1. Effective degrees of freedom

We can write a standard Gaussian sequence model in the form

\[Y_i = \mu_i + \varepsilon_i, \quad \varepsilon_i \sim_{i.i.d.} N(0, \sigma^2), \quad i = 1, \ldots, n \]

with \(\mu \in \mathbb{R}^n \) and \(\sigma^2 > 0 \) possibly unknown. If we estimate \(\mu \) by some estimator \(\hat{\mu}(Y) \), we can compute the residual sum of squares (RSS):

\[\text{RSS}(\hat{\mu}, Y) = \| \hat{\mu}(Y) - Y \|^2 = \sum_{i=1}^{n} (\hat{\mu}_i(Y) - Y_i)^2. \]

If we were to observe the same signal with independent noise \(Y^* = \mu + \varepsilon^* \), the expected prediction error (EPE) is defined as

\[\text{EPE}(\mu, \hat{\mu}) = \mathbb{E}_\mu \left[\| \hat{\mu}(Y) - Y^* \|^2 \right] = \mathbb{E}_\mu \left[\| \hat{\mu}(Y) - \mu \|^2 \right] + n\sigma^2. \]

Because \(\hat{\mu} \) is typically chosen to make RSS small for the observed data \(Y \) (i.e., to fit \(Y \) well), the RSS is usually an optimistic estimator of the EPE, especially if \(\hat{\mu} \) tends to overfit. To quantify how much \(\hat{\mu} \) overfits, we can define the effective degrees of freedom (or simply the degrees of freedom) of \(\hat{\mu} \) as

\[\text{DF}(\mu, \hat{\mu}) = \frac{1}{2\sigma^2} \mathbb{E} \left[\text{EPE} - \text{RSS} \right], \]

which uses optimism as a proxy for overfitting.

For the following questions assume we also have a predictor matrix \(X \in \mathbb{R}^{n \times d} \), which is simply a matrix of fixed real numbers. Suppose that \(d \leq n \) and \(X \) has full column rank.

(a) Show that if \(\hat{\mu} \) is differentiable with \(\mathbb{E}_\mu \| D\hat{\mu}(Y) \|_F < \infty \) then

\[\sum_{i=1}^{n} \frac{\partial \hat{\mu}_i(Y)}{\partial Y_i} \]

is an unbiased estimator of the DF. (Recall \(D\hat{\mu}(Y) \) is the Jacobian matrix from class).

(b) Suppose \(\hat{\mu} = X\hat{\beta} \), where \(\hat{\beta} \) is the ordinary least squares estimator (i.e., chosen to minimize the RSS). Show that the DF is \(d \). (This confirms that DF generalizes the intuitive notion of degrees of freedom as “the number of free variables”).
(c) Suppose \(\hat{\mu} = X \hat{\beta} \), where \(\hat{\beta} \) minimizes the penalized least squares criterion:

\[
\hat{\beta} = \arg \min_{\beta} \| Y - X \beta \|^2 + \rho \| \beta \|^2,
\]

for some \(\rho \geq 0 \). Show that the DF is

\[
\sum_{j=1}^d \lambda_j \rho + \lambda_j,
\]

where \(\lambda_1 \geq \cdots \geq \lambda_d > 0 \) are the eigenvalues of \(X'X \) (counted with multiplicity) (Hint: use the singular value decomposition of \(X \)).

2. Soft thresholding

Consider the soft thresholding operator with parameter \(\lambda \geq 0 \), defined as

\[
\eta_\lambda(x) = \begin{cases}
 x - \lambda & x > \lambda \\
 0 & |x| \leq \lambda \\
 x + \lambda & x < -\lambda
\end{cases}
\]

Note that, although we didn’t prove it in class, Stein’s lemma applies for continuous functions \(h(x) \) which are differentiable except on a measure zero set; you can apply it here without worrying.

Assume \(X \sim N_d(\theta, I_d) \) for \(\theta \in \mathbb{R}^d \), which we will estimate via \(\delta_\lambda(X) = (\eta_\lambda(X_1), \ldots, \eta_\lambda(X_d)) \). Soft thresholding is sometimes used when we expect sparsity: a small number of relatively large \(\theta_i \) values. \(\lambda \) here is called a tuning parameter since it determines what version of the estimator we use, but doesn’t have an obvious statistical interpretation.

(a) Show that \(\{|i : |X_i| > \lambda\}| \) is an unbiased estimator of the degrees of freedom of \(\delta_\lambda \) (so, in a sense, the DF is the expected number of “free variables”).

(b) Show that

\[
d + \sum_i \min(X_i^2, \lambda^2) - 2 |\{i : |X_i| \leq \lambda\}|
\]

is an unbiased estimator for the MSE of \(\delta_\lambda \).

(c) Show that the risk-minimizing value \(\lambda^* \) solves

\[
\lambda \sum_i \mathbb{P}_{\theta_i}(|X_i| > \lambda) = \sum_i \phi(\lambda - \theta_i) + \phi(\lambda + \theta_i),
\]

where \(\phi(z) = \frac{e^{-z^2/2}}{\sqrt{2\pi}} \) is the standard normal density.

(d) Consider a problem with \(\theta_1 = \cdots = \theta_{20} = 10 \) and \(\theta_{21} = \cdots = \theta_{500} = 0 \). Compute \(\lambda^* \) numerically. Then simulate a vector \(X \) from the model and use it to automatically tune the value of \(\lambda \) by minimizing SURE. Call the automatically tuned value \(\hat{\lambda}(X) \) and report both \(\lambda^* \) and \(\hat{\lambda}(X) \). Finally plot the true MSE of \(\delta_\lambda \) along with its SURE estimate against \(\lambda \) for a reasonable range of \(\lambda \) values. Add a horizontal line for the risk of the UMVU estimator.

