Lecture 2 (8/29/2023)

Outline

1) Statistical models
2) Estimation
3) Decision theory
Statistical Models

Probability vs statistics

Probability: Distribution P fully specified
What can we say about $X \sim P$?
Deductive

Statistics: Observe data X from unknown dist. P
What can we conclude about P?
Inductive

Statistical model
Family P of candidate probability distributions for data X

Assume $X \sim P$ for some $P \in \mathcal{P}$
X yields evidence about which P (hopefully)
Parametric vs. Nonparametric

Parametric model dists indexed by parameter $\Theta \in \Theta$

$$\mathcal{P} = \{ P_{\Theta} : \Theta \in \Theta \}$$

Typically $\Theta \subseteq \mathbb{R}^d$, d called **model dimension**

Example $X \sim \text{Binom}(n, \Theta)$ for $\Theta \in [0,1]$ n "known," Θ "unknown" (by analyst)

$$\mathcal{P} = \{ \text{Binom}(n, \Theta) : \Theta \in [0,1] \}$$

Nonparametric model no natural way to index \mathcal{P}

Still usually makes assumptions, e.g.

- independence
- shape constraints (e.g. unimodal density)

Example $X_1, \ldots, X_n \overset{iid}{\sim} P$ P any distr. on \mathbb{R}

$$\mathcal{P} = \{ P^n : P \text{ is a distr. on } \mathbb{R} \}$$ (for $X=(X_1, \ldots, X_n)$)

We can use "parametric notation" $\mathcal{P} = \{ P_{\Theta} : \Theta \in \Theta \}$ wlog (could take $\Theta = P$, $\Theta = \mathcal{P}$).
Bayesian vs. "Frequentist" Inference

Assume \(X \sim P_\theta \) \(\theta \) unknown

Bayesian assumption: \(\theta \) random with known dist.

Inference = calculating dist. \((\theta | x) \) (posterior)

Considered a strong assumption
(will consider interp., pros & cons later)

Alternate perspective: treat \(\theta \) as fixed, unknown

Methods designed without knowledge of \(\theta \)

Study frequency properties as \(\theta \) varies
Estimation

Setup

\[P = \{ P_\theta : \Theta \in \Theta \} \] (wlog)

Estimand

\[g(\theta) \] (something we want to know)

Observe \(X \), calculate estimate \(\hat{\theta}(X) \)

\(\hat{\theta}(\cdot) \) called estimator.

We want to evaluate & compare estimators

Example

Flip a biased coin \(n \) times

\(\Theta \in [0,1] \) probability of heads

\(X = \# \) heads

\(\sim \) \(\text{Binom}(n, \Theta) \)

Goal: estimate \(\Theta \)

Natural estimator is \(\hat{\theta}_0(X) = \frac{X}{n} \)

How good is it?
Loss and Risk

Loss function $L(\theta, d)$

Disutility of guessing $g(\theta) = d$

Typically non-negative, with $L(\theta, d) = 0$ iff $d = g(\theta)$

[Different for every realization]

Squared error loss: $L(\theta, d) = (d - g(\theta))^2$

Risk function: expected loss of an estimator

$$R(\theta; \delta) = \mathbb{E}_\theta \left[L(\theta, \delta(x)) \right]$$

* tells us which parameter value is in effect, NOT “what randomness to integrate over”

Risk for squared error loss is mean squared error (MSE)

$$\text{MSE}(\theta; \delta(.)) = \mathbb{E}_\theta \left[(\delta(x) - g(\theta))^2 \right]$$
What is \(\text{MSE}(\theta; \hat{\theta}_0) \)?

\[
E_{\theta} \left[\frac{X}{n} \right] = \theta \quad \text{(unbiased)}
\]

\[
\Rightarrow \text{MSE}(\theta; \hat{\theta}_0) = E_{\theta} \left[\left(\frac{X}{n} - \theta \right)^2 \right]
\]

\[
= \text{Var}_{\theta} \left(\frac{X}{n} \right)
\]

\[
= \frac{1}{n} \theta (1 - \theta)
\]

Other possibilities (based on adding "pseudo-flips")

\[
\hat{\theta}_1(X) = \frac{X+1}{n+2} \quad \hat{\theta}_2(X) = \frac{X+2}{n+4} \quad \hat{\theta}_3(X) = \frac{X+1}{n}
\]

Mean squared error for binomial estimators (n=16)
Comparing estimators

We want to choose \(\delta \) to minimize \(R \)
... but this is generally not possible.

An estimator \(\delta \) is \underline{inadmissible} if \(\exists \delta^* \) with

a) \(R(\theta; \delta^*) \leq R(\theta, \delta) \) for all \(\theta \)

b) \(R(\theta, \delta^*) < R(\theta, \delta) \) for some \(\theta \)

We say \(\delta^* \) \underline{strictly dominates} \(\delta \)

\(\delta \) \underline{is inadmissible because} \(\delta_0 \) \underline{dominates} it

(Is there any \underline{uniformly} best estimator
for the binomial example?)
Resolving ambiguity

Main strategies to resolve ambiguity:

1) Summarize risk function by a scalar:

a) **Average-case risk**

\[\text{Minimize } \int_{\Theta} R(\theta; \delta) \, d\pi(\theta) \]

for some measure \(\pi \), called **prior**

If \(\pi \) is probability measure,

\[\text{same as } \mathbb{E}_{\theta \sim \pi} [R(\theta; \delta)] \]

\(\rightarrow \) **Bayes estimator**

Binomial: \(\delta_1 \) is Bayes w.r.t. \(\pi = \lambda \) on \([0,1]\)

\(\delta_2 \) is also Bayes w.r.t. \(\pi = \text{Beta}(2,2) \)

b) **Worst-case risk**

\[\text{Minimize } \sup_{\theta} R(\theta; \delta) \]

\(\rightarrow \) **Minimax estimator**

Closely related to **Bayes**

Binomial: \(\delta_2 \) is minimax (for \(n=16 \))
2) Restrict choices of estimator
 a) Restrict to unbiased estimators:
 \[E_{\theta}[\delta(x)] = g(\theta) \text{ for all } \theta \]

 Binomial: \(\delta_0 \) is best unbiased estimator