
Stats 210A, Fall 2018

Homework 13

Due date: Thursday, Dec. 6

You may disregard measure-theoretic niceties about conditioning on measure-zero sets, almost-
sure equality vs. actual equality, “all functions” vs. “all measurable functions,” etc. (unless the
problem is explicitly asking about such issues).

1. Score test with nuisance parameters

Consider a testing problem with X1, . . . , Xn
i.i.d.∼ pθ,ζ(x) with parameter of interest θ ∈ R and

nuisance parameter ζ ∈ R. That is, we are testing H0 : θ = θ0 vs. H1 : θ 6= θ0, and ζ is
unknown; let ζ0 denote its true value. Then there is a version of the score test where we plug
in an estimator for ζ, but we must use a corrected version of the variance.

Let ζ̂0 denote the maximum likelihood estimator of ζ under the null:

ζ̂0(θ0) = arg max
ζ∈R

`(θ0, ζ;X).

Let J(θ, ζ) denote the Fisher Information (i.e. the full-sample information for all n observa-
tions), and assume it is continuous and positive-definite everywhere.

(a) Use Taylor expansions informally to show that, for large n,

∂

∂θ
`(θ0, ζ̂0) ≈ ∂

∂θ
`(θ0, ζ0)−

∂2

∂θ∂ζ `(θ0, ζ0)

∂2

∂ζ2 `(θ0, ζ0)

∂

∂ζ
`(θ0, ζ0).

(Note: the LHS should be read as [ ∂∂θ `(θ, ζ)]
∣∣
θ0,ζ̂0

, and not d
dθ0

[`(θ0, ζ̂0(θ0))]).

(b) Using part (a), conclude that(
J11 −

J2
12

J22

)−1/2
∂

∂θ
`(θ0, ζ̂0)⇒ N(0, 1) as n→∞

where J = J(θ0, ζ̂0). Compare this to the score test statistic we would use if ζ0 were known
rather than estimated. (Note: you may assume without proof that the approximation error
in part (a) is negligible; i.e. you may take the “≈” as an exact equality).

2. Pearson’s χ2 Test

Suppose that X1, . . . , Xn
i.i.d.∼ p(x), a density with respect to the counting measure on X =

{1, . . . , d}. Let Nj =
∑n
i=1 1{Xi = j} denote the counts (so (N1, . . . , Nd) comprise a complete

sufficient statistic for the sample X).

Assume p0(x) is a hypothesized distribution, which is strictly positive. The Pearson χ2 test
statistic for goodness-of-fit is defined as

S(X) =

d∑
j=1

(Nj − np0(j))2

np0(j)

(a) Show that, if p = p0, then S(X)⇒ χ2
d−1 as n→∞.

(Hint: recall the multivariate CLT. If Y1, Y2, . . . are i.i.d. random vectors with mean
µ ∈ Rk and variance-covariance matrix Σ ∈ Rk×k, then 1√

n

∑n
i (Yi − µ)⇒ N(0,Σ).)

(b) Consider testing H0 : p = p0 vs. H1 : p 6= p0. Show that the test that rejects for large
S(X) is equivalent to the score test from class (Hint: note that there are really d− 1, not
d, free parameters in this problem).
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3. Poisson score test
Suppose we observe covariate xi ∈ R (fixed and known) and Poisson response Yi ∼ Pois(λi) for
i = 1, . . . , n. We assume that λi = α+ βxi, with the restriction that mini λi ≥ 0, but α, β ∈ R
otherwise unknown. Assume there are at least 3 distinct values represented among x1, . . . , xn.

(a) Show that this model is a curved exponential family.

(b) Derive the score test for the null hypothesis H0 : β = 0 vs. H1 : β > 0 (one-sided
alternative). Give the test statistic and asymptotic rejection cutoff (this is not an i.i.d.
sample but base your answer on the full-sample score and Fisher information; you do not
need to justify the asymptotic approximation).

4. Trio of likelihood-based tests
Consider the three likelihood-based confidence intervals for a model with a single real parameter
θ: the Wald, score, and generalized likelihood ratio intervals, which we can define respectively
as Cθ1 (X), Cθ2 (X), and Cθ3 (X).

Define a new parameterization η = f(θ) where f ′(θ) > 0 for all θ ∈ R, and let Cηi (X) denote
the corresponding confidence interval constructed based on the new parameterization. For
which i ∈ {1, 2, 3} are we guaranteed to have Cηi (X) = f(Cθi (X)) (i.e., which are invariant to
parameterization)?

5. Estimation in misspecified models

Assume we observe a sample X1, . . . , Xn
i.i.d.∼ p(x), and we perform maximum likelihood estima-

tion for a real parameter θ using a dominated family P = {pθ(x) : θ ∈ Θ ⊆ R}, where p /∈ P.

Let θ̂n denote the maximum likelihood estimator, and let θ∗ denote the parameter value that
minimizes KL divergence:

θ∗ = arg min
θ∈Θ

DKL(p ‖ pθ) = arg max
θ∈Θ

Ep [`(θ;X)] .

Since there is no true value of θ, we might still hope to “fail gracefully” by estimating θ∗, which
(in some sense) best approximates the true distribution p.

Assume θ∗ is unique, that the parameter space Θ is compact, that θ∗ is in its interior, and
that the supremum log-likelihood ratio between any pair of parameter values is bounded in
expectation:

Ep

[
sup

θ1,θ2∈Θ
|`(θ1;X)− `(θ2;X)|

]
< B.

In addition, assume that the log-likelihood is twice differentiable, and that for all θ ∈ Θ,

Varp(`
′(θ;X)) ∈ (0,∞), Ep [`′′(θ;X)] ∈ (−∞, 0).

Note that by dominated convergence we can bring derivatives inside the integral; you do not
need to justify this. Finally, assume Ep [supθ∈Θ |`′′(θ;X)|] <∞.

(a) Show that the maximum likelihood estimator converges in probability to θ∗.

(b) Is it true in general that

−Ep[`′′(θ∗;X)] = Varp(`
′(θ∗;X)) ?

Prove or give a counterexample.

(c) Find the limiting distribution of θ̂n as n → ∞. Will the Wald confidence interval cover
θ∗?
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