
Real Analysis

July 10, 2006

1 Introduction

These notes are intended for use in the warm-up camp for incoming Berkeley Statistics

graduate students. Welcome to Cal! The real analysis review presented here is intended to

prepare you for Stat 204 and occasional topics in other statistics courses. We will not cover

measure theory topics and some other material that you should be very familiar with if you

intend to take Stat 205. If you have never taken a real analysis course, you are strongly

encouraged to do so by taking math 104 (or the honors version of it). Math 105 (usually of-

fered in the spring) will provide you with necessary measure-theoretical background essential

for Stat 205. The presentation follows closely and borrows heavily from ’Real Mathematical

Analysis’ by C.C. Pugh, the standard textbook for honors version of math 104. The empha-

sis is on metric space concepts and the pertinent results on the reals are presented as specific

cases of more general results, and a lot of them are presented together as exersises in section
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3.8. We do not expect you to be familiar with the metric space concepts but we do expect

you to be familiar with specific results on real line, as that is usually the approach taken in

most real analysis courses. We hope that you find these notes helpful! Go Bears!

2 Some Definitions

We will denote by R, Q, Z, and N the sets of all real numbers, rational numbers, integers

and positive integers, respectively. We will take for granted the familiarity with notions

of finite, countably infinite and uncountably infinite sets. Given a set S⊂ R, M∈ R is an

upper bound for S if ∀s ∈ S it is true that s ≤ M . S is said to be bounded above by M.

M∗ is said to be the least upper bound (or l.u.b) for S if for all upper bounds M it is

true that M ∗ ≤ M (note that it implies that l.u.b. is unique). The lower bounds and the

greatest lower bound (g.l.b) are defined similarly. For example, if S=[0,1], then 1 and 4 are

upper bounds, and 0, -4 are lower bounds with 0 and 1 being g.l.b and l.u.b, respectively.

A set is said to be bounded if it is bounded from above and below. A set S is said to be

unbounded from above if ∀N ∃s ∈ S s.t. s > N . The definition of a set unbounded

below is similar. A set is unbounded if it’s either unbounded from above or below. The

supremum (sup) of a set S ⊂ R is defined to be l.u.b for S if S is bounded from above,

and to be +∞ otherwise. The infinum (inf) is defined to be g.l.b for a set bounded form

below and to be −∞ otherwise.The following results will be assumed about R (proofs can

be looked up in any analysis textbook):
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1. If S ⊂ R is bounded from above/below then the l.u.b/g.l.b for S exists and is unique

2. Triangle Inequality: |x + y| ≤ |x| + |y|

3. ε-principle: If x,y ∈ R , and ∀ε > 0, x ≤ y + ε then x ≤ y. Also if ∀ε > 0, |x− y| ≤ ε,

then x=y.

4. Every interval (a,b) contains countably infinitely many rationals and uncountably in-

finitely many irrationals.

LIMINF AND LIMSUP???

3 Metric Spaces

3.1 Definition

A metric space M is a set of elements together with a function d:M × M → R (known as

metric) that satisfies the following 3 properties. For all x, y, z ∈ M:

1. d(x,y)≥ 0 and d(x,y)=0 iff x=y

2. d(x,y) = d(y,x)

3. d(x,y) ≤ d(x,z) + d(z,y)

When metric d is understood, we refer to M as the metric space. When we want to specify

that the metric is in M , we might use notation dM(x, y). It also helps sometimes to think of
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d as the distance function, since it makes the 3 properties more intuitive (we usually think

of distance as being nonnegative, and the distance from A to B should be the same as the

distance from B to A). Here are some examples:

1. R with usual distance function: d(x,y) = |x − y|

2. Q with the same metric

3. Rn with Euclidean distance d(x,y) = ‖x − y‖

4. Any metric space (for ex. R or N) with the discrete metric: d(x,y)=1 if x 6= y,

d(x,y)=0 otherwise. This metric makes the distance from a point to itself be 0 and the

distance between any two distinct points be 1.

You should check for yourself that the metrics above satisfy the 3 conditions.

3.2 Sequences

We will use the notation (xn) for the sequence of points x1, x2, . . . , xn, . . . in metric space

M. The members of a sequence are not assumed to be distinct, thus 1,1,1,1,. . . is a legit-

imate sequence of points in Q. A sequence (yk) is a subsequence of (xn) if there exists

sequence 1 ≤ n1 < n2 < n3 < . . . s.t. yk = xnk
. Some subsequences of the sequence

1,1,2,1,2,3,1,2,3,4,1,2,3,4,5,. . . are:

1. twos: 2,2,2,2,2,. . .
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2. odds: 1,3,5,7,9,. . .

3. primes: 2,3,5,7,11,. . .

4. original sequence with duplicates removed: 1,2,3,4,5,6,7,. . .

5. the previous subsequence with first 3 elements removed: 4,5,6,7,. . .

A sequence (xn) of points in M is said to converge to the limit x in M if ∀ε > 0 ∃ N

s.t. n ≥ N =⇒ d(xn, x) < ε. We then say that xn → x. Notice that if our metric space

is R, then replacing d(xn, x) by the usual metric |xn−x| gives the familiar definition of a limit.

Theorem: The limit of a sequence, if it exists, is unique

Proof : Let (xn) be a sequence in M that converges and suppose its limit is not unique.

Let x,y denote two (of possibly even more) limits. Let ε > 0 be given. Then ∃N1 s.t. n ≥ N1

=⇒ d(xn, x) < ε/2. Similarly ∃N2 s.t. n ≥ N2 =⇒ d(xn, y) < ε/2. Let N = max(N1, N2),

and let n ≥ N . Then by the 3rd property of metric function:

d(x, y) ≤ d(x, xn) + d(xn, y) < ε/2 + ε/2 = ε.

Since this is true for every ε we have x=y by the ε-principle
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Theorem: Every subsequence of a convergent sequence converges, and it converges to

the same limit as the original sequence.

Proof : Easy.

A sequence (xn) in M is said to be Cauchy if ∀ε > 0 ∃N s.t. n,m ≥ N =⇒ d(xn, xm) < ε.

In other words a sequence is Cauchy if eventually all the terms are all very close to each other.

Theorem: Every convergent sequence is Cauchy

Proof : Suppose xn → x in M. Let ε > 0 be given. Then ∃N s.t. n ≥ N =⇒ d(xn, x)

< ε/2. Let n,m ≥ N . Then

d(xn, xm) ≤ d(xn, x) + d(x, xm) < ε/2 + ε/2 < ε =⇒ (xn) is Cauchy.

Does every Cauchy sequence converge to a limit? Consider the sequence 3, 3.14, 3.141,

3.1415, . . . This sequence is clearly Cauchy. When considered as a sequence in R, it does

converge to π. However, we can also think of it as a sequence in Q, in which case it doesn’t

converge, since π /∈ Q. The following definition formalizes the difference between Q and R:

the metric space M is said to be complete if all Cauchy sequences in M converge to a limit

in M.
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Theorem: R is complete.

Proof : Let (an) be a Cauchy sequence in R and let A be the set of elements of the

sequence, i.e.

A={x ∈ R : ∃n ∈ N and an = x}

Let ε=1. Then since (an) is Cauchy, ∃N1 s.t. ∀n,m ≥ N1, |an−am| < 1. Therefore, ∀n ≥ N1

we have |an − aN1
| < 1 and thus n ≥ N1 =⇒ an ∈ [aN1

− 1, aN1
+ 1].

The finite set a1, a2, . . . , aN1
, aN1

− 1, aN1
+ 1 is bounded (as is every finite subset of R), and

therefore all of its elements belong to some interval [−L,L]. Since both aN1
− 1, aN1

+ 1

∈ [−L,L], we conclude that [aN1
− 1, aN1

+ 1] ⊂ [−L,L] and therefore an ∈ [−L,L] ∀n, and

A is bounded. Now, consider set

S = {s ∈ [−L,L] : ∃ infinitely many n ∈ N, for which an ≥ s}

Obviously, −L ∈ S and S is bounded from above by L. We then know that the l.u.b for S

exists (call it b). We will show that an → b.

Let ε > 0 be given. Then since (an) is Cauchy, ∃N2 s.t. m,n ≥ N2 =⇒ |an − am| < ε/2.

