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Linear Models

1. The Theory

2. Practical Use

3. How to do it in R

4. An example

5. Extensions

Both Rice [2007] and Freedman [2005] give good introductions to the theory of linear models.
An excellent resource for applying the theory in R is Faraway [2002]. Venables and Ripley [2002]
also offer a lot of tips for using R for linear models and their extensions.
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1 The Theory

Consider we preform an experiment and make n measurements of a response variable y. At the same
time we also measure a series of predictor variables x1, . . . , xp once for each observation of y. Now
we have a array of collected data. We may be interested in how the x can be used to the predict the
value of y. In a linear model the parameters enter the model linearly (the predictors do not have to
be linear). For example we might believe the model to be,

Y = β0 + β1X1 + β2X2 + ε,

where ε is a random variable representing the error and the βi are unknown parameters. This is an
example of a linear model. Another example is,

Y = β0 + β1X1 + β2X
2
1 + ε.

Note that the predictor is a non-linear function, however this model still falls into the linear model
category since the parameters enter linearly. An example of a model that is non-linear would be,

Y = β0 + β1X
β2
1 + ε.

Matrix Representation

It is generally much easier to formulate the models in matrix form. Say we have a linear model of
the form

yi = β0 + β1x1i + . . . + βpxpi + εi.

We can write it as
Y = Xβ + ε

where Y represents a vector of length n containing the observed values Y = (y1, ..., yn)T , β is a
vector for the parameters β = (β0, . . . , βp)T , ε is a vector for the errors ε = (ε1, . . . , εp)T and X is a
matrix of the predictors,

X =


1 x11 x12 . . . x1p

1 x21 x22 . . . x2p

...
...

...
. . .

...
1 xn1 xn2 . . . xnp

 .

The column of ones in the matrix X incorporates the intercept.

Example - Simple Regression

Say we have observed pairs of values (yi, xi) for i = 1, . . . , n. We assume that the relationship
between the two variables can be modeled by,

yi = β0 + β1xi + εi,

where the εi are iid with mean zero. We can write this in matrix form as
y1

y2

...
yn

 =


1 x1

1 x2

...
...

1 xn


(

β0

β1

)
+


ε1
ε2
...

εn


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Example - Analysis of Variance

In an simple one way analysis of variance we have observed a variable yij for i = 1, . . . , nj which we
believe depends on some grouping factor. For example, we might administer treatment j, j = 1, . . . , J
to nj people and then measure their reaction. To be more concrete, imagine we administer 3
treatments each to five people and observe a measure of their reaction y. We assume the model

yij = βj + εij

This means that the reaction of person i who receives treatment j depends on the treatment they
received plus an individual error (which we will assume is iid with mean zero across treatments).
We can write this in matrix form as,

y11

y21

...
y51

y12

...
y52

y13

...
y53



=



1 0 0
1 0 0
...

...
...

1 0 0
0 1 0
...

...
...

0 1 0
0 0 1
...

...
...

0 0 1



β1

β2

β3

+



ε11
ε21
...

ε51
ε12
...

ε52
ε13
...

ε53


Here the columns of X are acting as dummy variables. The value in the first column of X is 1 if the
patient received treatment 1 and 0 otherwise. Similarly with columns 2 and 3. Dummy variables
are often used in linear models to introduce an additive effect for a categorical variable. A typical
example would be adding a dummy variable for “male” where researchers believe that gender has
an additive effect on the variable of interest. In R dummy variables are created automatically when
factors are in a linear model - more about this later.

Least squares estimation

Geometric Approach

We want to separate the error from the systematic components. One way of looking at this problem
is to say we want a solution (our fitted values) that lies in the space spanned by X that is closest
to Y . The systematic component Xβ̂ is the projection of Y onto the space spanned by X and the
residuals are Y −Xβ̂. This is illustrated in Figure 1.

