Outline

1) Syllabus

2) Course goals

3) Measure theory basics
Measure theory basics

Measure theory is a rigorous grounding for probability theory [subject of 205A]

Simplifies notation & clarifies concepts, especially around integration & conditioning [Pset 0]

Given a set \(\mathcal{X} \), a measure \(\mu \) maps subsets \(A \subseteq \mathcal{X} \) to non-negative numbers \(\mu(A) \in [0, \infty] \)

Example \(\mathcal{X} \) countable (e.g. \(\mathcal{X} = \mathbb{Z} \))

\[\text{Counting measure } \#(A) = \# \text{ points in } A \]

Example \(\mathcal{X} = \mathbb{R}^n \)

\[\text{Lebesgue measure } \lambda(A) = \int_A \cdots dx, \cdots dx = \text{Volume}(A) \]

Standard Gaussian distribution:

\[P_z(A) = \int A(z \in A) \quad \text{where } Z \sim \mathcal{N}(0, 1) \]

\[= \int_A \phi(x) dx \quad \phi(x) = e^{-x^2/2} \sqrt{2\pi} \]

NB Because of pathological sets, \(\lambda(A) \) can only be defined for certain subsets \(A \subseteq \mathbb{R}^n \) [HW 0, Prob. 3]
In general, the domain of a measure μ is a collection of subsets $\mathcal{F} \subseteq 2^X$ (power set) that must be a σ-field meaning it satisfies certain closure properties (not important for us)

1. $X \in \mathcal{F}$
2. If $A \in \mathcal{F}$ then $X \setminus A \in \mathcal{F}$
3. If $A_1, A_2, \ldots \in \mathcal{F}$ then $\bigcup_{i=1}^\infty A_i \in \mathcal{F}$

\[\mathcal{F} \text{ countable, } \mathcal{F} = 2^X \]
\[\mathcal{F} = \mathbb{R}^n, \mathcal{F} = \text{Borel } \sigma\text{-field } \mathcal{B} \]
\[\mathcal{B} \text{ is smallest } \sigma\text{-field including all open rectangles } (a_1, b_1) \times \cdots \times (a_n, b_n), a_i < b_i \forall i \]

Given a measurable space (X, \mathcal{F}) a measure is a map $\mu : \mathcal{F} \to [0, \infty]$ with
\[\mu(\bigcup_{i=1}^\infty A_i) = \sum_{i=1}^\infty \mu(A_i) \text{ for disjoint } A_1, A_2, \ldots \in \mathcal{F} \]
\[\mu(\emptyset) = 0 \]

μ is a probability measure if $\mu(X) = 1$
Measures let us define integrals that put weight $m(A)$ on $A \subseteq \mathcal{X}$

Define $\int 1\{x \in A\} \, dm(x) = m(A)$, extend to other functions by linearity & limits:

Indicator

$\int 1\{x \in A\} \, dm(x) = m(A)$

Simple Function

$\int \left(\sum c_i 1\{x \in A_i\} \right) \, dm(x) = \sum c_i m(A_i)$

"Nice enough" (measurable) function

$\int f(x) \, dm(x)$ approximated by simple functions
Examples:

Counting: \[\sum_{x \in X} f(x) \]

Lebesgue: \[\int f \, d\lambda = \int f(x) \, dx \]

Gaussian: Note \[\int \mathbb{1}_A(x) \, dP_z(x) = P_z(A) = \int \mathbb{1}_A \phi \, dx \]

By extension,

\[\int f \, dP_z = \int f(x) \phi(x) \, dx = \mathbb{E}[f(Z)] \]

To evaluate \(\int f \, dP_z \), rewrite as \(\int f \phi \, dx \). **[density [can't always do this] e.g. Bin]**

It is nice to turn integrals we care about into Lebesgue integrals. When can we do this?
Densities

\(\lambda \) and \(P \) above are closely related. Want to make this precise.

Given \((X, \mathcal{F})\), two measures \(P, \mu \),

we say \(P \) is absolutely continuous wrt \(\mu \)

if \(P(A) = 0 \) whenever \(\mu(A) = 0 \)

Notation: \(P \ll \mu \) or we say \(\mu \) dominates \(P \)

If \(P \ll \mu \) then (under mild conditions) we can always define a density function \(\rho : X \to [0, \infty) \) with

\[
P(A) = \int_A \rho(x) \, d\mu(x)
\]

\[
\int f(x) \, dP(x) = \int f(x) \rho(x) \, d\mu(x)
\]

Sometimes written \(\rho(x) = \frac{dP}{d\mu}(x) \), called Radon-Nikodym derivative
Densities are very useful:

Turn \(\int f(x)dP(x) \) into something we know how to evaluate, such as

1) \(\int f(x)p(x)dx \quad (\text{X continuous, } X \subseteq \mathbb{R}^n) \)

\(p(x) \) called \underline{probability density function (pdf)}

2) \(\sum_{x \in X} f(x)p(x) \quad (\text{X discrete, } X \text{ countable}) \)

\(p(x) \) called \underline{probability mass function (pmf)}

Often define distributions by giving their density \(\text{wrt some known measure, e.g.} \)

\text{Ex: Binom (n, } \theta) \text{ pmf} : p(x) = \binom{n}{x} \theta^x (1-\theta)^{n-x} , \ x = 0, \ldots, n \)

(density \(p \) \(\text{wrt counting measure on } X=\{0, \ldots, n\} \))

\(\text{Note this dist. has no density \(\text{wrt Lebesgue:} \) } \int p(x)dx = 0 \ \text{for any function } p \)
Probability Space, Random Variables

Typically, we set up a problem with multiple random variables having various relationships to one another.

Want to be able to talk about the "prob. that something happens".

Convenient setup:

R.V.s as functions of an abstract "outcome" \(\omega \)

Let \((\Omega, \mathcal{F}, \mathbb{P})\) be a probability space

- \(\omega \in \Omega \) called outcome
- \(A \in \mathcal{F} \) called event
- \(\mathbb{P}(A) \) called probability of \(A \)

A random variable is a function \(X: \Omega \to \mathbb{X} \)

We say \(X \) has distribution \(Q \) \((X \sim Q)\) if

\[
\mathbb{P}(X \in B) = \mathbb{P}(\{ \omega : X(\omega) \in B \}) = Q(B)
\]
More generally, could write events involving many R.V.s:

\[P(X > Y > Z > 0) = P(\{ \omega : \cdots \}) \]

The expectation is an integral w.r.t. \(P \)

\[\mathbb{E}[f(X,Y)] = \int \int f(X(\omega),Y(\omega)) \, dP(\omega) \]

To do real calculations we must eventually boil \(P \) or \(\mathbb{E} \) down to concrete integrals/sums/etc.

If \(P(A) = 1 \) we say \(A \) occurs \textit{almost surely}

More in Keener ch. 1, much more in Stat 205A