Lecture 2 (9/1/2020)

Outline

- 1) Review
 - 2) Estimation
 - 3) Loss & Risk Function
 - 4) Comparing estimators

Estimation

A statistical model is a family of condidate

Probability distributions $P = \{P_0 : \Theta \in \Theta\}$ for some random variable $X \sim P_0$ $X \in X$ called date, observed Θ called parameter, unobserved

[could be infinite dimensional, e.g. density fam.]

For now, Θ fixed and unknown

Goal of estimation: Observe $X \sim P_0$, guess value of some estimand $g(\Theta)$

Ex. 3.1 Flip a biased coin n times $\Theta \in [0,1]$ prob. of heads X = # heads after n flips $\sim Binom(n,\Theta)$

 $\rho_{\theta}(x) = \Theta^{x}(1-\Theta)^{n-x}\binom{n}{x}$

density wit counting measure on X= {0, ..., n}

A statistic is any function T(X) of data X[NOT of X and 0] An estimator J(X) of $g(\theta)$ is a statistic which is intended to gness g(o) Ex 3.1 (Cont'd) Natural estimator: 5(x)= x Question: is it a good estimator? Is another Loss & Risk Loss function L(0,d) measures how bad an estimate is $E_X = L(0,d) = (d-g(0))^2 = \frac{\text{Squared-error loss}}{\text{Squared-error loss}}$ Typical properties: L(0,d) 20 40,a L(0,g(0))=0 $\forall 0$ (no loss from a perfect guess)] [Loss is random, reflects both whether we choose a good estimator and whether we are fucley]

Risk function is expected loss (risk) as a function of
$$\Theta$$
 for an estimator $\delta(.)$

$$R(\theta; \delta(.)) = F_{\Theta} \left[L(\theta, \delta(x)) \right]$$

$$R \text{ tells us which parameter value is in effect, NOT what randomness to integrate over is andomness to integrate over integrate over in the second of the sec$$

Comparing Estimators We know J,(x) is bad, J, us. J, more an biguous An estimator J is inadmissible if 15th with a) $R(0; 5^*) \leq R(0; 5)$ $\forall \theta \in \Theta$ b) $R(\theta; \delta^*) \leq R(\theta; \delta)$ some $\theta \in \Theta$ of, is inadmissible We can rule out very bad estimators like δ, but it is virtually always impossible to find a single unitorally best estimator. Thought experiment: $J(x) = \frac{3}{3}$ best if $0 = \frac{3}{5}$ Strategies to resolve ambiguity: 1) Summarize risk function by a scalar a) Average - case risk: minimize $\int_{\Omega} R(\theta; \delta) d\Lambda(\theta)$ with some measure Λ my Bayes estimator, A called prior . A "improper" if not normalizable

· This gives a frequential motivation for Beyes methods Beyes estimator

b) Worst-case risk: minimize 5mp R(0;5) 0∈0 ~ Minimax estimator, closely related to Bayes Why not best-case risk? Again consider of 2) Constrain choice of estimator a) Only consider unbiased 5: $\mathbb{E}_{0}\left[J(x)\right]=g(0) \quad \forall 0 \in G$ Rules out 5, 52, 53. J, is best unbiased estimator.