Non geometric approach

We might consider a good estimate of β as the one that minimizes the sum of the squared errors∑n
i=1 ε2i = εT ε.

n∑
i=1

ε2i = εT ε = (Y −Xβ)T (Y −Xβ)

= yT y − 2βXT y + βT XT Xβ

3



�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

��3

-

6
Y
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Figure 1: Illustration of the projection approach

Differentiating this and setting to zero we find that the estimate for β that minimizes the squared
error satisfies

XT Xβ̂ = XT Y.

These are known as the normal equations. The geometric approach gives us the same estimate.
Provided XT X is invertible,

β̂ = (XT X)−1XT Y.

We can then get the fitted values, Ŷ , and residuals, ε̂,

Ŷ = Xβ̂ = X(XT X)−1XT Y = HY,

ε̂ = Y −Xβ̂ = Y − Ŷ = (I −H)Y,

where the projection matrix H = X(XT X)−1XT .

Example - Simple regression

Using the notation introduced in the example in the previous section we find,

X ′X =
(

n
∑n

i=1 xi∑n
i=1 xi

∑n
i=1 x2

i

)
and X ′Y =

( ∑n
i=1 yi∑n

i=1 xiyi

)
.

In order to invert X ′X we first need to find its determinant,

det X ′X = n
n∑

i=1

x2
i −

n∑
i=1

xi

n∑
i=1

xi

= n

(
n∑

i=1

x2
i − nx̄2

)

= n
n∑

i=1

(xi − x̄)2
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Now,

β̂ =
1

n
∑n

i=1(xi − x̄)2

( ∑n
i=1 x2

i −
∑n

i=1 xi

−
∑n

i=1 xi n

)( ∑n
i=1 yi∑n

i=1 xiyi

)
=

1
n
∑n

i=1(xi − x̄)2

(∑n
i=1 x2

i

∑n
i=1 yi −

∑n
i=1 xi

∑n
i=1 xiyi

n
∑n

i=1 xiyi −
∑n

i=1 xi

∑n
i=1 yi

)
=

1
n
∑n

i=1(xi − x̄)2

(∑n
i=1 x2

i

∑n
i=1 yi −

∑n
i=1 xi

∑n
i=1 xiyi + nx̄2ȳ − nx̄2ȳ

n
∑n

i=1(xi − x̄)(yi − ȳ)

)
=

1
n
∑n

i=1(xi − x̄)2

(
n
∑n

i=1 x2
i ȳ − nx̄

∑n
i=1 xiyi + nx̄2ȳ − nx̄2ȳ

n
∑n

i=1(xi − x̄)(yi − ȳ)

)
=

1
n
∑n

i=1(xi − x̄)2

(
ȳn
∑n

i=1(xi − x̄)2 − x̄n
∑n

i=1(xi − x̄)(yi − ȳ)
n
∑n

i=1(xi − x̄)(yi − ȳ)

)
And from this we get the familiar simple linear regression formulae,

β̂0 = ȳ − β̂1x̄

β̂1 =
∑n

i=1(xi − x̄)(yi − ȳ)∑n
i=1(xi − x̄)2

.

Exercise - Analysis of variance

Repeat the above example using the set up from the analysis of variance to show that the least
squares estimate of βj is the sample mean of the subjects who received treatment j.

Is β̂ a good estimate

� Makes sense geometrically

� if the ε are normally distributed with constant variance β̂ is the maximum likelihood estimate

� The Gauss Markov Theorem says it is the best linear unbiased estimator (BLUE)

Mean and Variance of β̂

E(β̂) = E((XT X)−1XT Y ) = (XT X)−1XT Xβ = β

Var(β̂) = E
[
(XT X)−1XT Y

(
(XT X)−1XT Y

)T ]
= E

[
(XT X)−1XT Y Y T X(XT X)−1XT Y )

]
=
[
(XT X)−1XT σ2IX(XT X)−1XT Y )

]
= σ2(XT X)−1

Estimable

φ = cT β is estimable if there exists a linear combination aT Y such that

E(aT Y ) = cT β

If X is full rank then all linear combinations are estimable
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Gauss Markov Theorem

Assume the usual set up that Y = Xβ + ε, Eε = 0 and Varε = σ2I. Let φ = cT β be an estimable
function. Then in the class of all linear unbiased estimators of φ, φ̂ = cT β̂ has the minimum variance
and is unique.

