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Introduction

Our aim is to learn about a random process by observing a sample of outcomes. Generally, we have
a sample X1, . . . , Xn drawn at random and we want to learn about their underlying distribution.
For example, we might know that the distribution is normal and we want to estimate the parameters
for the mean and variance.

We can divide the type of models we might consider into two classes: parametric models and
non-parametric models. A parametric model can de defined up to a finite dimensional parameter.
Otherwise, it is considered a non-parametric model. For example, whenever we assume the random
variable follows a particular probability distribution up to an unknown parameter we are considering
a parametric model. In a nonparametric model the number and nature of the parameters is flexible
and not fixed in advance. Here we will concentrate on estimation in the parametric case.

1 Estimation

Given a model that is defined up to a finite set of parameters and a random sample from the model
X1, . . . , Xn we wish to come up with a function of the sample that will estimate the parameters
we don’t know. Once we have decided on this estimator, θn = t(X1, ..., Xn), it is only useful for
inference if we know something about how it behaves. Since θn is a function of a random sample it
itself is a random variable and its behavior will depend on the size of the sample, n.

Consider, for example, estimating the population mean of a normally distributed population (for
illustrative purposes say N (10, 9)). The most obvious estimate is to simply draw a sample and
calculate the sample mean. If we repeat this process with a new sample we would expect to get
a different estimate. The distribution that results from repeated sampling is called the sampling
distribution of the estimate. Figure 1 illustrates 500 estimates of the population mean based on a
sample of size 100. We can see that our estimates are generally centered around the true value of 10

0

0.5

1

1.5

8.5 9 9.5 10 10.5 11 11.5

D
en

si
ty

Estimate

Figure 1: 500 estimates of the population mean based on a sample size 100

but there is some variation - maybe a standard deviation of about 1. These observations translate
to more formal ideas: the expectation of the estimator and the standard error of the estimator. Of
course, it is even nicer if we can also parameterize the sampling distribution.

So, what do we look for in a good estimator? Obviously, we want our estimate to be close to
the true value. Also we want θn to behave in a nice way as the sample size, n, increases. If we
take a large sample we would like the estimate to be more accurate than a small sample. If we go
back to our previous example we can look at the difference in behavior if we use different sample
sizes. Each histogram in figure 2 represents 500 estimates of the population mean for sample sizes
of 5, 10, 25, 50 and 100. We can see that the standard deviation of the estimate is smaller as
the sample size increases. Formally, this is embodied in the principle of consistency. A consistent
estimator will converge to the true parameter value as the sample size increases. Our estimate X̄
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for the population mean of a normal seems very well behaved. Now, for some examples of not so
well behaved estimators.

Consistent but biased estimator

Here we estimate the variance of the normal distribution used above (i.e. the true variance is 9).
We use the estimate,

σ̂2 =
1
n

n∑
i=1

(xi − x̄)2 ,

which happens to be the maximum likelihood estimate (to be discussed later). Histograms for 500
estimates based on different sample sizes are shown in Figure 3. For small sample sizes we can
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Figure 2: 500 estimates of the population mean based on sample sizes of 5, 10, 25, 50 and 100
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Figure 3: 500 maximum likelihood estimates of the population variance based on sample sizes of 5, 10,
25, 50 and 100
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see that the estimates are not centered around 9. This is an example of a biased estimator. As the
sample size increases the estimates move closer to being centered around 9. The estimate is said
to be asymptotically unbiased. As sample size increases the estimates have smaller variance. This
estimator is consistent.

Inconsistent estimator

It is very easy to come up with inconsistent estimators. After all, any function can be called an
estimator even if it clearly will not have nice properties. For example, we could use the sample
median to estimate the population mean. If the underlying distribution is antisymmetric then this
will clearly be a poor estimator. This is illustrated in Figure 4 where the underlying distribution is
exponential with mean 1. We can see that although the estimates have decreasing variance they
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Figure 4: 500 estimates of the population mean of an exponential distribution using the sample median.
Based on sample sizes of 5, 10, 25, 50 and 100

are not getting closer to the true value of 1.

