Stats 210A, Fall 2020
Homework 6

Due date: Wednesday, Oct. 14

You may disregard measure-theoretic niceties about conditioning on measure-zero sets, almost-
 sure equality vs. actual equality, “all functions” vs. “all measurable functions,” etc. (unless the
 problem is explicitly asking about such issues).

If you need to write code to answer a question, show your code. If you need to include a plot,
 make sure the plot is readable, with appropriate axis labels and a legend if necessary. Points will
 be deducted for very hard-to-read code or plots.

1. Effective degrees of freedom

We can write a standard Gaussian sequence model in the form

\[Y_i = \mu_i + \varepsilon_i, \quad \varepsilon_i \sim_{i.i.d.} N(0, \sigma^2), \quad i = 1, \ldots, n \]

with \(\mu \in \mathbb{R}^n \) and \(\sigma^2 > 0 \) possibly unknown. If we estimate \(\mu \) by some estimator \(\hat{\mu}(Y) \), we
can compute the residual sum of squares (RSS):

\[\text{RSS}(\hat{\mu}, Y) = \| \hat{\mu}(Y) - Y \|^2 = \sum_{i=1}^{n} (\hat{\mu}_i(Y) - Y_i)^2. \]

If we were to observe the same signal with independent noise \(Y^* = \mu + \varepsilon^* \), the expected
prediction error (EPE) is defined as

\[\text{EPE}(\mu, \hat{\mu}) = \mathbb{E}_\mu [\| \hat{\mu}(Y) - Y^* \|^2] = \mathbb{E}_\mu [\| \hat{\mu}(Y) - \mu \|^2] + n\sigma^2. \]

Because \(\hat{\mu} \) is typically chosen to make RSS small for the observed data \(Y \) (i.e., to fit \(Y \) well),
the RSS is usually an optimistic estimator of the EPE, especially if \(\hat{\mu} \) tends to overfit. To
quantify how much \(\hat{\mu} \) overfits, we can define the effective degrees of freedom (or simply the
degrees of freedom) of \(\hat{\mu} \) as

\[\text{DF}(\mu, \hat{\mu}) = \frac{1}{2\sigma^2} \mathbb{E}[\text{EPE} - \text{RSS}], \]

which uses optimism as a proxy for overfitting.

For the following questions assume we also have a predictor matrix \(X \in \mathbb{R}^{n \times d} \), which is
simply a matrix of fixed real numbers. Suppose that \(d \leq n \) and \(X \) has full column rank.

(a) Show that if \(\hat{\mu} \) is differentiable with \(\mathbb{E}_\mu \| D\hat{\mu}(Y) \|_F < \infty \) then

\[\sum_{i=1}^{n} \frac{\partial \hat{\mu}_i(Y)}{\partial Y_i} \]

is an unbiased estimator of the DF. (Recall \(D\hat{\mu}(Y) \) is the Jacobian matrix from class).

(b) Suppose \(\hat{\mu} = X\hat{\beta} \), where \(\hat{\beta} \) is the ordinary least squares estimator (i.e., chosen to
minimize the RSS). Show that the DF is \(d \). (This confirms that DF generalizes the
intuitive notion of degrees of freedom as “the number of free variables”).
(c) Suppose $\hat{\mu} = X\hat{\beta}$, where $\hat{\beta}$ minimizes the penalized least squares criterion:

$$\hat{\beta} = \arg \min_{\beta} \|Y - X\beta\|^2_2 + \rho\|\beta\|^2_2,$$

for some $\rho \geq 0$. Show that the DF is $\sum_{j=1}^{d} \frac{\lambda_j}{\lambda_j + \lambda_1}$, where $\lambda_1 \geq \cdots \geq \lambda_d > 0$ are the eigenvalues of $X'X$ (counted with multiplicity) (Hint: use the singular value decomposition of X).

2. Soft thresholding

Consider the soft thresholding operator with parameter $\lambda \geq 0$, defined as

$$\eta_\lambda(x) = \begin{cases}
 x - \lambda & x > \lambda \\
 0 & |x| \leq \lambda \\
 x + \lambda & x < -\lambda
\end{cases}$$

Note that, although we didn’t prove it in class, Stein’s lemma applies for continuous functions $h(x)$ which are differentiable except on a measure zero set; you can apply it here without worrying.

Assume $X \sim N_d(\theta, I_d)$ for $\theta \in \mathbb{R}^d$, which we will estimate via $\delta_\lambda(X) = (\eta_\lambda(X_1), \ldots, \eta_\lambda(X_d))$. Soft thresholding is sometimes used when we expect sparsity: a small number of relatively large θ_i values. λ here is called a tuning parameter since it determines what version of the estimator we use, but doesn’t have an obvious statistical interpretation.