Proof

From David Freedman’s Statistical Models.
Let φ̃ be a competing linear unbiased estimator of φ. Since φ̃ is linear we can write it as φ̃ = dT Y .

We also note that since φ̃ is unbiased,

E(dT Y ) = dT EY = dT Xβ = cT β =⇒ dT X = cT .

Now we define q = d−X(XT X)−1c so,

qT = dT − cT (XT X)−1XT .

Multiplying both sides on the right by X

qT X = dT X − cT (XT X)−1XT X

= cT − cT = 01×p

Then,

Var(φ̃) = Var(dT Y )

= Var(dT ε)

= σ2dT d

= σ2(qT + cT (XT X)−1XT )(q + X(XT X)−1cT )

= σ2(qT q + cT (XT X)−1c) cross products drop since qT X = 0

= σ2qT q + var(φ̂).

Since qT q ≥ 0 we have shown that φ̂ has the smaller variance with equality only if φ̃ = φ̂.

Estimating σ

Can show E(ε̂T ε̂) = σ2(n − p) (see for example Freedman, 2005 pg 48), so an unbiased estimate of
σ2 is

σ̂2 =
ε̂T ε̂

n− p
.

Distributional Assumptions

We now add the additional assumption that ε ∼ N (0, σ2). This implies directly that,

Y ∼ N (Xβ, σ2),

β̂ ∼ N (β, σ2(XT X)−1).
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We can also prove the following results:

Ŷ ∼ N (Xβ, σ2H)

ε̂ ∼ N (0, σ2(I −H))

σ̂2 ∼ σ2

n− p
χ2

n−p

Inference on β

Individual parameters

Under the Normal assumption
β̂i − βi

sβi

∼ tn−p

where sβi is the standard error of β̂ and is the square root of the ith diagonal entry of σ(XT X)−1.
This allows us to preform hypothesis tests and create confidence intervals for the parameters individ-
ually. For, example it is common to test the hypothesis that βi = βi0. When βi0 = 0 rejecting this
hypothesis implies that the predictor associated with βi has a linear relationship with the response.
The test statistic for this case is,

t =
β̂ − βi0

sβi

.

Under the null hypothesis t follows the Students-t distribution with n − p degrees of freedom. So,
for a test at level α we reject if |t| is above tn−p(α/2). Note that due to the duality of confidence
intervals and hypothesis tests this is equivalent to the 100(1− α)% confidence interval

β̂ ± t(α/2)n−psβi

containing βi0.

Parameters jointly

We also might be interested in testing whether a number of parameters are jointly zero. Imagine we
have p parameters and want to test if the last p0 parameters are zero. To do this we use the F test.
This involves fitting two models: one in with all parameters, and one with the last p0 parameters
constrained to zero. Let β̂ be the least squares estimate from the full model and β̂∗ be the least
squares estimate from the smaller model. The the F-statistic is,

F =
(||Xβ̂||2 − ||Xβ̂∗||2)/p0

||ε̂||2/(n− p)

where ε̂ are the residuals from the full model. Equivalently (check this yourself) we can write this as

F =
(||ε̂||2 − ||ε̂∗||2)/p0

||ε̂||2/(n− p)
,

where ε̂∗ are the residuals from the smaller model. Often ||ε̂||2 is referred to as the residual sum of
squares (RSS). Under the null hypothesis that the last p0 parameters are zero this is distributed as
Fp0,n−p. Often as part of the output of standard statistical programs an F-test will be preformed
under the null that all the parameters are zero except for an intercept. A significant result does not
validate that the model is correct it just says that it is a very unusual result under the assumption
all the parameters are zero.
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2 In Practice

� Plot the data

– Is there anything unusual?

