Lecture 3
Outline

1) Review
2) Exponential farilies
3) Differential identities
4) $M G F$

Exponential Families
An s-parameter exponential family is a family $\rho=\left\{P_{\eta}:\{\in \Xi\}\right.$ with densities ρ_{η} wit a common measure μ on X $\left[\begin{array}{ll}X & \text { not nee. in } \mathbb{R}^{n}\end{array}\right]$ of the form $p_{\eta}(x)=e^{\eta^{\prime} T(x)-A(\eta)} h(x), \quad$ where
$T: X \rightarrow \mathbb{R}^{s} \quad \frac{\text { sufficient statistic }}{\text { carrier/base density }}$
$h: X \rightarrow \mathbb{R}^{n} \quad$
$\eta \in \Xi \mathbb{R}^{s} \quad \frac{\text { natural parameter }}{\text { Iog-partition function }}$
$A: \mathbb{R}^{s} \rightarrow \mathbb{R} \quad \frac{\text { or normalizing constr }}{}$

Note The function $A(\cdot)$ is totally determined by h and T, since we must always have

$$
\begin{aligned}
& \int_{x} \rho_{\eta} d \mu=1, \forall \eta \\
& \Rightarrow A(\eta)=\log \left[\int_{x} e^{\xi^{\prime} J(x)} h(x) d \mu(x)\right] \leq \infty
\end{aligned}
$$

The natural parameter space is the set of all η that give us normalizable ρ_{r}

$$
\Xi_{1}=\{\eta: A(\eta)<\infty\}
$$

Note Ξ_{1} determined by T, h, μ
We could take $\Xi \subset \Xi_{\neq}$if we wanted
$A(\eta)$ is always convex
$\Rightarrow \Xi_{1}$ is convex (HW| Prob,2)

Example: Poisson

$$
\begin{aligned}
& X \sim P_{\text {is }}(\lambda)=\frac{\lambda^{x} e^{-\lambda}}{x!} \quad x \in 0,1, \ldots \\
& P_{\lambda}(x)=\exp \{(\log \lambda) x-\lambda\} \frac{1}{x!} \\
& \eta(\lambda)=\log \lambda \quad T(x)=x \\
& A(\lambda)=\lambda=e^{\xi} \quad h(x)=\frac{1}{x!}
\end{aligned}
$$

Differential Identities
Write $e^{A(\eta)}=\int e^{\eta^{\prime} T(x)} h(x) d \mu(x)$
We can derive lots of useful identities by differentiating (*) on both sides, pulling derivative inside \int [not always allowed]

Keener The 2.4 for $f: X \rightarrow \mathbb{R}$ let

$$
\Xi_{f}=\left\{\eta \in \mathbb{R}^{s}: \int|f| e^{\eta^{\prime \tau}} h d \mu<\infty\right\}
$$

Then $g(\eta)=\int f e^{\eta^{\prime}} h d \mu$ has cts partial derivatives of all orders for $\tau^{\in} \Xi_{f}^{0}$. \& we can get them by differentiating under the \int sign.
\Rightarrow on $\Xi_{1}^{0} A(\eta)$ has all partial derivatives
Differentiate once:

$$
\begin{aligned}
\frac{\partial}{\partial \eta_{j}} e^{A(\eta)} & =\frac{\partial}{\partial \eta_{j}} \int e^{\eta^{\prime} T(x)} h(x) d \mu(x) \\
e^{A(\gamma)} \frac{\partial A}{\partial \eta_{j}}(\eta) & =\int T_{j}(x) e^{\eta^{\prime} T(x)-A(\eta)} h(x) d \mu(x) \\
\Rightarrow \frac{\partial A}{\partial \eta_{j}}(\eta) & =\mathbb{E}_{\eta}\left[T_{j}(x)\right] \\
\nabla A(\eta) & =\mathbb{E}_{\eta}[T(x)]
\end{aligned}
$$

Diff twice:

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial \eta_{j} \partial \eta_{k}} e^{A(\eta)}=\frac{\partial^{2}}{\partial \eta_{j} \partial \eta_{k}} \int e^{\eta^{\prime} T} h d \mu \\
& e^{A\left(q^{2}\right)}(\frac{\partial^{2} A}{\partial \eta_{j} \partial \eta_{k}}+\underbrace{\frac{\partial A}{\partial \eta_{j}}}_{\mathbb{E}\left[T_{j}\right]} \frac{\left.\frac{\partial A}{\partial \eta_{k}}\right)=\underbrace{\int T_{j} T_{k} e^{\xi^{\prime} T-A(\eta)} h d \mu}_{\mathbb{E}\left[T_{k}\right]}}{\frac{\partial^{2} A}{\partial T_{j} \partial \eta_{k}}(\eta)=\operatorname{Cov}_{\eta}\left(T_{j}, T_{k}\right)} \\
& \nabla^{2} A(\eta)=\operatorname{Var}_{\eta}(T(x)) \in \mathbb{R}^{s \times s}
\end{aligned}
$$

