Outline

1) Review
2) Sufficiency
3) Factorization Theorem
Sufficiency

Motivation: Coin flipping

Suppose \(X_1, \ldots, X_n \overset{iid}{\sim} \text{Bernoulli}(\theta) \)

\[\Rightarrow X \sim \prod \theta^x_i (1-\theta)^{1-x_i} \quad \text{on } \{0,1\}^n \]

Then \(T(X) = \sum X_i \sim \text{Binom}(n, \theta) \)

\[= \theta^t (1-\theta)^{n-t} \binom{n}{t} \quad \text{on } \{0,\ldots,n\}^3 \]

\((X_1, \ldots, X_n) \Rightarrow T(X)\) is throwing away data. How do we justify this?

In exp. fam. lingo, \(T(X) \) is the "sufficient statistic" for \(X \). Today we'll see why we call it that.

Definition Let \(\mathcal{P} = \{ P_\theta : \theta \in \Theta \} \) be a statistical model for data \(X \). \(T(X) \) is sufficient for \(\mathcal{P} \) if \(P_\theta(X | T) \) does not depend on \(\theta \)

Example (Cont'd)

\[P_\theta(X = x \mid T = t) = \frac{\frac{P_\theta(X = x, T = t)}{P_\theta(T = t)}} = \frac{\theta^{\sum X_i} (1-\theta)^{n-\sum X_i} 1\{\sum X_i = t\}}{\theta^t (1-\theta)^{n-t} \binom{n}{t}} \]

\[= \frac{1\{\sum X_i = t\}}{\binom{n}{t}} \]

So given \(T(X) = t \), \(X \) is uniform on all seqs with \(\sum X_i = t \)
Factorization Theorem

Often, we can identify sufficient stats by inspecting the density.

Theorem (Factorization Theorem)

Let \(S = \{ P_\theta : \theta \in \Theta \} \) be a model with densities \(p_\theta(x) \) wrt common measure \(\mu \).

\(T(x) \) is sufficient iff there exist \(g_\theta(x) \), \(h(x) \) with

\[
p_\theta(x) = g_\theta(T(x)) h(x)
\]

for \(\mu \)-almost-every \(x \) : \(\mu(\{ x : p_\theta(x) \neq g_\theta(T(x)) \cdot h(x) \}) = 0 \)

[Avoids counterexamples from changing \(p_\theta(x) \) some \(\theta, x_0 \)]

Rigorous proof in Keener 6.4
Proof (discrete \(x \)): Assume wlog \(\mu = \# \) on \(X \)

\[
\left(\leftarrow \right) \quad P_{\theta}(X = x \mid T = t) = \frac{P_{\theta}(X = x, T(x) = t)}{P_{\theta}(T(x) = t)} = \frac{g_{\theta}(t) h(x) \mathbb{1}_{\{T(x) = t\}}}{\sum_{T(z) = t} g_{\theta}(t) h(z)}
\]

\[
\left(\rightarrow \right) \quad \text{Assume } T(x) \text{ sufficient.}
\]

Take \(g_{\theta}(t) = \sum_{T(x) = t} P_{\theta}(x) \)

\[
= P_{\theta}(T(X) = t)
\]

For any \(\theta \in \Theta \), let

\[
h(x) = \frac{P_{\theta}(x)}{\sum_{T(z) = T(x)} P_{\theta}(z)}
\]

\[
= P_{\theta}(X = x \mid T(X) = T(x))
\]

Then,

\[
g_{\theta}(T(x)) h(x) = P_{\theta}(T = T(x)) P_{\theta}(X = x \mid T = T(x)) = P_{\theta}(X = x)
\]

\(\Box \)
Interpretations of Sufficiency

X is informative about Θ only because its
distribution depends on Θ.

We can think of the data as being generated
in two stages:

1) Generate T : distribution dep. on Θ
2) Generate X|T : does not dep on Θ

Sufficiency Principle

If T(X) is sufficient for P then any
statistical procedure should depend on X only
through T(X)

In fact, we could throw away X and generate
a new Č ~ P(X|T) and it would
be just as good as X since Č ~ P

In graphical model form:

[Diagram showing the process with Θ, T(X), and X nodes, and arrows indicating the steps and dependencies.]
Examples

Ex. Exponential Families

\[p_\theta(x) = \frac{\gamma(\theta, \tau(x)) - B(\theta)}{g_\theta(\tau(x)) h(x)} \]

Ex. Uniform location family

\[X_1, \ldots, X_n \sim iid \quad U[\theta, \theta + 1] \]

\[= 1\{\theta \leq x \leq \theta + 1\} \]

\[p_\theta(x) = \prod_{i=1}^{n} 1\{\theta \leq x_i \leq \theta + 1\} \]

\[= 1\{\theta \leq x_{(1)} \leq \theta + 1\} \quad 1\{x_{(n)} \leq \theta + 1\} \]

\[\Rightarrow (X_{(1)}, X_{(n)}) \text{ is sufficient.} \]
Ex. $X_1, \ldots, X_n \overset{iid}{\sim} P_\theta^{(\cdot)}$ for any model

\[P^{(\cdot)} = \{P^{(\cdot)} : \theta \in \Theta\} \text{ on } \mathcal{X} \subseteq \mathbb{R} \]

P_θ is invariant to perms of $X = (X_1, \ldots, X_n)$

\Rightarrow All permutations of x are equally likely

\Rightarrow order statistics $(X_{(i)})_{i=1}^n$, $(X_{(i)} = k^{th}$ smallest are sufficient. [Note $(X_i)_{i=1}^n \not\sim (X_{(i)})_{i=1}^n$ loses information, specifically the orig. ordering]