– Are there signs of collinearity?

– What models might be appropriate?

� Decide on some appropriate models and hypotheses to test

– What questions do you want to answer?

– Does theory give you any hints?

� Fit the models

� Check the fit of the models - adjust if necessary

– Check assumptions

– Plot residuals against fitted values

– Plot residuals against included variables

– Plot residuals against omitted variables

– Plot residuals against time

– Plot qqplot of residuals

– Plot data and fitted model

� Test hypotheses

� Interpret results - in original terms!

� Remember association does not imply causality

3 How to do it in R

In order to give some setting to the following discussion imagine we have observed three variables
x, y and z. We would like to use x and z to predict y. I have in fact made up some data: Scatter
plots for each pair of variables are plotted by pairs. This is something you probably want to do as
soon as you have your data.

lm

The basic workhorse of fitting linear models in R is the function lm. The function takes a formula
in terms of the variable names. In its simplest form the formula is response ˜ predictor. The tilde
separates the response variables from the predictors. The simplest example of its use is lm(y ~ x )
. If we have vectors x and y the result of the call to lm will be the solution to the simple linear
regression of x on y.

Examples

lm takes a number of other arguments that will specify a dataframe that the data is in, a subset of
the data to use, how to deal with missing values and weights (for weighted least squares). Check
the help for more details.
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> x <- rnorm(33, mean = 12, sd = 4)

> z <- rnorm(33, mean = 8, sd = 6)

> y <- 4.5 * x + 2.1 * z + rnorm(33)

> fake.data <- data.frame(y, x, z)

> pairs(fake.data)

y
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R Notation Model being fit
lm(y ~ x) yi = β0 + β1xi + εi

lm(y ~ x + z) yi = β0 + β1xi + β2zi + εi

lm(y ~ x - 1) yi = β1xi + εi

lm(y ~ x:z) yi = β0 + β1xi + β2zi + β3xizi + εi

lm( log(y) ~ x + I(x^2)) log(yi) = β0 + β1xi + β2x
2
i + εi

lm objects

You can save a fitted object by simply assigning it to a variable.

> fit <- lm(y ~ x + z, data = fake.data)

R provides lots of useful functions that you can apply to the fitted object. For example, summary
provides a standard statistical summary of the fit.

> summary(fit)

Call:
lm(formula = y ~ x + z, data = fake.data)

Residuals:
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Min 1Q Median 3Q Max
-2.7650 -0.8891 -0.1078 0.6273 2.3831

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.66049 0.91064 -0.725 0.474
x 4.54637 0.06836 66.507 <2e-16 ***
z 2.11552 0.04177 50.651 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.264 on 30 degrees of freedom
Multiple R-Squared: 0.9952, Adjusted R-squared: 0.9949
F-statistic: 3100 on 2 and 30 DF, p-value: < 2.2e-16

We can change our model by using the function update. The first argument supplies the fitted
model we wish to change, the second the new formula. A . represents everything that was already
in the formula on that side of the ˜.

> fit2 <- update(fit, . ~ . - 1)

> fit2$call

lm(formula = y ~ x + z - 1, data = fake.data)

> fit3 <- update(fit2, . ~ . - z)

> fit3$call

lm(formula = y ~ x - 1, data = fake.data)

> fit4 <- update(fit, log(.) ~ .)

> fit4$call

lm(formula = log(y) ~ x + z, data = fake.data)

The functions coefficients, fitted.values and residuals return the obvious. predict also does
the obvious. Give it a fitted model and and a set of new data points and it will return predicted
values.

The function anova provides two useful functions. If you give it one fitted model it will lay out
the results of the fit in an anova table. If you give it two fitted models it will preform an F-test
comparing them and put the results in an anova table.