Example: Poisson: $T(x)=x, \quad A(\eta)=e^{\eta}(=\lambda)$

$$
\begin{aligned}
& \mathbb{E}[X]=\frac{d}{d \eta} e^{r}=e^{\eta}=\lambda \\
& \operatorname{Var}_{\eta}(x)=\frac{d^{2}}{d \eta^{2}} e^{\eta}=e^{\eta}=\lambda
\end{aligned}
$$

NB: We would get wrong answer by differentiating writ λ

Moment-generating function
We can get $k^{\text {th }}$ order moments of $T(x)$ by

1) Differentiating ($*$) k times, then
2) Dividing by $e^{A(\xi)}$

That is because $M_{\eta}^{\top}(n)=e^{A(\eta+n)-A(\eta)}$
is the moment-gereating function (mgf)
of $T(x)$ when $X \sim P_{2}$

$$
\begin{aligned}
& M_{q}^{\top(x)}(u)=\mathbb{E}_{q}\left[e^{u^{\prime} T(x)}\right] \\
& =\int e^{u^{\prime} T} e^{\eta^{\prime} T-A(n)} h d \mu \\
& =e^{A(\eta+n)-A(\eta)} \underbrace{\int e^{(\eta+n) T-A(\eta+n)} h d \mu}_{=1} \\
& \text { Useful for }
\end{aligned}
$$

- finding moments
- finding dist. of sums of indef. RVs

Cumulant-generating function

$$
K_{r}^{\top}(n)=\log M_{r}^{\top}(n)=A(\eta+n)-A(\eta) \quad\left(A \text { is sometimes } \begin{array}{c}
\text { called cg f }
\end{array}\right)
$$

Other Parameterizations
Sometimes it is more convenient to use a different parametrization:

$$
\begin{aligned}
& \text { ameterization: } \\
& \rho_{\theta}(x)=e^{\prime}(\theta)^{\prime} T(x)-B(\theta) h(x) \\
& B(\theta)=A(\eta(\theta))
\end{aligned}
$$

Many, many examples, sonetimes requires massaging to see that they are exp. fans:

Ex: Normal $\quad X \sim N\left(\mu, \sigma^{2}\right) \quad \mu \in \mathbb{R} \quad \sigma^{2}>0$

$$
\begin{aligned}
& \text { Let } \theta=\left(\mu, \sigma^{2}\right) \\
& \begin{aligned}
\rho_{\theta}(x) & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(\mu-x)^{2} / 2 \sigma^{2}} \\
& =\exp \left\{\frac{\mu}{\sigma^{2}} x-\frac{1}{2 \sigma^{2}} x^{2}-\frac{\mu^{2}}{2 \sigma^{2}}-\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)\right\} \\
\eta(\theta) & =\binom{\mu / \sigma^{2}}{-1 / 2 \sigma^{2}} \quad T(x)=\binom{x}{x^{2}} \quad h(x)=1 \\
B(\theta) & =\frac{\mu^{2}}{2 \sigma^{2}}+\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)
\end{aligned}
\end{aligned}
$$

Natural parametrization

$$
\begin{aligned}
& P_{\eta}(x)=e^{\eta^{\prime}\binom{x}{x^{2}}-A\left(\xi_{\eta}\right)} \\
& A(\eta)=\frac{-\eta_{1}^{2}}{4 \eta_{2}}+\frac{1}{2} \log \left(-\pi / \eta_{2}\right)
\end{aligned}
$$

More examples
Binomial $\quad X \sim \operatorname{Binom}(1, \theta)$

$$
\begin{aligned}
f_{\theta}(x) & =\theta^{x}(1-\theta)^{n-x}\binom{n}{x} \quad x=0, \ldots, n \\
& =\left(\frac{\theta}{1-\theta}\right)^{x}(1-\theta)^{n}\binom{n}{x} \\
& =\exp \left\{\log \left(\frac{\theta}{1-\theta}\right) \cdot x+n \log (1-\theta)\right\}\binom{n}{x} \\
\eta(\theta) & =\log \left(\frac{\theta}{1-\theta}\right) \quad " \log \text { odds ratio" }
\end{aligned}
$$