Since ∀s ∈ S, s ≤ b, we have that b + ε/2 /∈ S. That means that an exceeds b + ε/2 only
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finitely often and ∃N3 ≥ N2 s.t. n ≥ N3 =⇒ an ≤ b + ε/2. Since b is the least upper bound

for S we have that b− ε/2 is not an upper bound for S and therefore ∃s ∈ S s.t. s > b− ε/2

and an ≥ s > b − ε/2 infinitely often. In particular that gurantees that there exists some

N4 ≥ N3 s.t. aN4
> b − ε/2. Moreover, since N4 ≥ N3 we have aN4

∈ (b − ε/2, b + ε/2]. And

since N4 > N2, we get n ≥ N4 =⇒

|an − b| ≤ |an − aN4
| + |aN4

− b| < ε/2 + ε/2 < ε

and therefore an → b.

It is an easy exersise to show that every discrete metric space (for example, N with dis-

crete metric) is complete.

3.3 Open and Closed Sets

Let M be a metric space and let S be a subset of M. We say that x ∈ M is a limit(point) of

S (note that S is not a sequence here, but a subset of M) if there exists a sequence (xn) in S

s.t. xn → x. For example, let M = R and S=Q. Then 2 is an example of a limit point of S

((xn) = 2, 2, 2, 2, 2, . . . or (xn) = 1, 1 + 1/2, 1 + 2/3, 1 + 3/4, . . .) that belongs to S, and π is a

an example of a limit point of S ((xn) = 3, 3.1, 3.14, 3.141, 3.1415, . . .) that does not belong

to S (of course, it still belongs to M). A set is said to be closed (in underlying metric space
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M) if it contains all of its limits. For example, a singleton set x is closed in M (assuming

M is non-empty), since the only possible sequence is (xn) = x, x, x, . . . → x. Clearly, M

is a closed subset of itself. A set S is said to be open (in underlying mertric space M) if

∀x ∈ S ∃r > 0 s.t. d(x, y) < r =⇒ y ∈ S. The set of points {y ∈ M : d(x, y) < r} is

called (open) r-neighborhood of x and is denoted Br(x) (for example, B2(5) in R is simply

the open interval (3, 7)). Thus a set S is open (in M) if for every point in S there exists

some small neighborhood of that point in M contained entirely in S. It’s easy to see that

interval (a,b) is an open set in R, and clearly every metric space M is an open subset of itself

(since every r-neighborhood of x is still in M). The following theorem provides a connection

between open and closed sets:

Theorem: The compliment of an open set is closed and the compliment of a closed set

is open.

Proof :Suppose S ⊂ M is open. Suppose xn → x in M , and moreover xn ∈ Sc ∀n. We

need to show that x ∈ Sc. Suppose not, then x ∈ S. Since S is open, ∃r > 0 s.t. d(x, y) < r

=⇒ y ∈ S. Now, since xn → x ∃N s.t. n ≥ N =⇒ d(xn, x) < r =⇒ xn ∈ S. That is clearly

impossible since no point could be in both S and Sc, and we have reached a condtradiction.

Therefore Sc is closed.

Now suppose that S ⊂ M is closed. Suppose Sc is not open, then ∃x ∈ Sc s.t. ∀rn > 0 ∃xn
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s.t. d(x, xn) < rn but xn ∈ S. Now let rn = 1/n and pick xn as above. Then xn ∈ S ∀n and

xn → x ∈ Sc =⇒ S is not closed (since it fails to contain all of its limits) =⇒ contradiction.

Therefore Sc is open.

Notice that some sets (like the space M itself) are both closed and open, they are referred

to as clopen sets. By theorem above, M c = ∅ is clopen. Now consider interval [0, 1) ⊂ R.

It is neither open (every r-neighborhood of 0 includes points in [0, 1)c ⊂ R) nor closed (it

fails to include 1, which is the limit of the sequence xn = 1− 1/n in [0, 1)). Thus subsets of

a metric space can be open, closed, both, or neither.

Theorem: Arbitrary union of open sets is open.

Proof : Suppose {Uα}is a collection of open sets in M, and let U = ∪Uα. Then x ∈ U

=⇒ x ∈ Uα for some α and ∃r > 0 s.t. d(x, y) < r =⇒ y ∈ Uα =⇒ y ∈ U . Therefore U is

open.

Theorem: Intersection of finitely many open sets is open.

Proof : Suppose U1, U2, . . . , Un are open sets in M. Let U = ∩Uk. If U = ∅ then U is

open. Now suppose x ∈ U , then x ∈ Uk for k = 1, 2, 3, . . . , n. Since each Uk is open, ∃rk > 0
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s.t. d(x, y) < rk =⇒ y ∈ Uk. Let r = min(r1, r2, . . . , rn), then d(x, y) < r =⇒ y ∈ Uk ∀k

=⇒ y ∈ U . Therefore U is open.

Notice that the infinite intersection of open sets is not necessarily open. For example,

it’s easy to see that Uk = (−1/k, 1/k) is an open subset of R, but ∩Uk = {0} is clearly not

open in R.

Theorem:Arbitrary intersection of closed sets is closed. Also, finite union of closed sets

is closed.

Proof : We’ll use DeMorgan’s Laws: (∪Uk)
c=∩(Uk

c). Let {Kα} be a collection of closed

sets in M. Then ∩Kα = (∪Kc
α)c and since each Kα

c is open, their union is open and it’s

complement is closed. The proof of the second part of the theorem is similar.

Notice that the infinite union of closed sets is not guaranteed to be closed. For example,

even though each Kk = [0, 1 − 1/k] is closed in R, the intersection ∪Kk = [0, 1) is not.

Theorem:Let M be a complete metric space, N ⊂ M be closed. Then N is complete as

a metric space in its own right.
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Proof : Let (xn) be a Cauchy sequence in N . Since (xn) is also a Cauchy sequence in

M , and M is complete, we have xn → x ∈ M . But N is closed in M , therefore x ∈ N and

we conclude that N is complete.

Let lim S denote the set of all limit points of S in M. It is pretty clear that x ∈ lim S

⇐⇒ ∀r > 0, Br(x) ∩ S 6= ∅ (you can easily prove it as an exersise). We can also show that

lim S is a closed set. Let ε > 0 be given and let (yn) be a sequence of points in lim S s.t.

yn → y in M. Then ∃N s.t. n ≥ N =⇒ d(yn, y) < ε/2. Since each yn ∈ lim S, ∃xn ∈ S s.t.

d(yn, xn) < ε/2 ∀n. Then we have n ≥ N =⇒

d(xn, y) ≤ d(xn, yn) + d(yn, y) < ε/2 + ε/2 = ε

Therefore xn → y and y ∈ lim S. We conclude that lim S is closed.

We can also show that Br(x) is an open subset of M as follows: let y ∈ Br(x). Let s =

r − d(x, y) > 0. Then d(y, z) < s =⇒

d(z, x) ≤ d(x, y) + d(y, z) < d(x, y) + (r − d(x, y)) = r

=⇒ z ∈ Br(x). Thus if y ∈ Br(x) ∃s s.t. Bs(y) ⊂ Br(x), and therefore Br(x) is open.

Theorem: Every open set U ⊂ R can be expressed as a countable disjoint union of open

intervals of the form (a, b), where a is allowed to take on the value −∞ and b is allowed to
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take on the vaule +∞.

Proof :If U = ∅ = (0, 0), then the statement is vacuously true. If U is not empty,

∀x ∈ U define ax = inf{a : (a, x) ⊂ U}, bx = sup{b : (x, b) ⊂ U}. Then Ix = (ax, bx) is

a (possibly unbounded) open interval, containing x. It is maximal in the following sense:

suppose bx ∈ U , then by construction above ∃J ⊂ U , an open interval s.t. bx ∈ J . You

can prove for yourself that the union of two open intervals with non-empty intersection is in

fact, an open interval (you just have to take care of a number of base cases for endpoints).

We then have that Ix ∪ J is an open interval containing x, and moreover, since J is open,

and bx ∈ J , ∃b∗ ∈ J s.t b∗ > bx. But then b∗ ∈ {b : (x, b) ⊂ U}, which contradicts bx being

the supremum of such a set. Thereofre bx /∈ U , and similarly ax /∈ U . Now let x, y ∈ U , and

suppose Ix∩Iy 6= ∅. Then once again, Ix∪Iy is an open interval containing both x and y and

by maximality we have Ix = Ix ∪ Iy = Iy. Thus we conclude that ∀x, y ∈ U either Ix = Iy or

the two intervals are disjoint. So, U is a disjoint union of open intervals. To show that the

union is countable, pick a rational number in each interval. Since the intervals are disjoint,

the numbers are distinct, and their collection is countable (since rationals are countable).