> anova(fit)

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

x 1 5809.1 5809.1 3635.0 < 2.2e-16 ***
z 1 4099.9 4099.9 2565.5 < 2.2e-16 ***
Residuals 30 47.9 1.6
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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> anova(fit3, fit2)

Analysis of Variance Table

Model 1: y ~ x - 1
Model 2: y ~ x + z - 1
Res.Df RSS Df Sum of Sq F Pr(>F)

1 32 4813.2
2 31 48.8 1 4764.4 3027.5 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Simply using plot on a model object will plot a variety of diagnostics

> par(mfrow = c(2, 2))

> plot(fit2)
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Factors

Factors are Rs way of encoding categorical variables. If a factor is given in the predictor side of the
formula, R will automatically create dummy variables that correspond to each level of the factor and
estimate the values for the fixed effects.

> type <- rep(c("A", "B", "C"), rep(11, 3))

> type

[1] "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "B" "B" "B" "B" "B" "B" "B" "B"
[20] "B" "B" "B" "C" "C" "C" "C" "C" "C" "C" "C" "C" "C" "C"
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> str(type)

chr [1:33] "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "B" "B" "B" "B" "B" ...

> type <- as.factor(type)

> type

[1] A A A A A A A A A A A B B B B B B B B B B B C C C C C C C C C C C
Levels: A B C

> str(type)

Factor w/ 3 levels "A","B","C": 1 1 1 1 1 1 1 1 1 1 ...

> fit5 <- lm(y ~ type)

> summary(fit5)

Call:
lm(formula = y ~ type)

Residuals:
Min 1Q Median 3Q Max

-31.5729 -13.0392 -0.7073 11.2880 42.0192

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 63.679 5.071 12.558 1.78e-13 ***
typeB 11.439 7.171 1.595 0.121
typeC -4.409 7.171 -0.615 0.543
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 16.82 on 30 degrees of freedom
Multiple R-Squared: 0.1478, Adjusted R-squared: 0.09101
F-statistic: 2.602 on 2 and 30 DF, p-value: 0.09077

> anova(fit5)

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

type 2 1471.9 735.9 2.6019 0.09077 .
Residuals 30 8485.2 282.8
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> par(mfrow = c(2, 2))

> plot(fit5)

12



68 70 72 74 76 78

−
60

−
20

20

Fitted values

R
es

id
ua

ls

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

Residuals vs Fitted

19

3

33

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●
●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Normal Q−Q

19

3

33

68 70 72 74 76 78

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

Scale−Location
19

3
33

−
2

0
1

2

Factor Level Combinations

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

B A C
type :

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

Constant Leverage:
 Residuals vs Factor Levels

19

3

33

4 Example - Analysis of Covariance

Taken from Venables and Ripley [2002].

Preliminary plot

Mr Derek Whiteside of the UK Building Research Station recorded the weekly gas consumption
(Gas in 1000s of cubic feet) and average external temperature (Temp in Celsius) at his own house in
south-east England for two heating seasons, one of 26 weeks before, and one of 30 weeks after cavity-
wall insulation was installed. The object of the exercise was to assess the effect of the insulation on
gas consumption.

Figure 2 shows a scatter plot of the data. We clearly see that the cavity wall insulation appears to
have reduced the gas consumption but it also appears to affect the slope of the relationship between
the gas consumption and temperature. We would like to formalize this with a model.

