Outline

- 1) Review
- 2) Exponential families
- 3) Interpretation: exponential tilting
- 4) Demo
- 5) Examples

Exponential Families s-parameter exponential family is a family $Y = \{P_n : z \in \Xi_i\}$ with densities Pr wit a common measure 11 on X [X not nec. in IR"] of the form $\rho_{\gamma}(x) = e^{\gamma'T(x)} - A(\gamma)h(x), \quad \text{where}$ $T: \chi \to \mathbb{R}^{5}$ sufficient statistic $h: X \to \mathbb{R}$ carrier/base density y E = E Rs natural parameter cumulant - generating fen $A: \mathbb{R}^s \to \mathbb{R}$ (cgf) or normaliting Note The cgf A(z) is totally determined by h and T, since we must always have $\int_{X} \rho_{3} dn = 1, \quad \forall 3.$ $\Rightarrow A(\gamma) = \log \left[\int_{\gamma} e^{\gamma' T(x)} h(x) d\mu(x) \right]$ Pr is normalizable if A(r) < 00

The natural parameter space is the set of all allowable (normalizable) 7: $\Xi_1 = \{ \gamma : A(\gamma) < \infty \}$ We say I is in canonical form if == =; Note = determined by T, h, n We could take = = = = ; f we wanted A(y) is convex => =, is convex (HWI Prob. 2) Sometimes it is more convenient to use a different parameterization: $\rho(x) = e^{\gamma(\theta)} T(x) - B(\theta) h(x)$ $B(\theta) = A(\gamma(\theta))$ Many, many examples, sometimes requires massaging to see that they are exp. fam.s: Ex. 2.2: X ~ N(M, 02) NEIR 02 > 0 Let $\theta = (m, \sigma^2)$ $\rho(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(N-x)^2/2\sigma^2}$ $= \exp \left\{ \frac{m}{\sigma^2} \times - \frac{1}{2\sigma^2} \times^2 - \frac{m^2}{2\sigma^2} - \frac{1}{2} \log (2\pi \sigma^2) \right\}$

$$q(\theta) = \binom{m/\sigma^2}{-1/2\sigma^2} \qquad T(x) = \binom{x}{x^2} \qquad h(x) \cdot 1$$

$$B(\theta) = \frac{m^2}{2\sigma^2} + \frac{1}{2}\log(2\pi\sigma^2)$$
In terms of χ^2 :
$$P_{\chi}(x) = e^{\chi^2}(x^2) - A(\chi)$$

$$P_{\chi}(x) = e^{\chi^2}(x^2) - e^{\chi^2}(x^2)$$

$$P_{\chi}(x) = e^{\chi^$$

Then
$$\rho_n(x) = \frac{e^{f_n(x)}}{\int e^{f_n(x)} d\mu(x)}$$

 $= \frac{e^{\eta'}T(x)}{h(x)} / \frac{e^{A(\eta)}}{e^{A(\eta)}}$
for $\eta \in \Xi \subseteq \Xi_1 = \{\eta : e^{f_n(x)} \text{ normiable}\}$

Functional form of Pa is in many ways not unique: for example we could always

a) Re formulate so
$$h(x) = 1$$
:

$$n \longrightarrow \widetilde{h}$$
 with $\frac{d\widetilde{u}}{dn} = h$
 $h \longrightarrow \widetilde{h}(x) \equiv 1$

b) Re-parameterize so OE =:

Take some
$$y_0 \in \Xi$$
:

$$h \rightarrow \tilde{h}(x) = \rho_{\chi_0}(x)$$

$$A \longrightarrow \widetilde{A}(\widetilde{\gamma}) = A(\gamma_0 + \widetilde{\gamma}) - A(\gamma_0)$$

$$T \sim \Upsilon(x) = c + DT(x)$$

etc...