A few more definitions are in order. As before, S is some subset of a metric space M.

The closure of S is S̄ = ∩Kα where {Kα} is the collection of all closed sets that contain S.

The interior of S is int(S) = ∪Uα, where {Uα} is the collection of all open sets contained
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in S. Finally, the boundary of S is ∂S = S̄ ∩ S̄c. For example, if M=R and S=[a, b], then

S̄ = [a, b], int(S) = (a, b), and ∂S = a ∪ b. If S=Q, then S̄ = R, int(S) = ∅, and ∂S = R.

Notice that the closure of a closed set S is S istelf, and so is the interior of an open set S.

Also notice that both S̄ and ∂S are closed (as intersections of closed sets), and int(S) is

open as a union of open sets.

Theorem: S̄=lim S.

Proof : We have shown before that lim S is a closed set, also since each point of S is

also a limit of point of S (it’s the limit of a sequence s, s, s, . . .), we have S ⊂lim S, and we

conclude that S̄ ⊂lim S. Also, since S ⊂ S̄, and S̄ is closed, it must contain all the limit

points of S, thus lim S ⊂ S̄. We conclude that S̄ = lim S.

You may check for yourself at this point that every subset of a discrete metric space M

(for example, N with discrete metric) is clopen (why would it suffice to show that a singleton

{x} is open?) and that therefore ∀S ⊂ M , int(S) = S = S̄ and ∂S = ∅.

A subset S of a metric space M is said to cluster at point x ∈ M if ∀r > 0 Br(x)

contains infinitely many points of S. S is said to condense at x, if each Br(x) contains

uncountably many points of S. For example if M=R, then every point of S = [a, b] is a
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condensation point (also a cluster point), and no other point is a cluster point. If S={1/n :

n ∈ N}then the only cluster point is 0 /∈ S, and no point is a condensation point (no point

could have uncountably many members of S in its r-neighborhood, since S itself is count-

able). If S=Q, then x is a cluster point of S ∀x ∈ R. An open interval (a, b) is an example

of a subset of R that contains some but not all of its cluster/condensation points. Finally,

N with either discrete metric or with the metric it inherits as subset of R has no cluster

points. We emphasize that if x is a cluster point of S, each r-neighborhood of x must contain

infinitely many distinct points of S. It is easy to see that x is a cluster point of S iff ∃(xn), a

sequence of distinct points in S, s.t. xn → x. We denote the set of all cluster points of S by S ′.

Theorem: S ∪ S ′ = S̄. S is closed iff S ′ ⊂ S.

Proof : We already know that S ⊂ S̄. Moreover, by above we have that a cluster point

is a limit point and therefore S ′ ⊂lim S = S̄. Thus S ∪ S ′ ⊂ S̄. Also, if x ∈ S̄ = lim S, then

either x ∈ S or ∃(xn), a sequence of distinct points in S, s.t. xn → x, but that would make

x a cluster point. So we have S̄ ⊂ S ∪ S ′ and we conclude that S ∪ S ′ = S̄. Now, we know

that S is closed iff S = S̄ = S ∪ S ′ iff S ′ ⊂ S.

We notice here that if S ⊂ R is a bounded from above/below, then it’s l.u.b/g.l.b are its

cluster points (you can check it for yourself), and therefore by above theorem belong to the
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closure of S. Thus a closed and bounded subset of R contains both its l.u.b and g.l.b.

Up to this point, instead of just saying ‘S is open’ or ‘S is closed’, we often said ‘S is open

in M’ or ‘S is closed in M’. We can drop the mention of M, when it is understood what the

underlying metric space is, but we point out that it is essential to the openness/closedness

of S. For example, both Q and the half-open interval [a, b) are clopen when considered as

metric spaces in their own right. Neither one, of course, is either open or closed when treated

as a subset of R. Another example is a set S = Q∩ (−π, π), a set of all rational numbers in

the interval (−π, π). As a subset of metric space Q S is both closed (if (xn) is a sequence

in S, and xn → x ∈ Q then x ∈ S) and open (check for yourself). As a subset of R, how-

ever, it is neither open (if x ∈ S then every neighborhood of x contains some y /∈ Q) nor

closed (there are sequences in S converging to π ∈ R). The following few theorems establish

the relationship between being open/closed in metric space M and some metric subspace N

of M that inherits its metric from M (i.e. dN (x, y) = dM(x, y). We will denote the clousre

of set S in M by clM(S), and the closure of S in N by clN (S). Note that clN (S) = clM(S)∩N .

Theorem: If S ⊂ N ⊂ M , then S is closed in N iff ∃L ⊂ M s.t. L is closed in M and

S = L ∩ N .

Proof : Suppose S is closed in N , then let L = clM(S). Clearly L is closed in M , and

16



L ∩ N = clN(S) = S (since S is closed in N). Now suppose that L as in the statement of

theorem exists. Since L is closed, it contains all of its limit points and S = L ∩ N contains

all of its limit points in N, therefore S is closed in N .

Theorem If S ⊂ N ⊂ M , then S is open in N iff ∃L ⊂ M s.t. L is open in M and

S = L ∩ N .

Proof :Notice that the complement of L∩N in N is Lc ∩N , where Lc si the complement

of L in M . Now take complements and apply previous theorem.

A popular way to summarize the preceding two theorems is to say that metric subspace

N inherits its opens and closeds from M.

We also introduce here the notion of boundedness. S ⊂ M is bounded if ∃x ∈ M ,

∃r > 0 s.t. S ⊂ Br(x), i.e S is bounded if there’s some point x ∈ M s.t. S is contained in

some neighborhood of x. For example, [−1, 1] is bounded in R since it’s contained in B5(2)

or B2(0). On the other hand, the graph of function f(x) = sin(x) is an unbounded subset

of R2, although the range of f is a bounded subset of R (range = [−1, 1]). In general, we

say that f is a bounded function if its range is a bounded subset of the target space.
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Theorem: Let (xn) be a Cauchy sequence in M. Then S = {x ∈ M : x = xn for some

n} is bounded. In other words, Cauchy sequences are bounded.

Proof : Let ε = 1. Then ∃N s.t. n,m ≥ N =⇒ d(xn, xm < 1, in particular n ≥ N =⇒

d(xn, xN ) < 1. Now, let r = 1+max{d(x1, x2), d(x1, x3), . . . , d(x1, xN)}. Clearly ∀1 ≤ k ≤ N

d(x1, xk) < r − 1 < r. For k ≥ N , d(x1, xk) ≤ d(x1, xN ) + d(xN , xk) < r − 1 + 1 = r. Thus

S ⊂ Br(x1) and the sequence is bounded.

As a consequence of preceding theorem, all convergent sequences are bounded (since

convergence implies Cauchy).

3.4 Continuous Functions

Let M, N be two metric spaces. A function f : M → N is continous at x ∈ M if ∀ε > 0

∃δ > 0 s.t. y ∈ M and dM (x, y) < δ =⇒ dN (f(x), f(y)) < ε. We say that f is continuous

on M if it’s continuous at every x ∈ M . Notice that a specific δ depends on both x and ε.

If the choice of δ does not depend on x, then we have the following definition: a function

f : M → N is uniformly continuous if ∀ε > 0, ∃δ > 0s.t. y ∈ M and dM(x, y) < δ =⇒

dN (f(x), f(y)) < ε.

For example, function 1/x on the interval (0, 1) is continuous (note that 0 is outside of the

domain), but is not uniformly continuous (given ε, no matter how small we choose δ to be,
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there are always points x, y in the interval (0, δ) s.t. |f(x) − f(y)| > ε).

The following theorem provides some alternative characterizations of continous functions:

Theorem: The following definitions of continuity are equivalent:

1. ε, δ definition

2. f : M → N is continuous if for each convergent sequence xn → x in M , we have

f(xn) → f(x) in N . Thus continous functions send convergent sequences to convergent

sequences, preserving the limits.

3. f : M → N is continuous if ∀ closed S ⊂ N , f−1(S) is closed in M . (Here f−1 is the

notation for preimage of a set in a target space).

4. f : M → N is continuous if ∀ open S ⊂ N , f−1(S) is open in M .