Model Proposal

Firstly define Before to be a dummy variable indicating a measurement before the insulation was
installed and After similarly. A linear model seems appropriate so there are two possibilities for
modeling the data. The first,

Gasi = β0Beforei + β1Afteri + β2Tempi + εi

assumes the slope of the relationship between the gas consumption and temperature is the same
before and after insulation is installed but that they have different intercepts. The second,

Gasi = γ0Beforei + γ1Afteri + γ2Beforei × Tempi + γ3Afteri × Tempi + εi

13



> summary(whiteside)

Insul Temp Gas
Before:26 Min. :-0.800 Min. :1.300
After :30 1st Qu.: 3.050 1st Qu.:3.500

Median : 4.900 Median :3.950
Mean : 4.875 Mean :4.071
3rd Qu.: 7.125 3rd Qu.:4.625
Max. :10.200 Max. :7.200

> print(qplot(Temp, Gas, glyph = Insul, data = whiteside))
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Figure 2: Scatter plot of Temperature versus Gas consumption before and after the installation of cavity
wall insulation.
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has both different slopes and intercepts for before and after the insulation was installed. We will be
able to use an F-test to help choose between these two models.

Model Fitting

> fit1 <- lm(Gas ~ Insul + Temp - 1, data = whiteside)

> fit2 <- lm(Gas ~ Insul/Temp - 1, data = whiteside)

> summary(fit1)

Call:
lm(formula = Gas ~ Insul + Temp - 1, data = whiteside)

Residuals:
Min 1Q Median 3Q Max

-0.74236 -0.22291 0.04338 0.24377 0.74314

Coefficients:
Estimate Std. Error t value Pr(>|t|)

InsulBefore 6.55133 0.11809 55.48 <2e-16 ***
InsulAfter 4.98612 0.10268 48.56 <2e-16 ***
Temp -0.33670 0.01776 -18.95 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3574 on 53 degrees of freedom
Multiple R-Squared: 0.9933, Adjusted R-squared: 0.9929
F-statistic: 2600 on 3 and 53 DF, p-value: < 2.2e-16

> summary(fit2)

Call:
lm(formula = Gas ~ Insul/Temp - 1, data = whiteside)

Residuals:
Min 1Q Median 3Q Max

-0.97802 -0.18011 0.03757 0.20930 0.63803

Coefficients:
Estimate Std. Error t value Pr(>|t|)

InsulBefore 6.85383 0.13596 50.41 <2e-16 ***
InsulAfter 4.72385 0.11810 40.00 <2e-16 ***
InsulBefore:Temp -0.39324 0.02249 -17.49 <2e-16 ***
InsulAfter:Temp -0.27793 0.02292 -12.12 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.323 on 52 degrees of freedom
Multiple R-Squared: 0.9946, Adjusted R-squared: 0.9942
F-statistic: 2391 on 4 and 52 DF, p-value: < 2.2e-16

> anova(fit1, fit2)
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Analysis of Variance Table

Model 1: Gas ~ Insul + Temp - 1
Model 2: Gas ~ Insul/Temp - 1
Res.Df RSS Df Sum of Sq F Pr(>F)

1 53 6.7704
2 52 5.4252 1 1.3451 12.893 0.0007307 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The null hypothesis of the F-test is that γ2 = γ3 = β2. The p-value from the test is very small
giving us strong evidence against this null hypothesis. We therefore conclude that the model with
separate slopes is most appropriate. The result from this fit is shown in Figure 3. The fit of the

> p <- qplot(Temp, fitted.values(fit2), id = Insul, data = whiteside,

+ type = "line")

> p$ylabel = "Gas"

> print(ggpoint(p, aes = list(x = Temp, y = Gas, shape = Insul)))
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Figure 3: Data with fitted line overlaid

lines looks good. We might suspect a quadratic fit would be better. Individual quadratic lines
for before and after installation could be fitted with fit3<-lm(Gas ~ Insul/(Temp+I(Temp^2)) -
1, data=whiteside). This was found to be not significantly better than the linear model. Figure
4 shows diagnostic plots for this model. There is nothing of concern.
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> par(mfrow = c(2, 2))

> plot(fit2)
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Figure 4: Diagnostics for fitted model.

