Outline

- 1) Syllabus
- a) Conrse goals
- 3) Measure theory basics

Measure theory basics

Measure theory is a rigorous grounding for probability theory (subject of 20xA) Simplifies notation & clerifies concepts, especially around integration & conditioning [Pset 0] Given a set X, a measure M maps subsets $A \subseteq X$ to non-negative numbers $\mu(A) \in [0,\infty]$ Example X conntable (e.g. X=Z) Counting measure #(A) = # points in A Example X = Rn Lebesgue measure $\lambda(A) = \int_{A}^{-1} \int_{A}^{1} dx_{1} dx_{n}$ = Volume (A) Standard Gaussian distribution:

$$P(A) = P(Z \in A) \quad \text{where} \quad Z \sim N(0, 1)$$

$$= \int_{A} \phi(x) dx \qquad \phi(x) = e^{-\frac{x^{2}}{2\pi}}$$

NB Be cause of pathological sets, N(A) can only be defined for certain subsets $A = \mathbb{R}^n$ [HWO, Prob.3]

In general, the domain of a measure u is a collection of subsets $J \subseteq 2^{\chi}$ (power set) must be a <u>o-field</u> meaning it satisfies certain closure properties (not important for us) O KET QIF A&F then X\A&F 3 If A, A, J == 6 of then UA; E 7 Ex: X countable, $f = 2^{x}$ Ex: $\chi = \mathbb{R}^n$, $\mathcal{F} = \mathcal{B}_{orel}$ σ_{field} \mathcal{B} $\mathcal{B} = smallest \sigma_{field} including all open rectangles$ (a,,b,) x ... x (a,,b,) q; eb; Vi Given a measurable space (X,7) a measure is - map M: 7 > [0,00] with $M(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} M(A_i)$ for disjoint $A, A_2, \epsilon \gamma$ $M(\emptyset) = 0$ M probability measure if M(X) = 1

Integrals

define integrals that put Measures let us weight n(A)· A = X

 $\int 1\{x \in A\} d_n(x) = n(A), \text{ extend to}$ other functions by linearity & limits:

Indicator $\int 1\{x \in A\} d\mu(x) = \mu(A)$

Simple $\sum_{\text{Function}} \sum_{\text{Ci}} 1\{x \in A_i\} d\mu(x) = \sum_{\text{Ci}} \mu(A_i)$

Nice enough \(\int \int \f(x) dn(x) approximated by simple (measurable) function

functions

Examples.

Counting: $\int f dt = \sum_{x \in X} f(x)$

Lebesque integral

<u>Lebesque</u>: Stdh = S... f f(x)dx, -dx,

Gaussian: Note $S1_A(x)JP_2(x) = P_2(A) = S1_A\phi dx$ By extension,

 $\int f dP_{z} = \int f(x) \phi(x) dx = \mathbb{E} \Big[f(z) \Big]$

To evaluate StdP rewrite as Stødx. do this]

eg. Binn

It is nice to turn integrals we care about into Lebesgue integrals. When can we do this?

Densities

A and P above are closely related. Want to make this precise.

Given (χ, \mathcal{F}) , two measures P, mWe say P is absolutely continuous with Mif P(A) = 0 whenever M(A) = 0

Notation: Pecu or we say u dominates P

If $P \le u$ then (under mild conditions) we can always define a <u>density function</u> $\rho: X \to [o, \infty) \quad \text{with}$ $P(A) = \int_{A} \rho(x) dn(x)$ $\int_{A} f(x) dP(x) = \int_{A} f(x) \rho(y) dn(x)$

Sometimes written $\rho(x) = \frac{d\rho}{dn}(x)$, called Radon - Nikodym derivative

Densities are very useful: Turn \(\int \text{(x)dP(x)} \) into something we know how to evaluate, such as 1) $\int_{X} f(x) \rho(x) dx$ (X continuous, $\chi \in \mathbb{R}^{n}$) p(x) called probability density function (pdf) 2) $\sum_{x \in X} f(x) \rho(x)$ (X discrete, X countable) p(x) called probability mass function (pmf)

Often define distributions by giving their density with some known measure, e.g.

Ex: Binon (n, θ) pmf: $\rho(x) = \theta(1-\theta)^{-x} \binom{n}{x}$, x = 0, ..., n (density ρ wrt counting measure on $\chi = \{0, ..., n\}$)

Note this dist. has no density with Lebergue: $\int_{\{0, ..., n\}} \rho(x) dx = 0 \quad \text{for any function } \rho$

Probability Space, Random Variables

Typically, we set up a problem with multiple random variables having various relationships to one another.

Want to be able to talk about the prob. that something happens

Convenient setup:

R.V.s as functions of an abstract control w

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space $\omega \in \Omega$ called outcome $A \in \mathcal{F}$ called event P(A) called probability of A

A random variable is a function $X: \Omega \to X$ We say X has distribution Q $(X \cap Q)$ if $P(X \in B) = P(\{\omega: X(\omega) \in B\})$ = Q(B) More generally, could write events involving many R.V.s: $P(X>Y>Z\geq 0)=P(\{\omega:\dots,\})$ The expectation is an integral w.r.t. P $E[f(X,Y)]=\int f(X(\omega),Y(\omega))JP(\omega)$

To do real calculations we must eventually boil

IP or E down to concrete integrals/sums/et.

If IP(A) = 1 we say A occurs almost swell

More in Keener ch. 1, much more in Stat 205A