Beta

$$
\begin{aligned}
& X \sim \operatorname{Beta}(\alpha, \beta) \\
& \rho_{\alpha, \beta}(x)=x^{\alpha-1}(1-x)^{\beta-1} / B(\alpha, \beta) \leftarrow \text { Beta function } \\
& =\exp \{\alpha \log x+\beta \log (1-x)-\log B(\alpha, \beta)\} \frac{1}{x(1-x)} \\
& \xi=\binom{\alpha}{\beta} \quad T(x)=\binom{\log x}{\log (1-x)} \quad h(x)=\frac{1}{x(1-x)}
\end{aligned}
$$

Practically everything $e^{l s e}$ on wikipedia too:
Beta, Gamma, Multinom., Dirichlet, Pareto, Wishart...

Interpretation: Exponential tilting
Can think of $p_{\eta}(x)=e^{\eta^{\prime T}(x)-A(\eta)} h(x)$ as an exponential tilt of the carrier $h(x)$

1) Start with carrier $h(x)$
2) Multiply by $e^{\xi^{\prime T(x)}}$
3) Re-normalite by $e^{-A(\xi)}$
$T(x)=\left(T_{1}(x), \ldots, T_{s}(x)\right)$ gives linear space of directions in which we can tilt $h(x)$
$\Xi_{1}=$ all tilts after which normalization is possible
\Rightarrow Decomposition into $\quad \because, T, h, A$ very non-unique
4) Only $\operatorname{span}\left(T_{1}, \ldots, T_{s}\right)$ matters
5) Could absorb h into $\mu \quad(d \nu(x)=h d \mu(x))$ (wog $h(x) \equiv 1$ if we want)
6) Can add constant to $T(x)$

Repeated Sampling
Suppose $\quad X_{1}, \ldots, X_{n} \stackrel{\text { id }}{\sim} \rho_{\eta}^{(1)}(x)=e^{\eta^{\prime T(x)-A(\eta)}} h(x)$
Then $X=\left(X_{1}, \ldots, X_{n}\right)$ comes from a closely related family

$$
\begin{aligned}
\rho_{\eta}^{(n)}(x) & =\prod_{i=1}^{n} e^{\eta^{\prime} T\left(x_{i}\right)-A(\eta)} h\left(x_{i}\right) \\
& =\exp \{\eta^{\sum_{\text {surf }}^{\prime} \underbrace{\sum_{i=1} T\left(x_{i}\right)}_{i=1}-\underbrace{n}_{\log _{\text {fop en. }_{\text {fart. }}}^{n A(\eta)}}\} \underbrace{\prod_{i=1}^{n} h\left(x_{i}\right)}_{\substack{\text { Carrier density } \\
\left.\text { (wot } \mu^{n} \text { or } x^{n}\right)}}}
\end{aligned}
$$

Important property!
This means $\sum_{i=1}^{n} T\left(x_{i}\right) \in \mathbb{R}^{5}$ is an effective summary of a potentially very large sample $X \in X^{n}$

We will often analyze $T(x)$ as a proxy for the whole data set.

Distribution of $T(x)$
Suppose $\quad X \sim \rho_{\eta}(x)=e^{r^{\prime T(x)-A(\eta)}} \quad$ wet m
Then $T(x) \sim q_{\eta}(t)=e^{\eta^{\prime} t-A(\eta)}$ wert v,
where v is the measure μ "pushed forward"
through $T: \chi \rightarrow \mathbb{R}^{s}$

$$
v(B) \triangleq \mu(\{x: T(x) \in B\})
$$

$$
\begin{aligned}
\mathbb{P}_{z}(T(x) \in B) & =\int 1_{B}(T(x)) e^{\left.\eta^{\prime} \pi_{k}\right)-A(\eta)} d \mu(x) \\
& =\int 1_{B}(t) e^{\eta^{\prime} t-A(\eta)} d v(t)
\end{aligned}
$$

Simplest in discrete case: (drop $h \equiv 1$ assumption)

$$
\begin{aligned}
\mathbb{P}_{\eta}(T(x)=t) & =\sum_{x: T(x)=t} e^{\eta^{\prime} T(x)-A(\eta)} h(x)_{\mu}(\{x\}) \\
& =e^{\eta^{\prime} t-A(\eta)} \underbrace{\sum_{x: T(x)=t} h(x)_{\mu}(\{x\})}_{\tau(\{t\})}
\end{aligned}
$$

