
Stats 210A, Fall 2023
Homework 3

Due date: Wednesday, Sep. 20
You may disregard measure-theoretic niceties about conditioning on measure-zero sets, almost-sure equal-

ity vs. actual equality, “all functions” vs. “all measurable functions,” etc. (unless the problem is explicitly
asking about such issues).

1. Interpretation of completeness

The concept of completeness for a family of measures was introduced in Lehmann and Scheffé (1950)
as a precursor to their definition, in the same paper, of a complete statistic. The definition of a com-
plete family did not stick, and lives on only in the (consequently confusingly named) idea of complete
statistic (in particular it has nothing to do with the definition of a complete measure that you can find on
Wikipedia).

If P = {Pθ : θ ∈ Θ} is a family of measures on X , we say that P is complete if∫
f(x) dPθ(x) = 0, ∀θ ⇒ Pθ({x : f(x) 6= 0}) = 0, ∀θ.

This can be interpreted as an inner product 〈f, Pθ〉 =
∫
f dPθ, where f ⊥ Pθ if 〈f, Pθ〉 = 0. Then, the

family is not complete if there is some nonzero function f that is orthogonal to every Pθ. We will try to
gain some intuition for this definition and, thereby, for the definition of a complete statistic.

For the following parts, let P = {Pθ : θ ∈ Θ} be a family of probabilty measures on X , assume T (X)
is a statistic, and let T = T (X ) be the range of the statistic T (X). Let PT = {PTθ : θ ∈ Θ} denote the
induced model of push-forward probability measures on T denoting the possible distributions of T (X):

PTθ (B) = Pθ(T
−1(B)) = Pθ(T (X) ∈ B).

(a) Show that T (X) is a complete statistic for the family P if and only if PT is a complete family.

(b) Assume (for this part only) that X is a finite set, i.e. X = {x1, . . . , xn} for some n < ∞, and
assume without loss of generality that every x ∈ X has Pθ({x}) > 0 for at least one value of θ
(otherwise we could truncate the sample space).
Let pθ(x) = Pθ(X = x) ≥ 0, and vθ = (pθ(x1), . . . , pθ(xn)) ∈ Rn. Show that P is complete if
and only if Span{vθ : θ ∈ Θ} = Rn.

(c) Let X1, . . . , Xn
i.i.d.∼ Pois(θ) for θ ∈ Θ = {θ1, . . . , θm} with 2 ≤ m < ∞. Find a sufficient

statistic that is minimal but not complete (prove both properties).

(d) In the same scenario but with Θ = πZ+ = {0, π, 2π, . . .}, show that the same statistic is minimal
but not complete.
Hint: Recall the Taylor series

sin(θ) = θ − θ3

3!
+
θ5

5!
− θ7

7!
+ · · · .

(e) Optional (not graded, no extra points). Let X1, . . . , Xn
i.i.d.∼ Pois(θ) for θ ∈ Θ, and assume that Θ

has an accumulation point at 0, i.e. Θ includes an infinite sequence of positive values θ1, θ2, . . . ∈ Θ
such that limm→∞ θm = 0. Find a complete sufficient statistic and prove it is complete sufficient.
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Hint: suppose f is a counterexample function; what is f(0)? It may be helpful to recall that
∫
f dµ

is undefined unless either
∫

max(0, f(x)) dµ(x) or
∫

max(0,−f(x)) dµ(x) is finite; as a result∫
f dµ = 0⇒

∫
|f | dµ <∞.

Moral 1: The definition of a complete statistic is easier to remember if we recall its interpretation as
saying that the set of distributions PTθ “spans” a certain vector space, so that only the zero function is
orthogonal to all PTθ .

Moral 2: If P = {Pη : η ∈ Ξ} is a full-rank exponential family with natural parameter η, meaning Ξ
contains an open set, our result from class allows us to prove completeness of T (X). But the converse is
far from true: it is possible for T to be complete if Ξ is discrete, or even finite.

2. Ancillarity in location-scale families

In a parameterized family where θ = (ζ, λ), we say a statistic T is ancillary for ζ if its distribution is
independent of ζ; that is, if T (X) is ancillary in the subfamily where λ is known, for each possible value
of λ.

Suppose that X1, . . . , Xn ∈ X = R are an i.i.d. sample from a location-scale family

P = {Fa,b(x) = F ((x− a)/b) : a ∈ R, b > 0},

where F (·) is a known cumulative distribution function. The real numbers a and b are called the location
and scale parameters respectively. (Note: recall it is not enough to prove ancillarity of the coordinates.)

(a) Show that the vector of differences (X1 −Xi)
n
i=2 is ancillary for a.

(b) Show that the vector of ratios
(
X1−a
Xi−a

)n
i=2

is ancillary for b. (Note: this is only a statistic when a is
known).

(c) Show that the vector of difference ratios
(
X1−Xi

X2−Xi

)n
i=3

is ancillary for (a, b).

(d) Let X1, . . . , Xn be mutually independent with Xi ∼ Gamma(ki, θ). Show that X+ =
∑n
i=1Xi is

independent of (X1, . . . , Xn)/X+.

Moral: Location-scale families have common structure that we can exploit in some problems.

3. Unbiased estimation in replicated studies

One focal issue in the ongoing scientific replication crisis is the “file drawer problem,” i.e. the tendency
of researchers to report findings (or of journals to publish them) only if they have a p-value less than
0.05. Replication studies typically represent cleaner estimates of the results under study, since they are
reported regardless of whether they are statistically significant. This is one of the reasons that replication
studies often find much smaller effect size estimates than the original studies: if the original study had
gotten a good estimate of the (small) true effect, we wouldn’t have heard about it.