Interp:

. Start with a carrier density
$$h(x)$$

$$E_{x}. 2.3: X_{1,3-2} X_{n} \stackrel{iid}{\sim} N(n, \sigma^{2})$$

$$\rho_{\theta}(x) = \prod_{i=1}^{n} \rho_{\theta}^{(i)}(x_{i})$$

$$= \exp\left\{\sum_{i=1}^{n} \frac{n}{\sigma^{2}} x_{i} - \frac{1}{2\sigma^{2}} x_{i}^{2} - \left(\frac{n}{2\sigma^{2}} + \frac{1}{2}\log(2\pi\sigma)\right)\right\}$$

$$= \exp\left\{\sum_{i=1}^{n} \frac{n}{\sigma^{2}} x_{i} - \frac{1}{2\sigma^{i}} \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i}^{2} - n(\cdots)\right\}$$

$$q(\theta) = \binom{n/\sigma^{2}}{-1/2\sigma^{2}} \qquad T(x) = \binom{\sum x_{i}}{\sum x_{i}^{2}}$$

$$\beta(n, \sigma^{2}) = n \beta^{(i)}(n, \sigma^{2})$$

$$N_{\theta} = \frac{1}{2\sigma^{2}} \frac{1}{2\sigma^$$

Suppose
$$X_{1,...,X_{n}}$$
 $\stackrel{\text{iid}}{p_{n}}(x) = e^{\frac{1}{2}t(x) - A(n)} + h(x)$
Then $X \sim \prod_{i=1}^{n} e^{\frac{n}{2}t(x_{i})} - A(n) + h(x_{i})$
 $= e^{\frac{n}{2}t} \left\{ \sum_{i=1}^{n} e^{\frac{n}{2}t(x_{i})} - n A(n) + h(x_{i}) + h(x_{i}) \right\}$
 $\stackrel{\text{infl. stat.}}{=} e^{\frac{n}{2}t} \left\{ \sum_{i=1}^{n} e^{\frac{n}{2}t(x_{i})} - n A(n) + h(x_{i}) + h(x_{i})$

The sufficient statistic T(X) follows a related exp fam too: Suppose $X \in X$, $T(X) \in Y = T(X)$, M base measure (wlog h=1) For BET define $v(B) = \mu(T'(B))$ (2 called "push-forward" measure) Then $T(x) \sim q_{\gamma}(t) = e^{\gamma't} - A(\gamma)$ with γ Discrete case: $\mathbb{P}_{\gamma}\left(T(x)\in\mathbb{B}\right)=\sum_{x:T(x)\in\mathbb{B}}e^{\gamma'T(x)-A(\gamma)}\mu(\{x\})$ $= \sum_{t \in B} \sum_{x: T(x)=t} e^{\gamma't} - A(\gamma)$ $= \sum_{t \in B} \sum_{x: T(x)=t} e^{\gamma't} - A(\gamma)$ = \(\sum_{t \in \mathbb{B}} \) \(\tau_{t \in \mathbb{B}} \) \(\tau_{t \in \mathbb{B}} \) \(\tau_{t \in \mathbb{B}} \) More generally, v satisfies $\int_{\mathcal{X}} f(T(x)) dn(x) = \int_{\mathcal{T}} f(t) dv(t), \quad \forall \; (\text{``nice''}) f$ $\mathbb{P}_{\chi}(T(X) \in \mathbb{B}) = \int_{\chi} 1\{T(x) \in \mathbb{B}\} e^{\chi'T(x)} - A(\chi) d\mu(x)$ = \ \ 1\{t \in B}\ e^{2't} - A(r) \ dz(t) => T ~ eq't - A(q) density ~rt 2

More examples Binomial X ~ Binom (1,0)

$$\rho_{\theta}(x) = \Theta^{x}(1-\theta)^{n-x}\binom{n}{x}$$

$$= \left(\frac{0}{1-\theta}\right)^{x}(1-\theta)^{n-x}\binom{n}{x}$$

$$= \exp \left\{ \log \left(\frac{\Theta}{1-\Theta} \right) \cdot x + n \log \left(1-\Theta \right) \right\} {n \choose x}$$

$$\gamma(\Theta) = \log \left(\frac{\Theta}{1-\Theta} \right) \quad \text{"log odds ratio"}$$

