(x)'x} - A(\gamma) h(x) \)

If \(X_1, \ldots, X_n \sim \text{iid exp. fam.} , (X_1, \ldots, X_n) \sim \text{exp. fam} \)

some nat. param. , suff. stat. \(\Xi = T(x) \)

If \(X \sim e^{\gamma(x)'x} - A(\eta) h(x) \) then \(T(x) \sim e^{\gamma(x)'x} - A(\eta) h_T(x) \)

where \(\int_B h^T(t) \, d\mu^T(t) = \int h(x) \, d\mu(x) \)

Differentiating \(e^{A(\eta)} = \int e^{\gamma(x)'x} \, d\mu(x) \) \(T(x) \)

Once \(\Rightarrow \nabla A(\eta) = E_x T(x) \)

Twice \(\Rightarrow \nabla^2 A(\eta) = \text{Var}_x T(x) \) on \(\Xi^0 \)
Sufficiency

Motivation: Coin flipping

Suppose \(X_1, \ldots, X_n \overset{iid}{\sim} \text{Bernoulli}(\theta) \)

\[
\Rightarrow X \sim \prod_{i=1}^{n} \theta^{x_i}(1-\theta)^{1-x_i} \quad \text{on } \{0,1\}^n
\]

Then \(T(X) = \sum X_i \sim \text{Binom}(n, \theta) \)

\[
= \theta^t(1-\theta)^{n-t}(n^t) \quad \text{on } \{0,\ldots,n\}
\]

\((X_1, \ldots, X_n) \rightarrow T(X)\) is throwing away data. How do we justify this?

In exp. fam. lingo, \(T(X) \) is the "sufficient statistic" for \(X \). Today we'll see why we call it that.

Definition

Let \(\mathcal{P} = \{P_\theta : \theta \in \Theta\} \) be a statistical model for data \(X \). \(T(X) \) is sufficient for \(\mathcal{P} \) if \(P_\theta(X \mid T) \) does not depend on \(\theta \)

Example (Cont'd)

\[
P_\theta(X = x \mid T = t) = \frac{P_\theta(X = x, T = t)}{P_\theta(T = t)}
\]

\[
= \frac{\theta^{\sum x_i}(1-\theta)^{n-\sum x_i} 1\{\sum x_i = t\}}{\theta^t(1-\theta)^{n-t}(n^t)}
\]

\[
= \frac{1\{\sum x_i = t\}}{\binom{n}{t}}
\]

So given \(T(X) = t \), \(X \) is uniform on all seqs with \(\sum x_i = t \)
Interpretations of Sufficiency

Recall we only care about X in the first place because it is (indirectly) informative about Θ. Sufficiency means only $T(X)$ is informative.

We can think of the data as being generated in two stages:

1) Generate T : distribution dep on Θ
2) Generate $X \mid T$: does not dep on Θ

Sufficiency Principle

If $T(X)$ is sufficient for P then any statistical procedure should depend on X only through $T(X)$.

In fact, we could throw away X and generate a new $\hat{X} \sim P(X \mid T)$ and it would be just as good as X.

In graphical model form:

\[
\Theta \rightarrow T(X) \rightarrow X
\]

Fake step 2

No reason to pay any attention!

\[
\sim \hat{X}
\]

Just as good as X!
Factorization Theorem

There is a very convenient way to verify sufficiency of a statistic based only on the density:

Theorem (Factorization Theorem)

Let \(\mathcal{P} = \{ P_\theta : \theta \in \Theta \} \) be a family of distributions dominated by \(\mu \) (\(P_\theta \ll \mu \Theta \)) densities \(P_\theta \).

\(T \) is sufficient for \(\mathcal{P} \) iff there exist non-neg. functions \(g_\theta \), \(h \) such that

\[
\rho_\theta(x) = g_\theta(T(x)) h(x) \quad \text{for a.e.} \ x \ \text{under} \ \mu
\]

\[
\{ \mu(\{ x : \rho_\theta \neq g_\theta(T(x)) \cdot h(x) \}) = 0 \}
\]