Proof : 1 =⇒ 2: Suppose f is continuous, (xn) is a sequence in M s.t. xn → x. Let ε > 0

be given. By 1, we know that ∃δ > 0 s.t. dM (x, y) < 0 =⇒ dN (f(x), f(y)) < ε. Since xn → x

∃L s.t. n ≥ L =⇒ dM (xn, x) < δ. But that means that n ≥ L =⇒ dN (f(xn), f(x)) < ε, and

therefore f(xn) → f(x).

2 =⇒ 3: Let S ⊂ N be closed in N , and let (xn) be a sequence in S−1 = f−1(S), s.t.

xn → x ∈ M . We need to show that x ∈ S−1. By 2 and by the fact that xn → x, we know

that f(xn) → f(x). Since (f(xn)) is a sequence in S and S is closed, we have f(x) ∈ S, and
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therefore x ∈ S−1.

3 =⇒ 4: Let S ⊂ N be open in N . Then f−1(S) = (f−1(Sc))
c
, and since the latter is the

complement of a closed set (by 3), it is open in M .

4 =⇒ 1: Let x ∈ M and ε > 0 be given. Then we know that Bε(f(x)) is open in N and

therefore f−1(Bε(f(x)) is open in M (by 4). Since x ∈ f−1(Bε(f(x)) and f−1(Bε(f(x)) is

open, ∃δ > 0 s.t. Bδ(x) ⊂ f−1(Bε(f(x)), i.e. dM(x, y) < δ =⇒ dN (f(x), f(y)) < ε.

Theorem: Composite of continuous functions is continuous.

Proof : Let f : M → N and g : N → L be continuous, and let U ⊂ L be open in L, and

denote h = g ◦ f M → L. Then g−1(U) is open in N and f−1(g−1(U)) = h−1(U) is open in

M by definition 4 above. We conclude that h is continuous by definition 4.

It is worth pointing out that while continuous functions preserve the convergent se-

quences, they in general do not preserve the non-convergent Cauchy sequences. For exam-

ple, the continuous funcion f : (0, 1] → R given by f(x) = 1/x maps the Cauchy sequence

1,1/2,1/3,1/4,. . . in (0, 1] to non-Cauchy sequence 1,2,3,4,. . . in R. Uniform continuity en-

sures the preservation of Cauchy sequences.

Theorem: Let M,N be metric spaces, f : M → N a uniformly continuous function,
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and (xn) a Cauchy sequence in M . Then (f(xn)) is a Cauchy sequence in N .

Proof : Let ε > 0 be given. Then since f is uniformly continuous, ∃δ > 0 s.t. dM(x, y) < δ

=⇒ dN (f(x), f(y)) < ε. Since (xn) is Cauchy, ∃L s.t. m,n > L =⇒ dM (xm, xn) < δ =⇒

d(f(xn), f(xm)) < ε =⇒ (f(xn)) is Cauchy.

You can show pretty easily that every function defined on a discrete metric space is

uniformly continuous (why?).

Example: Consistent Estimates

In statistics, we usually estimate parameters of interest from the sample we have at

hand. Suppose that θ̂n is the estimate based on sample of size n, then we say that the

estimate is consistent in probability if ∀ ε > 0, P (|θ̂n − θ| > ε) → 0 as n → ∞.

For example, the Weak Law of Large Numbers states that if we have a sequence of IID

random variables X1, X2, . . . , Xn with expected value µ and variance σ2, then the sam-

ple mean µ̂1 = X̄ = 1
n

n
∑

i=1

Xi is a consistent estimate of µ. Moreover, if we consider

the sequence X1
k, X2

k, . . . , Xn
k, then by applying the Weak Law again, we conclude that

µ̂k = Xk = 1
n

n
∑

i=1

Xi
k is a consistent estimate of k-th moment of X, µk = E(Xk).
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Theorem: Suppose θ̂n is a consistent estimate of θ, and suppose that f is continuous.

Then ρ̂n = f(θ̂n) is a consistent estimate of ρ = f(θ).

Proof : Suppose not. Then for some ε∗ > 0, P (|f(θ̂n) − f(θ)| > ε∗) 9 0, i.e. for some

L > 0 ∃ subsequence (θ̂nk
) of (θ̂n) s.t. P (|f(θ̂nk

) − f(θ)| > ε∗) > L. Now, since f is con-

tinuous, ∃ δ > 0 s.t. |θ̂n − θ| ≤ δ =⇒ |f(θ̂n) − f(θ)| ≤ ε∗, and therefore we have that

|f(θ̂n) − f(θ)| > ε∗ =⇒ |θ̂n − θ| > δ. Also, since θ̂n is a consistent estimate of θ, we know

that ∃N s.t. n ≥ N =⇒ P (|θ̂n − θ| > δ) < L, in particular this holds ∀ nk ≥ N . Combining

the last two results with the fact that (A =⇒ B) =⇒ (P (A) ≤ P (B)), we have nk ≥ N

=⇒ L < P (|f(θ̂nk
) − f(θ)| > ε∗) ≤ P (|θ̂nk

− θ| > δ) < L, which leads to a contradiction.

Therefore we conclude that ρ̂n = f(θ̂n) is indeed a consistent estimate of ρ = f(θ).

This result is very useful in general and is the foundation of estimation technique known

as Method of Moments. Once again, suppose we have a sequence of IID random variables

X1, X2, . . . , Xn with expected value µ and variance σ2. We know that X̄ is a consistent

estimate of µ and by above result we have X̄2 is a consistent estimate of µ2. Then you

can prove yourself that X2 − X̄2 is a consistent estimate of σ2 = V ar(X) (do it!). In

general, if there is a continuous function θ = f(µ1, µ2, . . . , µk), then θ̂ = f(µ̂1, µ̂2, . . . , µ̂k) is

a consistent estimate of θ. Therefore if we can express a parameter of interest as a continuous

function of the moments of distribution, then applying function to sample moments will give
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us a consistent estimate of the parameter. For example, if we are sampling from N(µ, σ2)

distribution and we have a sample of size n, then µ = µ1 and σ2 = E(X2) − µ2 = µ2 − µ1
2,

and therefore µ̂ = X̄ and σ̂2 =

(

1
n

n
∑

i=1

X2
i

)

−X̄2 = 1
n

n
∑

i=1

(Xi − X̄)2 are consistent estimates

of µ and σ2, respectively.

3.5 Product Metrics

Let M = M1 × M2 be the Cartesian product of metric spaces M1,M2, i.e. M is the set of

all points x = (x1, x2) s.t. x1 ∈ M1 and x2 ∈ M2. For example, R2 = R × R is the set of all

points in the plane. How would one define a useful metric on this product space? Three of

the possibilities are listed below:

1. dM(x, y) =
√

dM1
(x1, y1)

2 + dM2
(x2, y2)

2 = dE(x, y), a Euclidean metric

2. dM(x, y) = max{dM1
(x1, y1), dM2

(x2, y2)} = dmax(x, y)

3. dM(x, y) = dM1
(x1, y1) + dM2

(x2, y2) = dsum(x, y)

Continuing with our example, if we took points x = (−5, 2) and y = (7, 11) in R2, then

dE(x, y) =
√

122 + 92 = 15, dmax(x, y) = max{12, 9} = 12, and dsum(x, y) = 12 + 9 = 21,

where we use the usual distance metric on R. It turns out that in a way, all these metrics

are equivalent.
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Theorem: dmax(x, y) ≤ dE(x, y) ≤ dsum(x, y) ≤ 2dmax(x, y).

Proof Some basic arithmetic.

Theorem: Let M = M1 × M2, and let (xn) = ((x1,n, x2,n)) be a sequence in M . Then

(xn) converges with respect to (wrt) dmax iff it converges wrt dE iff it converges wrt dsum iff

both (x1,n) and (x2,n) converge in M1 and M2, respectively.

Proof : The equivalence of the first 3 convergences is obvious from previous theorem.

For example, suppose (xn) converges to some x ∈ Mwrt dmax. Let ε > 0 be given, then ∃N

s.t. n ≥ N =⇒ dmax(xn, x) < ε/2 =⇒ dE(xn, x) ≤ dsum(xn, x) ≤ ε. The convergence of

component sequences is obviously equivalent to convergence wrt dmax.

In particular, if xn → x and yn → y in R , then zn = (xn, yn) → z = (x, y) in R2.

Theorem: The above results extend to the Cartesian product of n > 2 metric spaces.

Proof : By induction.