Poisson
$$X \sim P_{ois}(\theta) = \frac{\lambda^{x}e^{-\lambda}}{x!}$$
 $x \in 0,1,...$

$$\rho_{x}(x) = \exp\left\{ (\log \lambda) x - \lambda \right\} \frac{1}{x!}$$

$$\gamma(\lambda) = \log \lambda$$

Practically everything else on wikipedin too: Beta, Gamma, Multinom., Dirichlet, Pareto, Wishart... Differential Identities

Write $e^{A(\gamma)} = \int e^{\gamma'T(\lambda)} h(x) d\mu(x)$ (*)

We can derive lots of useful identities

by differentiating (*) on both sides,

pulling derivative inside \int [not always allowed]

Keener than 2.4 for $f: \chi \to \mathbb{R}$ let $f = \{ \chi \in \mathbb{R}^s : \int |f| e^{\gamma'T} h d\mu = \infty \}$

Then $g(\gamma) = \int f e^{\gamma' T} h dn$ has cts partial derivatives of all orders for $\gamma \in \Xi_{f}$. If we can get them by differentiating under the $\int sign$. \Rightarrow on Ξ_{f}° $A(\gamma)$ has all partial derivatives

Différentiate once:

 $\frac{\partial}{\partial \eta_{i}} e^{A(\eta)} = \frac{\partial}{\partial \gamma_{i}} \int e^{\gamma' T(x)} h(x) d\mu(x)$ $e^{A(\eta)} \frac{\partial A}{\partial \gamma_{i}} (\eta) = \int T_{i}(x) e^{\gamma' T(x) - A(\eta)} h(x) d\mu(x)$ $\Rightarrow \frac{\partial A}{\partial \gamma_{i}} (\gamma) = \mathbb{E}_{\eta} [T_{i}(x)]$ $\forall A(\eta) = \mathbb{E}_{\eta} [T(x)]$

$$\frac{\partial^2}{\partial \gamma_i \partial \gamma_k} e^{A(\gamma_i)} = \frac{\partial^2}{\partial \gamma_i \partial \gamma_k} \left\{ e^{\gamma_i'T} h d\mu \right\}$$

$$e^{A(2)\left(\frac{\partial^{2}A}{\partial \gamma_{i}\partial \gamma_{k}} + \frac{\partial A}{\partial \gamma_{i}} \frac{\partial A}{\partial \gamma_{k}}\right)} = \int T_{j}T_{k} e^{2^{j}T_{k}} A(2)$$

$$E[T_{j}] E[T_{k}]$$

$$E[T_{j}T_{k}]$$

$$\frac{\partial^2 A}{\partial z_i \partial z_k} (z) = Cov_z(T_i, T_k)$$

$$abla^2 A(\eta) = Var_{\eta}(T(x)) \in \mathbb{R}^{5\times 5}$$

Example: Poisson:
$$T(x) = X$$
, $\gamma(\lambda) = \log \lambda$

$$B(\lambda) = \lambda \Rightarrow A(\gamma) = e^{\gamma}$$

$$\mathbb{E}[X] = \frac{d}{d\gamma} e^{\gamma} = e^{\gamma} = \lambda$$

$$Var_{\chi}(x) = \frac{d^2}{d\chi^2} e^{\chi} = e^{\chi} = \lambda$$

```
Moment-generating function
 Differentiation (*) repeatedly we get
      e^{-A(\eta)} \frac{\partial^{k_1 + \cdots + k_s}}{\partial_{\eta_1}^{k_1} \cdots \partial_{\eta_s}^{k_s}} \left( e^{A(\eta)} \right) = \mathbb{E}_{\eta} \left[ T_1^{k_1} \cdots T_s^{k_s} \right]
That is because M_{\eta}^{T}(n) = e^{A(\eta + n) - A(\eta)}
         is the moment-generating function (mgf)
          of T(X) when X~pz
  M_3^{T(x)}(u) = \mathbb{E}_3\left[e^{u'T(x)}\right]
                       = \int e^{u'T} e^{\eta'T - A(\eta)} h d\eta
                       = e^{A(\eta+u)-A(\eta)} \begin{cases} (\eta+u)^{T}-A(\eta+u) \\ e \end{cases}
```