Rigorous proof in Keener 6.4

"Physics proof": (rigorous for discrete \(X \))

\[
(\Leftarrow) \quad \rho_\theta(x \mid T = t) = 1\{ T(x) = t \} \cdot \frac{g_\theta(x) \cdot h(x)}{\int_{T(z) = t} g_\theta(z) h(z) \, d\mu(z)}
\]

\[
(\Rightarrow) \quad \text{Take} \ g_\theta(t) = \int_{T(x) = t} \rho_\theta(x) \, d\mu(x) = P_\theta(T(X) = t)
\]

\[
h(x) = \frac{\rho_\theta(x)}{\int_{T(z) = t} \rho_\theta(z) \, d\mu(z)} = \frac{P_\theta(X = x \mid T(X) = T(x))}{\int_{T(x) = t} P_\theta(T = T(x)) \, d\mu(X = x \mid T = T(x))}
\]
Examples

Ex. Exponential Families

\[p_\theta(x) = e^{\gamma(\theta', \tau(x)) - B(\theta)} \frac{g_\theta(T(x))}{h(x)} \]

Ex. \(X_1, \ldots, X_n \overset{iid}{\sim} p_\theta^{(1)} \) for any model

\[P^{(1)} = \{ p_\theta^{(1)} : \theta \in \Theta \} \] on \(X \subseteq \mathbb{R} \)

\(p_\theta \) is invariant to perms of \(X = (X_1, \ldots, X_n) \)

\[\Rightarrow \text{ order statistics } (X_{(i)})_{i=1}^n \quad (X_k = k^{th} \text{ smallest}) \]

are sufficient. \[\text{[Note } (X_i)_{i=1}^n \sim (X_{(i)})_{i=1}^n \text{ loses information, specifically the orig. ordering]} \]

For more general \(X \) we can say the empirical distribution

\[\hat{P}_n(\cdot) = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}(\cdot) \]

is sufficient, where \(\delta_{X_i}(A) = \mathbb{1}\{x_i \in A\} \)

Not important that it's a measure in this context, just keeps track of which values came up how many times
\[\begin{align*}
\Pr &. \quad X_1, \ldots, X_n \overset{iid}{=} U[\theta, \theta+1] \\
&= 1\{ \theta \leq x \leq \theta+1 \} \\
\rho_\theta(x) &= \prod_{i=1}^{n} 1\{ \theta \leq x_i \leq \theta+1 \} \\
&= 1\{ \theta \leq X_{(1)} \} \cdot 1\{ X_{(n)} \leq \theta+1 \} \\
\Rightarrow \quad (X_{(1)}, X_{(n)}) \text{ is sufficient.}
\end{align*} \]

Minimal Sufficiency

Consider \(X_1, \ldots, X_n \overset{iid}{=} N(\theta, 1) \):

\[\begin{align*}
T(x) &= \Sigma X_i \text{ sufficient} \\
\bar{X} &= \frac{1}{n} \Sigma X_i \text{ also} \\
S(x) &= (X_{(1)}, \ldots, X_{(n)}) \text{ too} \\
X &= (X_1, \ldots, X_n) \text{ too}
\end{align*} \]

Which can be recovered from which others?

Which of these can be compressed further?

These are the most compressed. Are they as compressed as possible?
Prop If $T(X)$ is sufficient and $T(X) = f(S(X))$ then $S(X)$ is sufficient

Proof: $p_{\theta}(x) = g_{\theta}(T(x)) \cdot h(x)$

$$= (g_{\theta} \circ f)(S(x)) \cdot h(x) \quad \Box$$

Definition: $T(X)$ is [minimal sufficient](#) if

1) $T(X)$ is sufficient

2) For any other sufficient $S(X)$, $T(X) = f(S(X))$ for some f (a.s. in \mathcal{P})

So, no matter how many more suff. stats we add to our diagram, they will all have arrows pointing to $S(X)$.

How to check minimal sufficiency? Basically, “equivalent to knowing likelihood ratios”

Definition Assume $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ has densities $p_{\theta}(x)$ wrt common μ, data X. The (log) likelihood function is the (log) density, rephrased as a random function of Θ:

$$\text{Lik}(\theta; X) = p_{\theta}(x), \quad l(\theta; x) = \log \text{Lik}(\theta; x)$$
Note if $T(X)$ is sufficient then

$$\text{Lik}(\theta; x) = \frac{g_\theta(T(x))}{T \text{ determines the scaling}} h(x)$$

Theorem 3.11 Assume $P = \{P_\theta : \theta \in \Theta\}$, densities P_θ

$T(X)$ sufficient for X.