Theorem: Rm is complete.
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Proof : Let (xn) be a Cauchy sequence in Rm wrt any of the above metrics. Then

each component sequence (xk,n) for k = 1, 2, 3, . . . ,m is Cauchy in R (by same reasoning as

convergence equivalence theorem above), and since R is complete, all component sequences

converge, xk,n converges to some xk ∀k, therefore xn → (x1, x2, . . . , xm).

3.6 Connectedness

A metric space M is said to be disconnected if it can be written as a disjoint union of

two non-empty clopen sets. Note that it is sufficient to discover one proper (i.e 6= ∅ or

M itself) clopen subset S of M , since its complement would also have to be clopen and

proper (hence non-empty), and we’d have M = S t Sc, where symbol t indicates disjoint

union. M is said to be connected if it is not disconnected. S ⊂ M is said to be connected

if it’s connected when considered as metric space in its own right (with metric inherited

from M), and is disconnected otherwise. For example, interval (2, 5) is a connected subset

of R, but (2, 5)∪(5, 8) is not. Q is also disconnected, since Q = (Q∩(−∞, π)) t (Q∩(π,∞)).

Theorem: Suppose M is connected, and f : M → N is a continuous function onto N .

Then N is connected.

Proof : We note here first that f : M → N is onto if ∀y ∈ N ∃x ∈ M s.t. y = f(x),

i.e. every point in N is image under f of some point in M (there could be many points
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in M all mapping to same point in N). Now, suppose N is not connected, and let S ⊂ N

be a proper clopen subset, then f−1(S) is a non-empty (since f is onto), clopen (since f

is continuous) subset of M and so is f−1(Sc), resulting in M = (f−1(S)) t (f−1(Sc)) is a

disjoint union of proper clopen subsets, contradicting the connectedness of M . We conclude

that N is connected.

Thus a continuous image of a connected set is connected. A discontinuous image of a

connected set need not be connected, however. For example if f : R → R sends all negative

numbers to 0 and all non-negative numbers to 1, then the image is {0, 1} a finite set, which

is clearly disconnected. Of course this example only works if R was connected to begin with.

Theorem: R is connected.

Proof : Suppose R is disconnected. Then ∃S ⊂ R s.t. S is proper and clopen. Since S is

opein in R we know that S is a countable disjoint union of open intervals. Let (a, b) be one

of these intervals (we know that S is non-empty since it’s proper, so (a, b) exists). We have

seen in the proof of the theorem about every open set U in R being the countable disjoint

union of open intervals that the endpoints of hte intervals do not belong to U , thus a, b /∈ S.

Suppose b < ∞, then b is clearly a limit point of of S and b /∈ S contradicts S being closed.

Therefore b = ∞, and similarly a = −∞. But then S = R and S is not proper and we arrive
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at contradiction. Thus, R is connected.

Theorem: Open and closed intervals in R are connected.

Proof : Let (a, b) ⊂ R. We know that f : R → (−π/2, π/2) given by f(x) = tan−1(x) is

continuous (you can verify that for yourself). You are also invited to find continuous func-

tion g : (−π/2, π/2) → (a, b) (which is easy). Then g ◦ f is continuous as a composition of

continuous functions and therefore (a, b) is connected as a continuous image of the connected

set R.

Now, let [a, b] ⊂ R. Then define f : R → [a, b] as follows:

f(x) =































a if x < a

x if a ≤ x ≤ b

b if x > b

Clearly f is continuous and therefore [a, b] is connected.

Theorem: Suppose that {Sα} is a collection of connected sets and that ∩Sα 6= ∅. Then

S = ∪Sα is connected.

Proof : Let x ∈ ∩Sα. Now suppose that S is disconnected, S = A t Ac, where A and

Ac are disjoint non-empty clopen subsets of S. Now, x ∈ ∩Sα =⇒ x ∈ Sα for some α =⇒
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x ∈ S = ∪Sα =⇒ x ∈ A or x ∈ Ac. Without loss of generality, assume x ∈ A. Since each Sα

is a subset of S, Sα inherits its closed and open sets from S ∀α by the inheritance theorem,

and since x ∈ Sα ∀α we have A ∩ Sα is a non-empty clopen subset of Sα ∀α. Since each Sα

is connected, we conclude that A ∩ Sα = Sα ∀α and therefore A = ∪(A ∩ Sα) = ∪Sα = S,

contradicting A being a proper subset of S. We conclude that S is connected.

Theorem: Let S ⊂ M be connected. Then S ⊂ T ⊂ S̄ =⇒ T is connected. In particu-

lar, the closure of a connected set is connected.

Proof : Suppose T is disconnected, T = A t Ac, where A and Ac are proper clopen

subsets of T . By intheritance principle, A∩ S is a clopen subset of S. Since S is connected,

B = A ∩ S cannot be proper, therefore either B = S or B = ∅. Without loss of generality,

suppose B = ∅ (if B = S, just look at C = Ac ∩ S, the complement of B in S, which leads

to C = ∅). Since A∩S = ∅, we have S ⊂ Ac in T . But A 6= ∅ and A ⊂ T ⊂ S̄ =⇒ ∃x ∈ A

s.t. x is a limit point of S. Since A is open, ∃r > 0, s.t. Br(x) ⊂ A. But x is a limit point

of S and therefore Br(x) ∩ S 6= ∅ =⇒ A ∩ Ac 6= ∅, and we arrive at a contradiction. We

conclude that T is connected.

Now we introduce the intermediate value property. Let f : M → R be a func-

tion. Then f is said to have intermediate value property if ∀x, y ∈ M it is true that if
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f(x) = a < b = f(y) then ∀c ∈ (a, b) ∃z ∈ M s.t. f(z) = c. In other words, if function

assumes two distinct values in R then it also has to assume all the values in-between to have

the intermediate value property.

Theorem: Let M be connected, and f : M → R be continuous. Then f has the in-

termediate value property. In particular, every continuous function f : R → R has the

intermediate value property.

Proof : Suppose not. Then ∃x, y ∈ M s.t. f(x) = a < b = f(y) and ∃c ∈ (a, b)

s.t ∀z ∈ M f(z) 6= c. Let A = (−∞, c), and A∗ = (c,∞). Then M = B t Bc, where

B = f−1(A) and Bc = f−1(A∗) is the complement of B in M . Note that x ∈ B and y ∈ Bc,

so B 6= ∅ 6= Bc. Since f is continuous, the preimage of an open set is open and since both

A and A∗ are open subsets of R, we have that B and Bc are both open, and therefore also

both closed as complements of each other. We conclude that M is a disjoint union of non-

empty clopen sets and is therefore disconnected, which contradicts our assumption. Thus,

we conclude that f has the intermediate value property.

3.7 Compactness

We say that S ⊂ M is sequentially compact if every sequence (xn) in S, has a conver-

gent subsequence (xnk
) s.t. xnk

→ x for some x ∈ S. For example, every finite subset
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S = {x1, x2, . . . , xn} of a metric space M is compact, since any sequence in S has to repeat

at least one xk infinitely many times, and that results in existence of at least one convergent

subsequence xk, xk, xk, . . . Notice also that the convergent subsequence or indeed the limit

need not be unique, as the example of a sequence 1,2,1,2,1,2,1,2, . . . in S = {1, 2} ⊂ N shows.

Also, N is not a compact subset of R since the sequence 1,2,3,4,5,. . . does not converge to

a point in N. Other non-compact subsets of R include (0, 1] (sequence 1, 1/2, 1/3, . . . does

not have a subsequence that would converge to a point in (0, 1]) and Q (every subsequence

of the sequence 3, 3.1, 3.14, 3.141, . . . converges to π /∈ Q).

We say that a collection {Uα} of open subsets of M is an (open) cover for S ⊂ M , if

∀x ∈ S ∃α s.t x ∈ Uα. We say that a collection {Vβ} is a subcover of {Uα} if ∀β Vβ = Uα

for some α, i.e. {Vβ} ⊂ {Uα}. We then also say that {Uα} reduces to {Vβ}. We say

that S ⊂ M is covering compact if every open cover {Uα} reduces to finite subcover. In

other words, if we’re given any open cover for S whatsoever, and we can always throw away

enough members of it, so that we’re left with only finitely many and they still cover all of

S then S is covering compact. Note that every subset S of M has at least one open cover,

namely {M}, since M is open and definitely covers S (this particular open cover is already

finite). Also, in order to see that not all subsets are covering compact, consider the cover of

(0, 1] ⊂ R by open intervals Un = (1/n, 1 + 1/n). Clearly, {Un : n ∈ N} is an open cover for

(0, 1], but you can easily see that it can’t be reduced to a finite subcover, since in that case
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we’d be left with {Un1
, Un2

, . . . , Unk
} and letting N = max{n1, n2, . . . , nk}, we observe that

∀x ∈ (0, 1/N) x is not contained in any of Un1
, Un2

, . . . , Unk
.