(e) Compute and report the squared error loss \(\| \delta(X) - \theta \|^2 \) for the following four estimators:

(i) the UMVU estimator \(\delta_0(X) = X \),

(ii) the optimally tuned soft-thresholding estimator \(\delta_{\lambda^*}(X) \),

(iii) the automatically tuned soft-thresholding estimator \(\delta_{\hat{\lambda}(X)}(X) \), and

(iv) the James-Stein estimator.

You do not need to compute the MSE. Intuitively, what do you think accounts for the good performance of soft-thresholding in this example?

3. Mean estimation
(a) Suppose $X_1, \ldots, X_n \overset{i.i.d.}{\sim} N_d(\theta, I_d)$ and consider estimating $\theta \in \mathbb{R}^d$. Show that $\overline{X} = \frac{1}{n} \sum_i X_i$ is the minimax estimator of θ under squared error loss.

Hint: Find a least favorable sequence of priors.

(b) Suppose $X_1, \ldots, X_n \overset{i.i.d.}{\sim} P$ where P is any distribution over the real numbers such that $\text{Var}_P(X) \leq 1$. Show that $\overline{X} = \frac{1}{n} \sum_i X_i$ is minimax for estimating $\theta(P) = \mathbb{E}_P X$ under the squared error loss.

Hint: Try to relate this problem to the Gaussian problem with $d = 1$.

(c) Assume $X \sim N(\theta, 1)$ with the constraint that $|\theta| \leq 1$. Show that the minimax estimator for squared error loss is $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$.

Plot its risk function.

Hint: Plot the risk function first. For this problem if you need to show that a function is maximized or minimized somewhere, you may do it numerically or by inspecting a graph if it is obvious enough.

4. **James-Stein estimator with regression-based shrinkage**

Consider estimating $\theta \in \mathbb{R}^d$ in the model $Y \sim N_d(\theta, I_d)$. In the standard James-Stein estimator, we shrink all the estimates toward zero, but it might make more sense to shrink them towards the average value \overline{Y}, or towards some other value based on observed side information.

(a) Consider the estimator

$$
\hat{\delta}_i^{(1)}(Y) = \overline{Y} + \left(1 - \frac{d - 3}{\|Y - \overline{Y} I_d\|^2}\right)(Y_i - \overline{Y})
$$

Show that $\hat{\delta}_i^{(1)}(Y)$ strictly dominates the estimator $\hat{\delta}_i^{(0)}(Y) = Y$, for $d \geq 4$.

$$
\text{MSE}(\theta; \hat{\delta}_i^{(1)}) < \text{MSE}(\theta; \hat{\delta}_i^{(0)}), \quad \text{for all } \theta \in \mathbb{R}^d.
$$

Calculate the MSE of $\hat{\delta}_i^{(1)}$ if $\theta_1 = \theta_2 = \cdots = \theta_d$. How would it compare to the MSE for the usual James-Stein estimator?

Hint: Change the basis using an appropriate orthogonal rotation and think about how the estimator operates on different subspaces.

Hint: Recall that if $Z \sim N_d(\mu, \Sigma)$ and $A \in \mathbb{R}^{k \times d}$ is a fixed matrix then $AZ \sim N_k(A\mu, A\Sigma A')$.

(b) Now suppose instead that we have side information about each θ_i, represented by fixed covariate vectors $x_1, \ldots, x_d \in \mathbb{R}^k$. Assume the design matrix $X \in \mathbb{R}^{d \times k}$ whose ith row is x_i has full column rank. Suppose that we expect $\theta \approx X\beta$ for some $\beta \in \mathbb{R}^k$, but unlike the usual linear regression setup, we will not assume $\theta = X\beta$ with perfect equality.

Find an estimator $\hat{\delta}_i^{(2)}$, analogous to the one in part (a), that dominates $\hat{\delta}_i^{(0)}$ whenever $d - k \geq 3$:

$$
\text{MSE}(\theta; \hat{\delta}_i^{(2)}) < \text{MSE}(\theta; \hat{\delta}_i^{(0)}), \quad \text{for all } \theta \in \mathbb{R}^d,
$$

and for which $\text{MSE}(X\beta; \hat{\delta}_i^{(2)}) = k + 2$, for any $\beta \in \mathbb{R}^k$.

Hint: Think of this setting as a generalization of part (a), which can be considered a special case with $d = 1$ and all $x_i = 1$. What is the right orthogonal rotation?

Note: Don’t assume there is an additional intercept term for the regression; this could always be incorporated into the X matrix by taking $x_i,1 = 1$ for all $i = 1, \ldots, d$.

5. **Upper-bounding θ**
(a) Let $X \sim N(\theta, 1)$ for $\theta \in \mathbb{R}$, and consider the loss function

$$L(\theta, d) = 1\{d < \theta\};$$

that is, we observe X and try to come up with an upper bound $\delta(x) \in \mathbb{R}$ for θ. Show that the minimax risk is 0 (note you may not be able to find a minimax estimator).

(b) Now, consider a problem with the same loss function but without observing any data. Show the minimax risk (considering both randomized and non-randomized estimators) is 1, but the Bayes risk $r_\Lambda = 0$ for any prior Λ (note there may be no estimator δ_Λ that attains the minimum Bayes risk).

(Note: This problem exhibits a “duality gap” where the lower bounds we can get by trying different priors will always fall short of the minimax risk.)

(c) Optional (not graded, no extra points): Now consider the same loss function, but now $X \sim N(\theta, \sigma^2)$ and σ^2 is unknown too. Find the minimax risk.

Hint: consider estimators of the form $\delta(X) = c|X|$.