For more general \mathcal{X} we can say the empirical distribution $\hat{P}_n(\cdot) = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}(\cdot)$ is sufficient, where $\delta_{X_i}(A) = 1 \{X_i \in A\}$

$\hat{P}_n(A) = \frac{3}{5}$

[Not important that it's a measure in this context; just keeps track of which values came up how many times]
Consider \(X_1, ..., X_n \overset{iid}{\sim} \mathcal{N}(\theta, \sigma) \)

\[
p_\theta(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-\theta)^2}{2\sigma^2}}
\]

exponential family with \(T(x) = x \)

\[
T(X) = \sum X_i \text{ sufficient}
\]

\[
\bar{X} = \frac{1}{n} \sum X_i \text{ also}
\]

\[
S(X) = (X_1, ..., X_n) \text{ too}
\]

\[
X = (X_1, ..., X_n) \text{ too}
\]

Which can be recovered from which others?

\[
X \downarrow \quad \sum X_i \leftrightarrow \bar{X}
\]

These are the most compressed. Are they as compressed as possible?
Prop: If \(T(X) \) is sufficient and \(T(x) = f(s(x)) \) then \(S(X) \) is sufficient.

Proof: \(p_\theta(x) = g_\theta(T(x)) h(x) \)
\[= (g_\theta \circ f)(s(x)) h(x) \]
\[\blacksquare \]

Definition: \(T(X) \) is minimal sufficient if

1) \(T(X) \) is sufficient
2) For any other sufficient \(S(X) \),

\[T(X) = f(s(x)) \quad \text{for some } f \quad (a.s. \text{ in } \mathbb{P}) \]

So, no matter how many more suff. stats we add to our diagram, they will all have arrows pointing to \(E_X \).
Likelihood Shape is Minimal

Definition

Assume \(\Theta = \{ \theta : \theta \in \Theta \} \) has densities \(p_\theta(x) \). The likelihood function is the (random) function

\[
\text{Lik}(\theta; x) = p_\theta(x)
\]

The log-likelihood function is its log:

\[
\ell(\theta; x) = \log \text{Lik}(\theta; x)
\]

The likelihood up to scaling (or \(\ell \) up to vertical shift) is a minimal sufficient statistic.

If \(T(X) \) is sufficient then

\[
\text{Lik}(\theta; x) = g_\theta(T(x)) h(x)
\]

\(T \) determines the scaling "shape".

HW 2: Likelihood ratios \(\left(\frac{\text{Lik}(\theta_1; x)}{\text{Lik}(\theta_2; x)} \right) \text{ for } \theta_1, \theta_2 \in \Theta \)
Recognizing Minimal Sufficient Statistics

$T(X)$ is minimal sufficient if

1) $T(X)$ is sufficient

2) $T(X)$ can be recovered from the likelihood shape

Keener Thm 3.11 formalizes condition 2

"$\text{Lik}(\cdot; x) \propto \text{Lik}(\cdot; y) \Rightarrow T(x) = T(y)$"

equivalently

"$\ell(\cdot; x) - \ell(\cdot; y) = \text{const}(x, y) \Rightarrow T(x) = T(y)$"
Ex Laplace location family

\[X_1, \ldots, X_n \overset{iid}{\sim} \rho_{\theta}^{(\cdot)}(x) = \frac{1}{2} e^{-|x-\theta|} \]

\[l(\theta; x) = - \sum_{i=1}^{n} |x_i - \theta| - n \log 2 \]

Piecewise linear in \(\theta \), knots at \(x_{(i)} \)

On \([x_{(k)}, x_{(k+1)}]\),
slope = \(n - 2k\)

\[l(\theta; x) = l(\theta; y) + \text{const} \iff X, Y \text{ same order statistics} \]

\[\implies \text{order stats are minimal suff.} \]
Minimal sufficiency for exp. fams

Suppose \(\rho_\eta(x) = e^{\eta' T(x) - A(\eta)} h(x) \)

\[l(\eta; x) = \frac{T(X)' \eta - A(\eta)}{\text{random linear function of } \eta} + \frac{\log h(x)}{\text{deterministic function of } \eta} + \text{(random) const.} \]

Is \(T(X) \) minimal? \textbf{(always sufficient)}

Suppose \(x \) and \(y \) give same likelihood shape:

\[l(\eta; x) - l(\eta; y) = \text{const}(x,y) \]

Then \((T(x) - T(y))' \eta = \text{const}(x,y) \) for \(\eta \in \Xi \)

\[\Rightarrow \quad T(x) = T(y) \quad \text{or} \]

\[T(x) - T(y) \perp \text{Span} \{ \eta, - \eta : \eta \in \Xi \} \]

If \(\text{Span} \{ \cdots \} = \mathbb{R}^s \), \(T(X) \) is minimal

\text{(That is, if } \Xi \text{ is not contained in a lower-dim affine space)}

Otherwise might not be:

If \(s = 2 \), \(\Xi = \{ (\theta) : \theta \in \mathbb{R} \} \) then \(T_1(X) \) minimal

\[[\text{Can we conclude } T(X) \text{ is not minimal?}]]\]
Other parameterizations:

\[\rho_{\theta}(x) = e^{\gamma(\theta)T(x) - B(\theta)h(x)}, \quad \Theta \in \Theta \]

\(T(X) \) minimal if \(\delta_{\Theta} \gamma(\theta_1) - \gamma(\theta_2) : \Theta, \Theta_2 \in \Theta^2 = \mathbb{R}^3 \)

\[\eta_2 \]

\(T(X) \) minimal

\(\gamma \quad \gamma^T T(x) \) is sufficient

\(\Rightarrow T(X) \) prob.

not minimal