Now, let S ⊂ M and let {Uα} be some open cover for S. Then if ∃λ > 0 s.t. ∀x ∈ S

Bλ(x) ⊂ Uα for some α we say that λ is a Lebesgue number for {Uα}. In other words,

a Lebesgue number for an open cover of S is some small radius, s.t. neighborhood of every

point in S of that radius is contained in some member of the cover (obviously, which member

it is, depends on the particular point). Notice that a given cover for a given set might not

have a Lebesgue number. For example, (0, 1) ⊂ R has as one possible cover {(0, 1)}, i.e.

it’s covered by itself. Suppose it had Lebesgue number λ, then pick x ∈ (0, λ). Since

Bλ(x) = (x − λ, x + λ) contains negative points, we have Bλ(x) * (0, 1), and thus this

neighborhood is not contained in any member of the cover, leading to contradiction.

Theorem Every open covering of a sequentially compact S ⊂ M has a Lebesgue number.

Proof : Suppose not. Let {Uα} be an open cover for S s.t. ∀λn ∃xn ∈ S s.t. Bλn
(xn) * Uα

∀α. Let λn = 1/n, and xn be as above. Then since S is sequentially compact, (xn) has some

convergent subsequence (xnk
) → x ∈ S. Since {Uα} is a cover for S, x ∈ Uα for some α.

Since Uα is open, ∃r > 0 s.t. Br(x) ⊂ Uα. Now, since xnk
→ x, ∃N1 s.t. nk ≥ N1 =⇒

d(x, xnk
) < r/2. Moreover, ∃N2 ≥ N1 s.t nk ≥ N2 =⇒ λnk

< r/2. Now pick some xnN
s.t.

nN > N2. Let y ∈ BλnN
(xnN

), then:
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d(x, y) ≤ d(x, xnN
) + d(xnN

, y) < r/2 + λnN
< r/2 + r/2 = r

We conclude that BλnN
(xnN

) ⊂ Br(x) ⊂ Uα, contrary to our assumption that ∀n Bλn
(xn) *

Uα ∀α. Thus, every open covering of a sequentically compact set does indeed have a Lebesgue

number.

Theorem: S ⊂ M is sequentially compact iff it is covering compact.

Proof : Suppose S is covering compact, but not sequentially compact. Then let (xn) be

a sequence in S s.t. no subsequence of (xn) converges to a point in S. That implies that

∀x ∈ S ∃rx > 0 s.t. Brx
(x) contains only finitely many terms of (xn) (otherwise there’d

be a subsequence converging to x). Now, {Brx
(x)} is an open cover for S and since S is

covering compact, it reduces to a finite subcover {Brx1
(x1), Brx2

(x2), . . . , Brxk
(xk) and since

each member of this subcover contains only finitely many terms of (xn), we conclude that S

contains finitely many terms of (xn), an obvious contradiction. Thus covering compactness

implies sequential compactness.

Now suppose S is sequentially compact, and let {Uα} be some open cover for S. We know that

{Uα} has some Lebesgue number λ > 0. Pick x1 ∈ S and some U1 ∈ {Uα} s.t. Bλ(x1) ⊂ U1.

If S ⊂ U1 then we have succeded in reducing {Uα} to a finite subcover. If not, then pick

uncovered point x2 ∈ S (x ∈ S ∩ U1
c) and U2 s.t. Bλ(x2) ⊂ U2. If S ⊂ U1 ∪ U2, we’re done,
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if not we continue picking uncovered points to obtain a sequence of points (xn) in S and a

sequence (Un) of members of {Uα} s.t. Bλ(xn) ⊂ Un and xn+1 ∈ A∩U1
c ∩U2

c ∩ . . .∩Un
c. If

at some point the sequences terminate (if for some N,A = (U1∪U2∪ . . .∪UN)) then we have

reduced {Uα} to a finite subcover. Now suppose, the sequences never terminate. Then since

S is sequentially compact, there is some subsequence (xnk
) of (xn) s.t. xnk

→ x ∈ S. There-

fore, ∃N s.t nk ≥ N =⇒ d(xnk
, x) < λ. In particular, d(xN , x) < λ =⇒ x ∈ Bλ(xN) ⊂ UN .

Since UN is open, ∃r > 0, s.t. Br(x) ⊂ UN . But nk > N =⇒ xnk
/∈ UN , and therefore

Br(x) contains only finitely many terms of (xnk
), a clear contradiction to convergence. We

conclude that in fact, {Uα} reduces to a finite subcover, and sequential compactness implies

covering compactness.

S ⊂ M is said to be compact if it is sequentially/covering compact. In the proofs of the

theorems about compactness that follow, we will use whichever definition of compactness

leads to a more direct proof and we will supply two proofs for some of the theorems to give

you better understanding of both kinds of compactness.

Theorem: Let S1 ⊂ M1 and S2 ⊂ M2 be compact. Then S = S1 × S2 ⊂ M1 ×M2 = M

is compact.

Proof : Let (xn, yn) be a sequence in S (we avoid here cumbersome notation ((xn, yn))).
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Then (xn) is a sequence in S1 and therefore has some subsequence (xnk
), that converges in S1.

Now (ynk
) is then a sequence in S2 and therefore has some subsequence (ynkl

) that converges

in S2. Moreover, since (xnk
) was a convergent sequence in S1, the subsequence (xnkl

) is also

a convergent sequence in S1. Therefore, the sequence (xn, yn) has a convergent subsequence

(xnkl

, ynkl

) with respect to all product space metrics discussed above (since both component

sequences converge), and we conclude that Cartesian product of two compact sets is compact.

Theorem: The Cartesian product of n compact sets is compact.

Proof : By induction and above theorem.

Theorem: Closed interval [a, b] ⊂ R is compact.

Proof 1: Let (xn) be a sequence in [a, b]. Consider set C = {x ∈ [a, b] : xn < x only

finitely often }. Clearly, a ∈ C, and b is an upper bound for C, therefore C has a least

upper bound x∗. We will show that there is some subsequence (xnk
) of (xn) converging to

x∗. Suppose x∗ = b, then ∃N s.t n ≥ N =⇒ xn = b, and clearly we have a subsequence

converging to b = x∗. Now, suppose x∗ < b and no subsequence converges to x∗, then ∃

b − x∗ > r > 0 s.t. xn ∈ Br(x
∗) = (x∗ − r, x∗ + r) only finitely often. But then x∗ + r ∈ C

(note that x∗ +r ∈ [a, b]), contradiction to x∗ being the l.u.b for C. We conclude that in fact
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there is some subsequence converging to x∗ and therefore [a, b] is a compact subset of R.

Proof 2: Let {Uα} be some open cover for [a, b] and consider set C = {x ∈ [a, b]: finitely

many Uα would suffice to cover the interval [a, x]}. Clearly a ∈ C and b is an upper bound,

therefore C has the l.u.b. x∗. Suppose x∗ < b, and let Uα1
, Uα2

, . . . , Uαn
be those finitely

many members of {Uα} that suffice to cover [a, x∗]. Then x∗ ∈ Uαk
for some k (not neces-

sarily unique), and since Uαk
is open, ∃r > 0 s.t. Br(x

∗) = (x∗ − r, x∗ + r) ⊂ Uαk
. Now

∀y ∈ (x∗, x∗+r), y is covered by same Uα1
, . . . , Uαn

as x∗, and therefore picking some specific

y we have that finitely many members of {Ualpha} suffice to cover [a, y], which contradicts x∗

being the l.u.b. for C. We conclude that x∗ = b and therefore finitely many Uα cover [a, b],

and thus [a, b] is compact.

Theorem: Closed box [a1, b1] × [a2, b2] × . . . × [an, bn] ⊂ Rn is compact.

Proof : It is a finite Cartesian product of compact sets.

Theorem (Bolzano-Weierstrass): Any bounded sequence in Rn has a convergent sub-

sequence.