Formal Definitions

Consistency

Let θn be an estimate of θ based on a sample of size n. θn is consistent in probability if θn converges
in probability to θ; that is for any ε < 0

P (|θn − θ| > 0) → 0 as n →∞

Bias

θn is unbiased if,
E(θn) = θ.

Efficiency

An estimator is efficient if it has the lowest possible variance among all unbiased estimators
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Mean Squared Error

The quality of an estimator is generally judged by its mean squared error (MSE),

MSE = variance + bias2.

2 Method of Moments

Let X be random variable following some distribution. Then the kth moment of the distribution
is defined as,

µk = E(Xk).

For example µ1 = E(X) and µ2 = V ar(X) + E(X)2.
The sample moments of observations X1, X2, . . . , Xn independent and identically distributed

(iid) from some distribution are defined as,

µ̂k =
1
n

n∑
i=1

Xk
i .

For example, µ̂1 = X̄ is the familiar sample mean and µ̂2 = σ̂2 + X̄2 where σ̂ is the standard
deviation of the sample.

The method of moments estimator simply equates the moments of the distribution with the
sample moments (µk = µ̂k) and solves for the unknown parameters. Note that this implies the
distribution must have finite moments.

Example - Poisson

Assume X1, . . . , Xn are drawn iid from a Poisson distribution with mass function,

P (X = x) = λxe−λ/x!, x = 0, 1, 2, . . . ,

where λ is an unknown parameter. Check that E(X) = λ. So, µ1 = E(X) = λ = X̄ = µ̂1. Hence,
the method of moments estimator of λ is the sample mean.

Example - Gamma

Assume X1, . . . , Xn are drawn iid from a Gamma distribution with density,

f(x|α, λ) =
λα

Γ(α)
xα−1e−λx, x ≥ 0,

where λ and α are unknown parameters. The first two moments of the gamma distribution are
(check this yourself),

µ1 =
α

λ

µ2 =
α(α + 1)

λ2
.

From the first equation,
λ =

α

µ1
.
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Substituting this into the second equation gives,

µ2

µ2
1

=
α + 1

α
,

or

α =
µ2

1

µ2 − µ2
1

.

Then we have

λ =
µ2

1

µ2 − µ2
1

1
µ1

=
µ1

µ2 − µ2
1

.

We substitute in the sample analogs of the moments and find the method of moments estimators
are,

λ̂ =
X̄

σ̂2

α̂ =
X̄2

σ̂2
.

Properties of the method of moments estimator

Nice properties:

• it is consistent

• sometimes easier to calculate than maximum likelihood estimates

Not so nice properties:

• sometimes not sufficient
Sufficiency has a formal definition but intuitively it means that all the data that is relevant to
estimating the parameter of interest is used.

• sometimes gives estimates outside the parameter space

3 Maximum Likelihood

Let X1, X2, . . . , Xn be a random vector of observations with joint density function f(x1, ...xn|θ).
Then the likelihood of θ as a function of the observed values, Xi = xi, is defined as,

lik(θ) = f(x1, . . . , xn|θ).

The maximum likelihood estimate (mle) of the parameter θ is the value of θ that maximizes
the likelihood function. In general, it is easier to maximize the natural log of the likelihood. In the
case that the Xi are iid the log likelihood is generally of the form,

l(θ) = log f(x|θ) =
n∑

i=1

f(xi|θ).
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Example - Poisson

Assume the same conditions as the example in the previous section. So, the log likelihood is,

l(λ) =
n∑

i=1

(xi log λ− λ− log xi!)

To find the maximum we set the first derivative to zero,

l′(λ) =
n∑

i=1

(xi

λ
− 1

)
=

1
λ

n∑
i=1

xi − n = 0

Solving for λ we find that the mle is,

λ̂ =
1
n

n∑
i=1

xi = X̄

Note that this agrees with the method of moments estimator.

