Outline

- 1) Syllabus
- 2) Measure theory basics

Measure theory basics

Measure theory is a rigorous grounding for probability theory (subject of 20xA) Simplifies notation & clerifies concepts, especially around integration & conditioning Given a set X, a measure u maps subsets $A \subseteq X$ to non-negative numbers $\mu(A) \in [0,\infty]$ Example X constable (e.g. X=Z) Counting measure #(A) = # points in A Example $X = \mathbb{R}^n$ Lebesgue measure $\lambda(A) = \int_A^{\infty} \int_A^{\infty} dx_1 - dx_n$ = Volume (A)

Standard Gaussian distribution: $P(A) = \int ... \int \phi(x) dx, ... dx, \qquad \phi(x) = \frac{e^{\frac{1}{2} \sum x_i^2}}{(2\pi)^{n/2}}$ = P(ZEA) where ZNN(O, In)

NB Be cause of pathological sets, N(A) can only be defined for certain subsets $A = \mathbb{R}^n$ [HWO, Prob.3]

In general, the domain of a measure u is a collection of subsets $J \subseteq 2^{\chi}$ (power set) of must be a <u>o-field</u> meaning it satisfies certain closure properties (not important for us) Ex: X countable, J = 2x Ex: X=Rn, J=Borel o-field B B = smallest o-field including all open rectangles (a,,b,) x ... x (a,,b,) q; < b; Vi Given a measurable space (X,7) a measure is - map M: 7 -> [0,00] with $M(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} M(A_i)$ for disjoint $A, A_2, \epsilon \gamma$ M probability measure if M(X) = 1 Measures let us define integrals that put weight n(A) on $A \subseteq X$

 $\int 1\{x \in A\} d_n(x) = n(A), \text{ extend to}$ Define other functions by linearity & limits:

Indicator $\int 1\{x \in A\} d_{M}(x) = u(A)$

Simple $\sum_{\text{Function}} \sum_{\text{Ci}} 1\{x \in A_i\} d\mu(x) = \sum_{\text{Ci}} \mu(A_i)$

Nice enough $\int f(x)dn(x)$ approximated by simple (measurable) (measurable) functions function

Examples.

Counting: $\int f dt = \sum_{x \in X} f(x)$ Lebesgue: $\int f d\lambda = \int f(x) dx - dx$

 $\int f dP = \int - \int f(x) \phi(x) dx, - dx = \mathbb{E} \left[f(z) \right]$ Gaussian:

Densities

and Pabore are closely related. Want to make this precise.

Given (χ, \mathcal{F}) , two measures P, mWe say P is absolutely continuous with Mif P(A) = 0 whenever M(A) = 0

Notation: Pecu or we say u dominates P

If $P \ll M$ then (under mild conditions) we can always define a <u>density function</u> $\rho: \mathcal{X} \to [o, \infty) \quad \text{with}$ $P(A) = \int \rho(x) dn(x)$

 $\int f(x) dP(x) = \int f(x) \rho(x) d\mu(x)$

Sometimes written $\rho(x) = \frac{dP}{dn}(x)$, called Radon - Nikodym derivative

Useful to turn StdP into Stpdn if we know how to calculate integrals dn

If P prob., M Lebesgue:

p(x) called prob. density for (pdf)

If P prob., M counting!

p(x) called prob. mass for (pmf

Probability Space, Random Variables

Typically, we set up a problem with multiple vandom variables having various relationships to one another, convenient to think of them as functions of an abstract "outcome" a

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space $\omega \in \Omega$ called outcome $A \in \mathcal{F}$ called event P(A) called probability of A

A random variable is a function $X: \Omega \to X$ We say X has distribution Q $(X \cap Q)$ if $P(X \in B) = P(\{\omega: X(\omega) \in B\})$ = Q(B)

More generally, could write events involving many R.V.s: $P(X>Y>Z\geq 0)=P(\{\omega:\dots,\})$

The expectation is an integral w.r.t. P $E[f(X,Y)] = \int_{\Omega} f(X(\omega), Y(\omega)) dP(\omega)$

To do real calculations we must eventually boil

IP or E down to concrete integrals/sums/et.

If IP(A) = 1 we say A occurs almost swell

More in Keener ch. 1, much more in Stat 205A