If $\text{Lik}(\theta; x) \propto \text{Lik}(\theta; y) \Rightarrow T(x) = T(y)$

then $T(X)$ is minimal sufficient

"T determines the likelihood shape in a one-to-one fashion"

Proof Suppose S is sufficient and $\not\exists$

s.t. $f(S(x)) = T(X)$

Then $\exists x, y$ with $S(x) = S(y)$, $T(x) \neq T(y)$

$$\text{Lik}(\theta; x) = \frac{g_\theta(S(x))}{g_\theta(S(y))} h(x)$$

$$\propto \frac{g_\theta(S(y))}{g_\theta(S(y))} h(y)$$

$$= \text{Lik}(\theta; y)$$

But that implies $T(x) = T(y)$ by assumption.
\[\text{Ex. } \rho_\theta(x) = \mathbb{e}^{T(x)'}T(x) - B(x)h(x) \]

Is \(T(x) \) minimal?

Assume \(\text{Lik}(\theta; x) \propto \theta \text{Lik}(\theta; y) \), WTS \(T(x) = T(y) \)

\[\text{Lik}(\theta; x) \propto \theta \text{Lik}(\theta; y) \]

\[\iff \mathbb{e}^{T(x)'}T(x) = \mathbb{e}^{T(y)'}T(y) \quad \forall \theta \]

\[\iff \gamma(\theta)'T(x) = \gamma(\theta)'T(y) + a(x, y) \quad \forall \theta \]

\[\iff (\gamma(\theta_1) - \gamma(\theta_2))'T(x) = (\gamma(\theta_1) - \gamma(\theta_2))'T(y) \quad \forall \theta_1, \theta_2 \]

\[\iff \gamma(\theta_1) - \gamma(\theta_2) \perp T(x) - T(y) \quad \forall \theta_1, \theta_2 \]

\[\iff T(x) - T(y) \perp \text{Span} \{ \gamma(\theta_1) - \gamma(\theta_2) : \theta_1, \theta_2 \in \Theta \} \]

We were trying to show \(T(x) - T(y) = 0 \), not quite there yet.

If \(\text{Span} \{ \gamma(\theta_1) - \gamma(\theta_2) : \theta_1, \theta_2 \in \Theta \} = \mathbb{R}^s \), we are done.

Otherwise, \(T(x) \) really might not be minimal!

E.g., \(\gamma(\theta) = (\theta) \) : then \(T_1(x) \) sufficient (could \(T(x) \) still be minimal?)
\[X \sim N_2(\mu(\theta), I_2) \quad \theta \in \mathbb{R} \]

\[= e^{\mu(\theta)'x - B(\theta)} e^{-\frac{1}{2} x'x} \]

If \(\mathcal{H} = \mathbb{R} \), \(\mu(\theta) = a + \theta b \) for \(a, b \in \mathbb{R}^2 \)

\[p_\theta(x) = e^{(a + \theta b)'x - B(\theta)} e^{-\frac{1}{2} x'x} \]

\[= e^{\theta (b'x) - B(\theta)} e^{-\frac{1}{2} (x - 2a)'x} \]

\(b'x \) is sufficient \(\implies X \) not minimal

\(\eta_2 \)

\(T(X)_{\text{minimal}} \)

\((A) \)

\(\gamma' T(X) \) is sufficient

\(\implies T(X) \) prob. not minimal

\(\eta_1 \)
Ex Laplace location family

\[X_1, \ldots, X_n \overset{iid}{\sim} \rho_\theta^{(\cdot)}(x) = \frac{1}{2} e^{-|x-\theta|} \]

\[\rho_\theta(x) = \frac{1}{a^n} \exp \left\{ -\frac{1}{2} \sum_{i=1}^{n} |x_i - \theta| \right\} \]

\[l(\theta; x) = \log \rho_\theta(x) \]

\[= -\frac{1}{2} \sum_{i=1}^{n} |x_i - \theta| - n \log 2 \]

Piecewise linear in \(\theta \), knots at \(x_{(i)} \)

\[l(\theta; x) = l(\theta; y) + \text{const} \iff X, Y \text{ same order statistics} \]

Thm 3.11 \(\Rightarrow \) order stats are minimal suff.