Interpretation

An equivalent way of specifying our model would have been fit4<-lm(Gas ~ Insul*Temp, data=whiteside).
In this model we now have coefficients of the slope and intercept before the insulation and coefficients
for the change in slope and intercept after the insulation. This in fact is more interpretable. We can
use the information from the fit to calculate 95% confidence intervals for the estimated coefficients.

> fit4 <- lm(Gas ~ Insul * Temp, data = whiteside)

> summary(fit4)

Call:
lm(formula = Gas ~ Insul * Temp, data = whiteside)

Residuals:
Min 1Q Median 3Q Max

-0.97802 -0.18011 0.03757 0.20930 0.63803

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.85383 0.13596 50.409 < 2e-16 ***
InsulAfter -2.12998 0.18009 -11.827 2.32e-16 ***
Temp -0.39324 0.02249 -17.487 < 2e-16 ***
InsulAfter:Temp 0.11530 0.03211 3.591 0.00073 ***
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.323 on 52 degrees of freedom
Multiple R-Squared: 0.9277, Adjusted R-squared: 0.9235
F-statistic: 222.3 on 3 and 52 DF, p-value: < 2.2e-16

> est <- summary(fit4)$coefficients[, 1]

> se <- summary(fit4)$coefficients[, 2]

> est

(Intercept) InsulAfter Temp InsulAfter:Temp
6.8538277 -2.1299780 -0.3932388 0.1153039

> se

(Intercept) InsulAfter Temp InsulAfter:Temp
0.13596397 0.18009172 0.02248703 0.03211212

> est + qt(0.975, df = 52) * se

(Intercept) InsulAfter Temp InsulAfter:Temp
7.1266594 -1.7685976 -0.3481153 0.1797416

> est - qt(0.975, df = 52) * se

(Intercept) InsulAfter Temp InsulAfter:Temp
6.58099603 -2.49135850 -0.43836236 0.05086618

Before installing the insulation we estimate with 95% confidence that at zero degrees Celsius the gas
consumption is between 6.58 and 7.13 thousand cubic feet. After installation the gas consumption
at zero degrees is estimated to decrease by 1.77 to 2.49 thousand cubic feet.

Before installing the insulation we estimate with 95% confidence that for every increase of one
degree celsius the gas consumption decreases by between 0.35 and 0.44 thousand cubic feet. After
installation this decrease is between 0.05 and 0.18 thousand cubic feet less.

We conclude that over the temperatures observed the insulation did indeed reduce gas consump-
tion.

5 Extensions

The classical linear model makes three assumptions:

First Moment assumption EY = Xβ

Second Moment assumption Varε = σ2I

Distributional Assumption ε ∼ N (0, σ2I).

Extensions to the classical linear model involve relaxing one or more of these assumptions. Below I
discuss some of these extensions but do not give the details on fitting these models (all are discussed
in 215B). Venables and Ripley [2002] cover the implementation of all these techniques and provide
references if you are interested in the theory.
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Generalized least squares

Generalized least squares allows the relaxation of the second moment assumption. It becomes,

Varε = σ2V,

where V is some known variance covariance matrix. So, now we allow the errors to be correlated
and possibly have unequal variances. If V is unknown feasible generalized least squares can be used
to estimate its value.

Non linear least squares

Non linear least squares relaxes the first moment assumption,

EY = µ(X, β),

where µ is some known function dependent on unknown parameters β.

General linear models

General linear models (glm) extend linear models to allow the response variables to be non normally
distributed. We define the linear predictor to be ν = β1x1 + . . .+βpxp. The assumptions of the glm
are:

� The predictor variables may only influence the distribution of y through ν.

� The distribution of the response, y, needs to belong to the exponential family.

� E(Y ) is a smooth invertible function of the linear predictor.

On of the big advantages of this method is that is allows us to deal with categorical response variables.
Logit and probit are examples of general linear models.

Generalized additive models

Generalized additive models are very general technique. We assume that,

EY =
p∑

j=1

µj(Xj),

where the µj are unknown smooth functions.
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