Example - Gamma

Again, assume the same conditions as the Gamma example in the previous section. The log likelihood
is,

l(α, λ) =
n∑

i=1

(− log Γ(α) + α log λ + (α− 1) log xi − λxi)

In this case we have two parameters so we take the partial derivatives and set them both to zero.

∂l

∂α
=

n∑
i=1

(
−Γ′(α)

Γ(α)
+ log λ + log xi

)

=
n∑

i=1

log xi + n log λ− n
Γ′(α)
Γ(α)

= 0

∂l

∂λ
=

n∑
i=1

(α

λ
− xi

)
=

nα

λ
−

n∑
i=1

xi = 0

This second equality gives the mle for λ as,

λ̂ =
α̂

X̄
.

Substituting this into the first equation we find that the mle for α must satisfy,

n log α̂− n log X̄ +
n∑

i=1

log xi − n
Γ′(α̂)
Γ(α̂)

= 0.

This equation needs to be solved by numerical means. Note however this is a different estimate to
that given by the method of moments.
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Properties of maximum likelihood estimation

Nice properties:

• consistent

• very widely applicable

• unaffected by monotonic transformations of the data

• MLE of a function of the parameters, is that function of the MLE

• theory provides large sample properties

• asymptotically efficient estimators

Not so nice properties:

• may be slightly biased

• parametric model required and must adequately describe statistical process generating data

• can be computationally demanding

• fails in some case, eg. if too many nuisance parameters

(More on the asymptotic properties of the mle in the second Stats lecture).

4 Confidence Intervals

Confidence intervals are an intuitive way to present information on an estimate and its uncertainty.
Formally an 100(1 − α)% confidence interval says that the interval is expected to contain the true
value of the parameter 100(1 − α)% of the time. Since a confidence interval is calculated from
observations of a random variable it is itself a random variable. Each time a sample is taken (or an
experiment performed) we would expect to get a different interval. If we calculate 95% confidence
interval each time we would expect about 1 in 20 of the intervals to miss the true parameter. Figure
5 illustrates this. Fifty samples of size thirty are drawn at random from a population with mean
15. For each sample a 95% confidence interval for the population mean is calculated. These fifty
intervals are plotted as vertical lines. We can see 4 intervals missed the true value.

Example - Population mean

Say we want an 100(1 − α)% confidence interval for the population mean, µ. By Central Limit
Theorem

√
n(X̄ − µ)/σ is distributed N (0, 1). Let z(α) be the value such that the area to the right

of z(α) is α. By symmetry of the normal z(1− α) = −z(α). So,

P

(
−z(α/2) ≤ X̄ − µ

σ/
√

n
≤ z(α)

)
= 1− α

Rearranging this we find

P
(
X̄ − z(α/2)σ/

√
n ≤ µ ≤ X̄ +

√
nz(α/2)σ/

√
n
)

= 1− α

So a (1−α)% confidence interval for µ is (X̄−z(α/2)σ/
√

n, X̄ +z(α/2)σ/
√

n). Of course in practice
we don’t know the value of σ so an estimate is generally plugged in instead.
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Figure 5: Fifty 95% confidence intervals for the population mean calculated from samples of size thirty.
The horizontal line is the true population mean.

5 Bootstrap

What if we don’t know the properties of our estimator? The idea of the bootstrap is to use simulation
on the data we have to give us an estimate of the sampling distribution of the estimator.

General Idea

Repeatedly resample the data with replacement and calculate the estimate each time. The distri-
bution of these bootstrap estimates approximates the sampling distribution of the estimate.

Details

Assume we have a sample X1, . . . , Xn that have some known distribution up to parameter θ. Also
we have an estimator, θ̂n = t(X1, . . . , Xn), of θ. Now, we resample from the data with replacement.
We have a new sample X∗

1 , . . . , X∗
n of size n that could contain any of the original sample datapoints

any number of times. This resampled data is considered one bootstrap replicate. We calculate,

θ̂∗n = t(X∗
1 , . . . , X∗

n) = an estimate of θ from a bootstrap replicate.