We can introduce a toy model for a replicated study where the original study is X1 ∼ N(µ, 1) and the
replication study is X2 ∼ N(µ, 1), but we only observe the study pair given that X1 > c for some
significance cutoff c ∈ R, e.g. c = 1.96. In other words, the distribution for a study pair conditional on
our observing it is

pµ(x1, x2) = Pµ(X1 = x1, X2 = x2 | X1 > c)

=
φ(x1 − µ)1{x1 > c}

1− Φ(c− µ)
φ(x2 − µ),

where φ(x) = 1√
2π
e−x

2/2 is the standard normal pdf and Φ(x) =
∫ x
−∞ φ(u) du is the standard normal

cdf. We will consider the problem of estimating µ after observing a study pair.
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Arguably, we should only care about the conditional bias or risk of an estimator, given that we actually
get to see the data, since the conditional distribution more accurately describes the set of published
results. Thus, all questions below about bias, admissibility, UMVU, etc. should be answered in terms of
the conditional distribution given that X1 > c (i.e., with densities pµ(x1, x2) above), not in terms of the
marginal distribution (whose densities would be φ(x1 − µ)φ(x2 − µ).) For example, in part (a) it would
not be true to say that X is marginally biased, but I want you to show it is conditionally biased given that
it is observed.

(a) Show that X = (X1 + X2)/2 is an upwardly biased estimator of µ (we can call this the naive
estimator since it ignores the selection bias).

(b) Show that X2 is unbiased for µ, but it is inadmissible under any strictly convex loss function (we
can call this the data splitting estimator since we ignore X1, which was used for selection, and use
the fresh data X2.)

(c) Show that the UMVU estimator for µ is

δ(X) = X − 1√
2
ζ
(√

2(c−X)
)
,

where

ζ(x) = EZ∼N(0,1)[Z | Z > x] =

∫∞
x
uφ(u) du

1− Φ(x)
.

Hint: It may help to note that X1 + X2 is marginally independent of X1 −X2 (but note they are
not conditionally independent given X1 > c.)

(d) Show that
lim
X→∞

δ(X)−X = 0.

In other words, if X � c, then δ(X) ≈ X , the naive estimator. Can you give any intuition for why
this limit makes sense?

(e) Optional: (not graded, no extra points). Show that

lim
X→−∞

δ(X)− (X2 + (X1 − c)) = 0,

and furthermore that for any ε > 0, we have

lim
X→−∞

P(X1 − c > ε | X,X1 > c)→ 0.

In other words, if X � c, we have δ(X) ≈ X2 + (X1− c) ≈ X2, the data splitting estimator. Can
you give any intuition for why this limit makes sense?
Hint: It may be helpful to use the tail inequality(

1

x
− 1

x3

)
φ(x) ≤ 1− Φ(x) ≤ 1

x
φ(x),

for x > 0.

Moral: This is a nice estimator that transitions adaptively between the data splitting estimator (when X1

is subject to extreme selection bias) and the unadjusted sample mean (when X1 is nearly unaffected by
selection bias). It manages to do this even though we don’t know how bad the selection bias is, since
that depends on µ. It would be difficult to come up with an estimator like this without the theory of
exponential families and UMVU estimators, specifically the idea of Rao-Blackwellization.
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4. Poisson UMVU estimation

Let X1, . . . , Xn
i.i.d.∼ Pois(θ) and consider estimating

g(θ) = e−θ = Pθ(X1 = 0)

(a) Find the UMVU estimator for g(θ) by Rao-Blackwellizing a simple unbiased estimator. You may
use without proof the fact that (X1, . . . , Xn) ∼ Multinom(t, (n−1, . . . , n−1)) given

∑n
i=1Xi = t.

(b) Find the UMVU estimator for g(θ) directly, using the power series method from class.
Moral: This problem is for practice deriving UMVU estimators using the two methods from class.

5. Complete sufficient statistic for a nonparametric family

Consider an i.i.d. sample from the nonparametric family of all distributions on R:

X1, . . . , Xn
i.i.d.∼ P,

Formally we can write this model as P = {Pn : P is a probability measure on R}. Let T (X) =
(X(1), . . . , X(n)) denote the vector of order statistics.

(a) For a finite set of size m, Y = {y1, . . . , ym} ⊆ R, consider the subfamily PY of distributions
supported on Y:

PY = {Pn : P (Y) = 1} ⊆ P.
Show that T (X) is complete sufficient for this family.
Hint: It may help to review different ways to parameterize the multinomial family.

(b) Show that the vector of order statistics T (X) = (X(1), . . . , X(n)) is a complete sufficient statistic
for P .

(c) Next, consider the restricted subfamily

Qk = {Pn : EP [|X1|k] <∞} ⊆ P,

and define the sample mean and variance respectively as

X =
1

n

n∑
i=1

Xi, S2 =
1

n− 1

n∑
i=1

(Xi −X)2.

Show that X is the UMVU estimator of EPX1 inQ1, and S2 is the UMVU estimator of VarP (X1)
in Q2.

(d) In the original family P , find the UMVU estimator of the probability

πc = PP (X ≤ c).

Note: If we come up with estimators for every c we can “assemble” them all into an estimator for
the CDF of P .

Moral: Without any restrictions on the family P , we can’t do much better than estimating population
quantities with sample quantities (when the sample quantities are unbiased). In the case of the mean, for
examples,X is always available as an unbiased estimator of EX , but if we impose additional assumptions
on the family then we might be able to do better.
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