Proof : Any bounded sequence in Rn is contained in some closed box, and therefore has
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a subsequence that converges to some point in that box.

Theorem: Suppose M is compact and S ⊂ M is closed. Then S is compact.

Proof 1: Let (xn) be a sequence in S, then (xn) is also a sequence in M and therefore

has a convergent subsequence xnk
→ x ∈ M . Since S is closed in M , we have x ∈ S, and

therefore (xn) has a subsequence that converges in S. We conclude that S is compact.

Proof 2: Let {Uα} be some open cover for S, then since Sc is open, {Uα} ∪{Sc} is an

open cover for M and since M is compact, it reduces to a finite subcover for M and therefore

it is a finite cover for S. Now there are two possibilities. First, Sc might not be a member

of this finite subcover, then we have reduced {Uα} to a finite subcover for S. Now, suppose

Sc is a member of the finite subcover we found ourselves with, then it is obvious that the

rest of the finite subcover still covers S (since no element of S is contained in Sc) and by

excluding Sc we are left with the finite subcover for S to which the original cover {Uα} is

now reduced. We conclude that S is compact.

Theorem: Compact set S ⊂ M is closed and bounded.

Proof : Suppose S is not closed, then ∃(xn), a sequence in S s.t. xn → x /∈ S. Since S is

compact, ∃ some subsequence xnk
→ x∗ ∈ S, but since (xn) is a convergent sequence in M ,
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all of its subsequences converge to the same limit in M , and we have that xnk
→ x, and by

uniqueness of limits we have x = x∗ ∈ S, a contradiction to x not being in S. So S is closed.

Now let x ∈ M and suppose S is not bounded. Then ∀n ∈ N ∃xn ∈ S s.t. d(x, xn) > n.

Since S is compact, ∃ some subsequence (xnk
) of a sequence (xn) in S, s.t. xnk

→ x∗ ∈ S.

Since all convergent sequences are bounded, for some r > 0 and for some y ∈ M (for example

x∗), we have xnk
∈ Br(y) ∀nk. Now, let r∗ = d(x, y). We observe that by the property 3 of

the metric, we have d(x, xnk
) ≤ d(x, y) + d(y, xnk

) ≤ r∗ + r, contradictory to the fact that

d(x, xnk
) → ∞ as nk → ∞. We conclude that S is in fact bounded.

The converse to that statement (every closed and bounded subset of a metric space is

compact) is not true in general. For example, let M = N with discrete metric. Then M is

a closed and bounded subset of itself (x ∈ B2(1)∀x ∈ M), but the sequence 1,2,3,4,. . . in M

has no convergent subsequence, and therefore M is not compact. The converse is, however,

true in Rn and a more general converse will be provided again later.

Theorem (Heine-Borel): Every closed and bounded S ⊂ Rn is compact.

Proof : Since S is bounded, it is contained in some closed box in Rn, and is therefore a

closed subset of a compact set. We conclude that S is compact.
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We will now proceed to construct a more general converse statement. We start by intro-

ducing a new notion: S ⊂ M is said to be totally bounded if ∀ε > 0 there exists a finite

covering of S by ε-neighborhoods. Notice that this definition is different from the definition

of (non-total) boundedness given earlier.

Theorem: Let M be a complete metric space. Then S ⊂ M is compact iff S is closed

and totally bounded.

Proof : Suppose S ⊂ M is compact. We have already shown that S has to be closed.

Now let ε > 0 be given, and consider the following open cover for S: {Bε(x) : x ∈ S}. Since

S is compact, the cover reduces to a finite subcover and we have a finite covering of S by

ε-neighborhoods, and we conclude that S is totally bounded.

Now suppose S ⊂ M is closed and totally bounded. Let (xn) be a sequence in S. Let εn

= 1/n ∀n. Since S is totally bounded, we have a finite covering for S by ε1-neighborhoods

Bε1(y1,1), Bε1(y1,2), . . . , Bε1(y1,m1
) for some y1,1, y1,2, . . . , y1,m1

∈ M . Then at least one of

these neighborhoods contains infinitely many terms of the sequence (xn), suppose Bε1(y1,k1
),

and let N1 be s.t. xN1
∈ Bε1(y1,k1

). Now, since every subset of a totally bounded set

is totally bounded (you can easily show it), we have a finite covering of Bε1(y1,k1
) by ε2-

neighborhoods Bε2(y2,1), Bε2(y2,2), . . . , Bε2(y2,m2
) and once again one of these neighborhoods

contains infinitely many terms of the sequence (xn), suppose Bε2(y2,k2
), and let N2 > N1 be

s.t. xN2
∈ Bε2(y2,k2

). Continuing in this manner we obtain a subsequence (xNk
) which is
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Cauchy, since n,m > N ∗ =⇒ d(xNn
, xNn

) < εN∗ = 1/N ∗. Since M is complete, xNk
→ x

∈ M . Since S is closed in M , x ∈ S. Thus (xn) has a subsequence that converges to a limit

in S and we conclude that S is compact.

We note here that the conditions specified are indeed necessary. Take completeness, for

example. Consider S = Q ∩ [−π, π], a subset of a metric space Q with the usual distance

metric. Then S is closed and totally bounded subset of Q but it’s clearly not compact since

sequence 3, 3.1, 3.14, 3.15, . . . in S doesn’t have a subsequence that converges to a point in

S or even in Q for that matter. Also, substituting boundedness for total boundedness in the

theorem above would not suffice, since we have already seen that a complete metric space N

with discrete metric is a closed and bounded non-compact subset of itself.

Below are some important results on the behavior of continuous functions on compact

sets.

Theorem: The continuous image of a compact set is compact.

Proof 1: Let f : M → N be continuous, let S ⊂ M be compact and let f(S) ⊂ N denote

the image of S under f . Let (yn) be a sequence in f(S), then ∀n ∃xn ∈ S s.t. f(xn) = yn.

Since S is compact, the sequence (xn) in S has some convergent subsequence xnk
→ x ∈ S.
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By continuity of f , we then have that ynk
= f(xnk

) → f(x) ∈ f(S), and therefore (yn) has

a subsequence that converges to the limit in f(S), and we conclude that f(S) is compact.

Proof 2: Let f : M → N be continuous, let S ⊂ M be compact and let f(S) ⊂ N denote

the image of S under f . Let {Uα} be an open cover for f(S) in N . Then since f is continuous,

f−1(Uα) is an open set in M ∀α, and therefore {f−1(Uα)} is an open cover for S in M . Since

S is compact, {f−1(Uα)} reduces to a finite subscover f−1(U1), f
−1(U2), . . . , f

−1(Un), and

clearly U1, U2, . . . , Un is an open cover for f(S) (you can easily see it yourself), which is a

finite subcover of the original cover. We conclude that f(S) is compact.

Theorem: Continuous real-valued funciton defined on a compact set assumes its maxi-

mum and minimum.

Proof : Let f : M → R be continuous and let S ⊂ M be compact. Then f(S) ⊂ R is

closed and bounded, and we have seen that a closed and bounded subset of R contains its

g.l.b and its l.u.b.

Theorem: Every continous function defined on a compact set is uniformly continuous.

Proof : Let M be compact and f : M → N continuous. Suppose f is not uniformly con-

tinuous. Then ∃ε > 0 s.t. ∀δn > 0 ∃xn, yn ∈ M s.t. d(xn, yn) < δn but d(f(xn), f(yn)) > ε.
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Let δn = 1/n and for each n, let xn, yn ∈ M be as above. Since M is compact, the se-

quence (xn) in M has some convergent subsequence (xnk
). Moreover, the sequence (ynk

)

also has some convergent subsequence ynkl

→ y ∈ M . Since (xnkl

) is a subsequence of a

convergernt sequence, it also converges and it converges to the same limit as the mother

sequence, and since d(xnkl

, ynkl

) < 1/nkl
, we can easily see that it also converges to y. The

continuity of f implies that f(xnkl

) → y and f(ynkl

) → y. Now, let N be s.t. nkl
≥ N =⇒

d(f(xnkl

), f(y)) < ε/2 and d(f(ynkl

), f(y)) < ε/2, then we have nkl
≥ N =⇒

d(f(xnk
l

), f(ynk
l

)) ≤ d(f(xnk
l

), f(y)) + d(f(y), f(ynk
l

) < ε/2 + ε/2 = ε

which contradicts our assumption that d(f(xn), f(yn)) > ε ∀n. We then conclude that f

indeed is uniformly continuous.