The theory behind the bootstrap says that the distribution of (θ̂ − θ) can be approximated by
the distribution of (θ̂∗− θ̂). This method is probably best explained through an example. Below we
use the bootstrap to investigate the sampling distribution of the method of moments estimator for
the parameters in a gamma distribution.

Example - Method of moments for gamma

We have a sample of size 30 from a Gamma distribution with unknown parameters λ and α. The
data is as follows.
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0.038 0.009 1.190 0.312 0.015 0.036 0.865 0.425 0.269 0.098
0.498 0.511 0.000 0.159 0.437 1.141 0.002 0.111 0.013 0.150
0.076 0.786 0.985 0.344 0.668 0.018 0.344 0.085 0.460 0.622
0.082 0.944 0.028 0.035 2.018 2.293 0.123 2.604 0.017 0.014
0.108 0.442 3.316 0.679 0.407 0.120 0.654 0.338 1.434 0.508
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Figure 6: Histogram of the observations along with density of the estimated gamma distribution.

The sample statistics are X̄ = 0.537 and σ̂2 = 0.496. The method of moments estimators are,

λ̂ =
X̄

σ̂2
= 1.082

α̂ =
X̄2

σ̂2
= 0.581.

Figure 6 shows a histogram of the observed data along with the fitted density using the method of
moments estimator.

Now to the bootstrap. We take 1000 new samples from the original data. For example, the
first sample is (sorted), This has a sample mean of X̄∗ = 0.66 and sample variance of σ̂2

∗
= 0.801.

0.002 0.014 0.028 0.038 0.108 0.120 0.338 0.460 0.668 0.944
0.013 0.015 0.035 0.076 0.108 0.123 0.344 0.460 0.668 0.985
0.013 0.015 0.035 0.082 0.108 0.123 0.407 0.654 0.679 1.434
0.013 0.017 0.036 0.098 0.108 0.159 0.442 0.654 0.786 1.434
0.014 0.018 0.038 0.108 0.111 0.269 0.460 0.668 0.944 1.434

This gives us method of moment estimators of λ̂∗ = 0.825 and α̂∗ = 0.545. We repeat this process
for the remaining 999 samples and plot the estimates in a histogram (figure 7). We can use this
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Figure 7: Histograms for the estimates of λ and α from 1000 bootstrap replicates. The dotted lines
correspond to the estimates from the original sample

histogram as an approximation to the sampling distribution. We can see that the distribution
for both parameters is right skewed. We can estimate the bias in the estimates by comparing the
average of the bootstrap estimates with the initial estimate.

λ̂∗ave =
1

1000

1000∑
i=1

λ̂∗i = 1.208

α̂∗
ave =

1
1000

1000∑
i=1

α̂∗
i = 0.631

Comparing these to the initial estimate we can see that the method of moments estimator might be
slightly positively biased. We can also use the bootstrap replicates to estimate the standard error
of the estimates. The estimates for the sampling standard errors are simply the standard deviation
of the bootstrap estimates.

ŝeλ =

√√√√ 1
1000

1000∑
i=1

(
λ̂∗i − λ̂∗ave

)2

= 0.374

ŝeα =

√√√√ 1
1000

1000∑
i=1

(α̂∗
i − α̂∗

ave)
2 = 0.15

Approximate Confidence Intervals

We can also use the bootstrap to find approximate confidence intervals. The bootstrap procedure is
the same. Once the bootstrap distribution is obtained we can simply take the 2.5 and 97.5 percentiles
as the upper and lower values of the confidence interval.
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Figure 8: Histograms for the estimates of λ and α from 1000 bootstrap replicates. The dotted lines
correspond to the estimates from the original sample

Example - Gamma

We find a 95% confidence interval for each parameter simply by finding the corresponding quantiles
from the approximate sampling distributions found previously. These are plotted as dotted lines in
Figure 8. The intervals are,

α : (0.404, 0.982)
λ : (0.770, 2.195)

In words we would say: we estimate the true value of α to be between 0.404 and 0.982 with 95%
confidence. Similarly for λ.
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