(a) Show that $|\{i : |X_i| > \lambda\}|$ is an unbiased estimator of the degrees of freedom of δ_λ (so, in a sense, the DF is the expected number of “free variables”).

(b) Show that

$$d + \sum_i \min(X_i^2, \lambda^2) - 2|\{i : |X_i| \leq \lambda\}|$$

is an unbiased estimator for the MSE of δ_λ.

(c) Show that the risk-minimizing value λ^* solves

$$\lambda \sum_i P_{\theta_i}(|X_i| > \lambda) = \sum_i \phi(\lambda - \theta_i) + \phi(\lambda + \theta_i),$$

where $\phi(z) = e^{-z^2/2} \sqrt{2\pi}$ is the standard normal density.

(d) Consider a problem with $\theta_1 = \cdots = \theta_{20} = 10$ and $\theta_{21} = \cdots = \theta_{500} = 0$. Compute λ^* numerically. Then simulate a vector X from the model and use it to automatically tune the value of λ by minimizing SURE. Call the automatically tuned value $\hat{\lambda}(X)$ and report both λ^* and $\hat{\lambda}(X)$. Finally plot the true MSE of δ_λ along with its SURE estimate against λ for a reasonable range of λ values. Add a horizontal line for the risk of the UMVU estimator.

(e) Compute and report the squared error loss $\|\delta(X) - \theta\|^2$ for the following four estimators:

(i) the UMVU estimator $\delta_0(X) = X$,

(ii) the optimally tuned soft-thresholding estimator $\delta_{\lambda^*}(X)$,

(iii) the automatically tuned soft-thresholding estimator $\delta_{\hat{\lambda}(X)}(X)$, and

(iv) the James-Stein estimator.

You do not need to compute the MSE. Intuitively, what do you think accounts for the good performance of soft-thresholding in this example?

3. Mean estimation
(a) Suppose $X_1, \ldots, X_n \overset{i.i.d.}{\sim} N_d(\theta, I_d)$ and consider estimating $\theta \in \mathbb{R}^d$. Show that $\overline{X} = \frac{1}{n} \sum_i X_i$ is the minimax estimator of θ under squared error loss.

Hint: Find a least favorable sequence of priors.

(b) Suppose $X_1, \ldots, X_n \overset{i.i.d.}{\sim} P$ where P is any distribution over the real numbers such that $\text{Var}_P(X) \leq 1$. Show that $\overline{X} = \frac{1}{n} \sum_i X_i$ is minimax for estimating $\theta(P) = \mathbb{E}_P X$ under the squared error loss.

Hint: Try to relate this problem to the Gaussian problem with $d = 1$.

(c) Assume $X \sim N(\theta, 1)$ with the constraint that $|\theta| \leq 1$. Show that the minimax estimator for squared error loss is $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$.

Plot its risk function.

Hint: Plot the risk function first. For this problem if you need to show that a function is maximized or minimized somewhere, you may do it numerically or by inspecting a graph if it is obvious enough.

4. Binomial minimax estimator

Consider estimating θ under squared error loss, for the model $X \sim \text{Binom}(n, \theta)$.

(a) Plot the risk function of the UMVU estimator and that of the minimax estimator for $n = 1, 10, 100$, and 1000.

(b) Plot a histogram of the distribution of the UMVU estimator and that of the minimax estimator for $n = 10$ and $n = 1000$, when $\theta = 0.1$ and $\theta = 0.5$. Indicate with a vertical line where the true value of θ is.

(c) Let M_n denote the interval on which the minimax estimator outperforms the UMVU estimator. Find the endpoints of M_n. What happens as $n \to \infty$?

5. Upper-bounding θ

(a) Let $X \sim N(\theta, 1)$ for $\theta \in \mathbb{R}$, and consider the loss function

\[L(\theta, d) = 1\{d < \theta\}; \]

that is, we observe X and try to come up with an upper bound $\delta(x) \in \mathbb{R}$ for θ. Show that the minimax risk is 0 (note you may not be able to find a minimax estimator).

(b) Now, consider a problem with the same loss function but without observing any data. Show the minimax risk (considering both randomized and non-randomized estimators) is 1, but the Bayes risk $r_\Lambda = 0$ for any prior Λ (note there may be no estimator δ_Λ that attains the minimum Bayes risk).

Note: This problem exhibits a “duality gap” where the lower bounds we can get by trying different priors will always fall short of the minimax risk.

(c) **Optional** (not graded, no extra points): Now consider the same loss function, but now $X \sim N(\theta, \sigma^2)$ and σ^2 is unknown too. Find the minimax risk.

Hint: consider estimators of the form $\delta(X) = c|X|$.

3