Stats 210A, Fall 2018
Homework 13
Due date: Thursday, Dec. 6

You may disregard measure-theoretic niceties about conditioning on measure-zero sets, almost-
sure equality vs. actual equality, “all functions” vs. “all measurable functions,” etc. (unless the
problem is explicitly asking about such issues).

1. Score test with nuisance parameters
Consider a testing problem with X1,..., X, R po,c(z) with parameter of interest # € R and
nuisance parameter ¢ € R. That is, we are testing Hy : 6 = 6y vs. Hy : 0 # 0y, and ( is
unknown; let {y denote its true value. Then there is a version of the score test where we plug
in an estimator for ¢, but we must use a corrected version of the variance.

Let (o denote the maximum likelihood estimator of ¢ under the null:

Co(bo) = arg max £(00,¢; X).

Let J(6,¢) denote the Fisher Information (i.e. the full-sample information for all n observa-
tions), and assume it is continuous and positive-definite everywhere.

(a) Use Taylor expansions informally to show that, for large n,
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(Note: the LHS should be read as [Z(, O”Ho,éo’ and not ﬁ[ﬂ(@o,&)(ﬁo))]).
(b) Using part (a), conclude that
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where J = J (6o, CAO) Compare this to the score test statistic we would use if {y were known
rather than estimated. (Note: you may assume without proof that the approximation error
in part (a) is negligible; i.e. you may take the “~” as an exact equality).

2. Pearson’s x? Test
Suppose that Xq,...,X, BN p(x), a density with respect to the counting measure on X =
{1,...,d}. Let N; = 3" | 1{X; = j} denote the counts (so (Ni,...,Ny) comprise a complete

sufficient statistic for the sample X).

Assume po(x) is a hypothesized distribution, which is strictly positive. The Pearson x? test
statistic for goodness-of-fit is defined as

(a) Show that, if p = pg, then S(X) = x3_; as n — oo.
(Hint: recall the multivariate CLT. If Y3,Y5,... are i.i.d. random vectors with mean
u € R¥ and variance-covariance matrix ¥ € R¥** then ﬁ MY —p) = N(0,%).)

(b) Consider testing Hy : p = pg vs. Hy : p # po. Show that the test that rejects for large
S(X) is equivalent to the score test from class (Hint: note that there are really d — 1, not
d, free parameters in this problem).



3. Poisson score test
Suppose we observe covariate z; € R (fixed and known) and Poisson response Y; ~ Pois(}\;) for
i=1,...,n. We assume that \; = a + fx;, with the restriction that min; \; > 0, but o, € R
otherwise unknown. Assume there are at least 3 distinct values represented among x1, ..., Z,.

(a) Show that this model is a curved exponential family.

(b) Derive the score test for the null hypothesis Hy : f = 0 vs. Hy : [ > 0 (one-sided
alternative). Give the test statistic and asymptotic rejection cutoff (this is not an i.i.d.
sample but base your answer on the full-sample score and Fisher information; you do not
need to justify the asymptotic approximation).

4. Trio of likelihood-based tests
Consider the three likelihood-based confidence intervals for a model with a single real parameter
0: the Wald, score, and generalized likelihood ratio intervals, which we can define respectively
as CY(X), CY(X), and C§(X).

Define a new parameterization n = f(#) where f'(9) > 0 for all § € R, and let C]'(X) denote
the corresponding confidence interval constructed based on the new parameterization. For
which i € {1,2,3} are we guaranteed to have C}(X) = f(C?(X)) (i.e., which are invariant to
parameterization)?

5. Estimation in misspecified models
Assume we observe a sample X1,..., X, i p(x), and we perform maximum likelihood estima-

tion for a real parameter 6 using a dominated family P = {py(z) : 6 € ® C R}, where p ¢ P.
Let 6,, denote the maximum likelihood estimator, and let 6* denote the parameter value that
minimizes KL divergence:

0" = argmin Dxy(p || ps) = argmax E, [¢(0; X)].
9€o 0€o

Since there is no true value of 8, we might still hope to “fail gracefully” by estimating 6*, which
(in some sense) best approximates the true distribution p.

Assume 6* is unique, that the parameter space © is compact, that 8* is in its interior, and
that the supremum log-likelihood ratio between any pair of parameter values is bounded in
expectation:

E, | sup [€(01;X)—£(02; X)|| < B.
01,0:€0

In addition, assume that the log-likelihood is twice differentiable, and that for all § € O,
Var, (£'(0; X)) € (0,00), E,[£"(0; X)] € (—00,0).

Note that by dominated convergence we can bring derivatives inside the integral; you do not
need to justify this. Finally, assume E, [supgeg [€”(0; X)|] < oco.

(a) Show that the maximum likelihood estimator converges in probability to 6*.

(b) Is it true in general that
—E,[0"(0"; X)] = Var,(¢'(6*; X)) ?

Prove or give a counterexample.

(¢) Find the limiting distribution of 6, as n — co. Will the Wald confidence interval cover
6*?



