Stats 210A, Fall 2018 Homework 13

Due date: Thursday, Dec. 6

You may disregard measure-theoretic niceties about conditioning on measure-zero sets, almostsure equality vs. actual equality, "all functions" vs. "all measurable functions," etc. (unless the problem is explicitly asking about such issues).

1. Score test with nuisance parameters

Consider a testing problem with $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} p_{\theta,\zeta}(x)$ with parameter of interest $\theta \in \mathbb{R}$ and nuisance parameter $\zeta \in \mathbb{R}$. That is, we are testing $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$, and ζ is unknown; let ζ_0 denote its true value. Then there is a version of the score test where we plug in an estimator for ζ , but we must use a corrected version of the variance.

Let ζ_0 denote the maximum likelihood estimator of ζ under the null:

$$\hat{\zeta}_0(\theta_0) = \arg\max_{\zeta \in \mathbb{R}} \ \ell(\theta_0, \zeta; X).$$

Let $J(\theta, \zeta)$ denote the Fisher Information (i.e. the full-sample information for all *n* observations), and assume it is continuous and positive-definite everywhere.

(a) Use Taylor expansions informally to show that, for large n,

$$\frac{\partial}{\partial \theta} \ell(\theta_0, \hat{\zeta}_0) \approx \frac{\partial}{\partial \theta} \ell(\theta_0, \zeta_0) - \frac{\frac{\partial^2}{\partial \theta \partial \zeta} \ell(\theta_0, \zeta_0)}{\frac{\partial^2}{\partial \zeta^2} \ell(\theta_0, \zeta_0)} \frac{\partial}{\partial \zeta} \ell(\theta_0, \zeta_0).$$

(Note: the LHS should be read as $\left[\frac{\partial}{\partial \theta}\ell(\theta,\zeta)\right]\Big|_{\theta_0,\hat{\zeta}_0}$, and **not** $\frac{d}{d\theta_0}\left[\ell(\theta_0,\hat{\zeta}_0(\theta_0))\right]$).

(b) Using part (a), conclude that

$$\left(J_{11} - \frac{J_{12}^2}{J_{22}}\right)^{-1/2} \frac{\partial}{\partial \theta} \ell(\theta_0, \hat{\zeta}_0) \Rightarrow N(0, 1) \quad \text{as } n \to \infty$$

where $J = J(\theta_0, \hat{\zeta}_0)$. Compare this to the score test statistic we would use if ζ_0 were known rather than estimated. (Note: you may assume without proof that the approximation error in part (a) is negligible; i.e. you may take the " \approx " as an exact equality).

2. Pearson's χ^2 Test

Suppose that $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} p(x)$, a density with respect to the counting measure on $\mathcal{X} = \{1, \ldots, d\}$. Let $N_j = \sum_{i=1}^n 1\{X_i = j\}$ denote the counts (so (N_1, \ldots, N_d) comprise a complete sufficient statistic for the sample X).

Assume $p_0(x)$ is a hypothesized distribution, which is strictly positive. The *Pearson* χ^2 test statistic for goodness-of-fit is defined as

$$S(X) = \sum_{j=1}^{d} \frac{(N_j - np_0(j))^2}{np_0(j)}$$

- (a) Show that, if $p = p_0$, then $S(X) \Rightarrow \chi^2_{d-1}$ as $n \to \infty$. (**Hint**: recall the multivariate CLT. If Y_1, Y_2, \ldots are i.i.d. random vectors with mean $\mu \in \mathbb{R}^k$ and variance-covariance matrix $\Sigma \in \mathbb{R}^{k \times k}$, then $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} (Y_i - \mu) \Rightarrow N(0, \Sigma)$.)
- (b) Consider testing H_0 : $p = p_0$ vs. H_1 : $p \neq p_0$. Show that the test that rejects for large S(X) is equivalent to the score test from class (Hint: note that there are really d-1, not d, free parameters in this problem).

3. Poisson score test

Suppose we observe covariate $x_i \in \mathbb{R}$ (fixed and known) and Poisson response $Y_i \sim \text{Pois}(\lambda_i)$ for $i = 1, \ldots, n$. We assume that $\lambda_i = \alpha + \beta x_i$, with the restriction that $\min_i \lambda_i \ge 0$, but $\alpha, \beta \in \mathbb{R}$ otherwise unknown. Assume there are at least 3 distinct values represented among x_1, \ldots, x_n .

- (a) Show that this model is a curved exponential family.
- (b) Derive the score test for the null hypothesis H_0 : $\beta = 0$ vs. H_1 : $\beta > 0$ (one-sided alternative). Give the test statistic and asymptotic rejection cutoff (this is not an i.i.d. sample but base your answer on the full-sample score and Fisher information; you do not need to justify the asymptotic approximation).

4. Trio of likelihood-based tests

Consider the three likelihood-based confidence intervals for a model with a single real parameter θ : the Wald, score, and generalized likelihood ratio intervals, which we can define respectively as $C_1^{\theta}(X)$, $C_2^{\theta}(X)$, and $C_3^{\theta}(X)$.

Define a new parameterization $\eta = f(\theta)$ where $f'(\theta) > 0$ for all $\theta \in \mathbb{R}$, and let $C_i^{\eta}(X)$ denote the corresponding confidence interval constructed based on the new parameterization. For which $i \in \{1, 2, 3\}$ are we guaranteed to have $C_i^{\eta}(X) = f(C_i^{\theta}(X))$ (i.e., which are invariant to parameterization)?

5. Estimation in misspecified models

Assume we observe a sample $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} p(x)$, and we perform maximum likelihood estimation for a real parameter θ using a dominated family $\mathcal{P} = \{p_{\theta}(x) : \theta \in \Theta \subseteq \mathbb{R}\}$, where $p \notin \mathcal{P}$. Let $\hat{\theta}_n$ denote the maximum likelihood estimator, and let θ^* denote the parameter value that minimizes KL divergence:

$$\theta^* = \underset{\theta \in \Theta}{\operatorname{arg\,min}} \ D_{\mathrm{KL}}(p \parallel p_{\theta}) = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \ \mathbb{E}_p\left[\ell(\theta; X)\right].$$

Since there is no true value of θ , we might still hope to "fail gracefully" by estimating θ^* , which (in some sense) best approximates the true distribution p.

Assume θ^* is unique, that the parameter space Θ is compact, that θ^* is in its interior, and that the supremum log-likelihood ratio between any pair of parameter values is bounded in expectation:

$$\mathbb{E}_p\left[\sup_{\theta_1,\theta_2\in\Theta} |\ell(\theta_1;X) - \ell(\theta_2;X)|\right] < B.$$

In addition, assume that the log-likelihood is twice differentiable, and that for all $\theta \in \Theta$,

$$\operatorname{Var}_p(\ell'(\theta; X)) \in (0, \infty), \quad \mathbb{E}_p\left[\ell''(\theta; X)\right] \in (-\infty, 0).$$

Note that by dominated convergence we can bring derivatives inside the integral; you do not need to justify this. Finally, assume $\mathbb{E}_p[\sup_{\theta \in \Theta} |\ell''(\theta; X)|] < \infty$.

- (a) Show that the maximum likelihood estimator converges in probability to θ^* .
- (b) Is it true in general that

$$-\mathbb{E}_p[\ell''(\theta^*;X)] = \operatorname{Var}_p(\ell'(\theta^*;X)) ?$$

Prove or give a counterexample.

(c) Find the limiting distribution of $\hat{\theta}_n$ as $n \to \infty$. Will the Wald confidence interval cover θ^* ?