3.8 More Results on R

We introduce some notation first. Given sequence (xn) in R we say that lim(xn) = x ∈ R

if xn → x in R. We say that lim(xn) = ∞ if ∀M > 0 ∃N s.t. n ≥ N =⇒ xn > M . And

similarly, lim(xn) = −∞ if ∀M < 0 ∃N s.t. n ≥ N =⇒ xn < M . Here are some examples:

1. (xn) = 3, 3.1, 3.14, 3.141, . . . Then lim(xn) = π

2. (xn) = 2, 3, 5, 7, 11, . . . Then lim(xn) = ∞

3. (xn) = -1, -4, -9, -16, . . . Then lim(xn) = −∞
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4. (xn) = -1, 1, -2, 2, -3, 3, . . . Then lim(xn) does not exist.

Given a sequence (xn) in R, we say that M =lim sup(xn) if M = lim
n→∞

(sup
k≥n

xk). We define

m = lim inf(xn) similarly. Here are some examples:

1. (xn) = 1, 2, 3, 4, 5, . . ., then lim sup(xn) = lim inf (xn) = ∞

2. (xn) = 1, 1, 2, 1, 2, 3, . . ., then lim sup(xn) = ∞, lim inf(xn = 1

3. (xn) = 3, 3.1, 3.14, 3.141, . . ., then lim sup(xn) = lim inf(xn)= π

We say that sequence (xn) is monotone increasing if n > m =⇒ xn > xm. The

sequence is monotone non-decreasing if n > m =⇒ xn ≥ xm. The monotone decreas-

ing and monotone non-increasing sequences are defined similarly. A sequence is said to be

monotone if it’s monotone non-increasing or monotone non-decreasing (note that every

monotone increasing sequence is also monotone non-decreasing, and every monotone de-

creasing sequences is monotone non-increasing, so these two classes are also covered by the

definition).

1. (xn) = 3, 3.1, 3.14, 3.141, . . . is monotone increasing

2. (xn) = -1, -4, -9, -16, . . . is monotone decreasing

3. (xn) = 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, . . . is monotone non-decreasing

4. (xn) = -1, -1, -1, -1, . . . is monotone non-decreasing and monotone non-increasing

42



5. (xn) = 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, . . . is not monotone but it has many possible monotone

subsequences

The following are some basic results about sequences in R :

1. Let xn → x ∈ R, and let k ∈ R. Then yn = kxn → kx.

2. Let xn → x and yn → y in R. Then zn = xn + yn → x + y.

3. Let xn → x and yn → y in R. Then zn = xnyn → xy.

4. Let xn → x 6= 0 in R, s.t. xn 6= 0 ∀n. Then yn = 1/xn → 1/x.

5. Let xn → x 6= 0 in R, s.t. xn 6= 0 ∀n, and let yn → y in R. Then zn = yn/xn → y/x

6. Let lim(xn) = ∞, lim (yn) > 0. Then lim(zn = xnyn) = ∞

7. Let (xn) be monotone and bounded. Then (xn) converges in R.

8. Let (xn) be any sequence in R. Then (xn) has a monotone subsequence. Together

this and the previous result imply that every bounded sequence in R has a convergent

subsequence.

9. Let (xn) be a monotone sequence. Then lim(xn) exists (it could of course take on

values of ∞ and −∞)

10. Let f, g be real-valued funcitons M → R, continuous at some x ∈ M . Then f + g, fg,

and f/g (asusming g(x) 6= 0) are all continuous at x.

43



11. Given a sequence (xn), lim sup(xn) and lim inf(xn) are well defined (either they belong

to R or take values of ±∞

12. xn → x iff lim sup(xn) = lim inf(xn) = x.

The proofs of these results are left as exersises.

3.9 Calculus and Function Convergence

. We say that a real-valued funciton f is differentiable at x, if one of the following equivalent

conditions holds:

1. lim
t→x

f(t) − f(x)

t − x
= L exists

2. lim
∆x→0

f(x + ∆x) − f(x)

∆x
= L exists

3. ∀ ε > 0 ∃ δ > 0 s.t. |t − x| < δ =⇒ | f(t)−f(x)
t−x

− L| < ε

We call L the derivative of f at x and write f ′(x) = L. We say that f is differentiable on

the interval (a, b) if it is differentialbe at every x ∈ (a, b). The following are familiar results

from calculus:

1. If f is differentiable at x, then f is continuous at x.

2. If f and g are differentiable at x, then so is f + g and (f + g)′(x) = f ′(x) + g′(x)

3. If f and g are differentiable at x, then so is (f ·g), and (f ·g)′(x) = f ′(x)g(x)+f(x)g′(x)
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4. If f(x) = c ∀ x, then f ′(x) = 0 ∀ x

5. If f and g are differentiable at x and g(x) 6= 0, then f/g is differentiable at x and

(f/g)′(x) = f ′(x)g(x)−f(x)g′(x)

g(x)2

6. Chain Rule: If f is differentiable at x, and g is differentiable at f(x), then g ◦ f is

differentiable at x and (g ◦ f)′(x) = g′(f(x))f ′(x)

Theorem Let f be differentiable on (a, b) and suppose it achieves a maximum or mini-

mum at some c ∈ (a, b). Then f ′(c) = 0.

Proof : We will prove the theorem for maximum, and proof for minimum is analogous.

Let t approach c from above. Then f(t)−f(c)
t−c

≤ 0 ∀t. If we let t approach c from below,

then f(t)−f(c)
t−c

≥ 0 ∀t. Since both expressions have to tend to the same limit L = f ′(c), we

conclude that f ′(c) = 0.

Theorem (Mean Value): Suppose f is continuous on [a, b] and differentiable on (a, b).

Then ∃ c ∈ (a, b) s.t. f(b) − f(a) = f ′(c)(b − a). In particular, if |f ′(x)| ≤ M ∀ x ∈ (a, b),

then ∀ t, x ∈ (a, b) we have |f(t) − f(x)| ≤ M |t − x|.

Proof : Let S = f(b)−f(a)
b−a

and let g(x) = f(x) − Sx. Clearly g is differentiable on (a, b)

and continuous on [a, b] (why?). Moreover, g(a) = g(b). Since g is continuous on a compact

set, it achieves maximum and minimum and since g(a) = g(b) it achieves at least one of

them at some c ∈ (a, b). Then 0 = g′(c) = f ′(c) − S =⇒ f(b) − f(a) = f ′(c)(b − a).
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We state the following result without proof (which can be found, for example in Pugh,

p.145): If f is differentiable on (a, b), then f ′ has the intermediate value property. Also, all

familiar results from calculus (derivative and integral formulas, L’Hopital’s Rule, results on

series convergence, etc...) hold.

We say that a sequence of functions fn : [a, b] → R converges pointwise to f (fn → f),

if ∀ x ∈ [a, b] fn(x) → f(x) as n → ∞. We say that a sequence fn : [a, b] → R converges

uniformly to f (fn ⇒ f) if ∀ ε > 0, ∃ N s.t. n ≥ N =⇒ |fn(x)−f(x)| < ε ∀ x ∈ [a, b]. You

should convince yourself that the sequence of functions fn(x) = xn on open interval [0, 1]

converges pointwise to the function

f(x) =















0 if 0 ≤ x < 1

1 if x = 1

but does not converge uniformly.

Theorem: If fn ⇒ f and each fn is continuous at x, then f is continuous at x.

Proof : Let ε > 0 be given, and let N be s.t. n ≥ N =⇒ |fn(y)− f(y)| < ε/3 ∀ y. Since

fN is continuous at x, ∃ δ > 0 s.t. |x − y| < δ =⇒ |fN (x) − fN (y)| < ε/3. Then |x − y| < δ

=⇒ |f(x)− f(y)| ≤ |f(x)− fN (x)|+ |fN (x)− fN (y)|+ |fN (y)− f(y)| < ε/3+ ε/3+ ε/3 = ε,

and we conclude that f is continuous at x.
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Note that our example above shows that pointwise convergence of continuous functions

is not sufficient to ensure continuity of the limit.

We state two more results without proving them. The proofs can be found in Pugh.

1. Suppose fn ⇒ f , then
∫ b

a
fn(x)dx →

∫ b

a
f(x)dx as n → ∞.

2. Suppose fn ⇒ f and f ′
n ⇒ g, then g = f ′.
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