
Linear Algebra

July 28, 2006

1 Introduction

These notes are intended for use in the warm-up camp for incoming Berkeley Statistics

graduate students. Welcome to Cal! We assume that you have taken a linear algebra course

before and that most of the material in these notes will be a review of what you already

know. If you have never taken such a course before, you are strongly encouraged to do so

by taking math 110 (or the honors version of it), or by covering material presented and/or

mentioned here on your own. If some of the material is unfamiliar, do not be intimidated!

We hope you find these notes helpful! If not, you can consult the references listed at the end,

or any other textbooks of your choice for more information or another style of presentation

(most of the proofs on linear algebra part have been adopted from Strang, the proof of F-test

from Montgomery et al, and the proof of bivariate normal density from Bickel and Doksum).

Go Bears!
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2 Vector Spaces

A set V is a vector space over R and its elements are called vectors if there are 2 opera-

tions defined on it:

1. Vector addition, that assigns to each pair of vectors v1, v2 ∈ V another vector w ∈ V

(we write v1 + v2 = w)

2. Scalar multiplication, that assigns to each vector v ∈ V and each scalar r ∈ R another

vector w ∈ V (we write rv = w)

that satisfy the following 8 conditions ∀ v1, v2, v3 ∈ V and ∀ r1, r2 ∈ R:

1. v1 + v2 = v2 + v1

2. (v1 + v2) + v3 = v1 + (v2 + v3)

3. ∃ vector 0 ∈ V , s.t. v + 0 = v, ∀ v ∈ V

4. ∀ v ∈ V ∃ −v = w ∈ V s.t. v + w = 0

5. r1(r2v) = (r1r2)v, ∀ v ∈ V

6. (r1 + r2)v = r1v + r2v, ∀ v ∈ V

7. r(v1 + v2) = rv1 + rv2, ∀ r ∈ R

8. 1v = v, ∀ v ∈ V
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Figure 1: Vector Addition and Scalar Multiplication

Vector spaces over fields other than R are defined similarly, with the multiplicative iden-

tity of the field taking place of 1 in last property. We won’t concern ourselves with those

spaces, except for when we’ll be needing complex numbers later on. Also, we’ll be using

symbol 0 to designate both number 0 and the vector 0 in V, and you should always be able

to tell the difference from the context. Sometimes, we’ll emphasize that we’re dealing with,

say, n × 1 vector 0 by writing 0n×1.

Examples:

1. Vector space R
n with usual operations of element-wise addition and scalar multiplica-

tion. An example of these operations in R2 is illustrated above.

2. Vector space F[−1,1] of all functions defined on interval [−1, 1], where we define (f+g)(x)

= f(x) + g(x) and (rf)(x) = rf(x).
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2.1 Basic Concepts

We say that S ⊂ V is a subspace of V , if S is closed under vector addition and scalar

multiplication, i.e.

1. ∀s1, s2 ∈ S, s1 + s2 ∈ S

2. ∀s ∈ S, ∀r ∈ R, rs ∈ S

You can verify that if those conditions hold, S is a vector space in its own right (satisfies

the 8 conditions above). Note also that S has to be non-empty, empty set is not allowed as

a subspace.

Examples:

1. A subset {0} is always a subspace of a vectors space V

2. Given vectors v1, v2, . . . , vn ∈ V , the set of all their linear combinations (see below for

definition) is a subspace of V .

3. S = {(x, y) ∈ R2 : y = 0} is a subspace of R2 (x-axis)

4. A set of all continuous functions defined on interval [−1, 1] is a subspace of F[−1,1]

For all of the above examples, you should check for yourself that they are in fact subspaces.

You can also verify for yourself that the 2 conditions are indpendent of each other, by coming

up with 2 subsets of R2: one that is closed under addition and subtraction but NOT under
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scalar multiplication, and one that is closed under scalar multiplication but NOT under ad-

dition/subtraction.

Given vectors v1, v2, . . . , vn ∈ V , we say that w ∈ V is a linear combination of

v1, v2, . . . , vn if for some r1, r2, . . . , rn ∈ R, we have w = r1v1 + r2v2 + . . . + rnvn. If ev-

ery vector in V is a linear combination of v1, v2, . . . , vn, then we say that v1, v2, . . . , vn span

V .

Given vectors v1, v2, . . . , vn ∈ V we say that v1, v2, . . . , vn are linearly independent if

r1v1 + r2v2 + . . . + rnvn = 0 =⇒ r1 = r2 = . . . = rn = 0, i.e. the only linear combination of

v1, v2, . . . , vn that produces 0 vector is the trivial one. We say that v1, v2, . . . , vn are linearly

dependent otherwise.

Now suppose that v1, v2, . . . , vn span V and that, moreover, they are linearly independent.

Then we say that the set {v1, v2, . . . , vn} is a basis for V .

Theorem: Let {v1, v2, . . . vn} be a basis for V , and let {w1, w2, . . . , wm} be another basis

for V . Then n = m.

Proof : Omitted, but can be found in any book on linear algebra.
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We call the unique number of vectors in a basis for V the dimension of V (denoted

dim(V )).

Examples:

1. S = {0} has dimension 0.

2. Any set of vectors that includes 0 vector is linearly dependent (why?)

3. If V has dimension n, and we’re given k < n linearly independent vectors in V , then

we can extend this set of vectors to a basis.

4. Let v1, v2, . . . , vn be a basis for V . Then if v ∈ V , v = r1v1 + r2v2 + . . . + rnvn for some

r1, r2, . . . , rn ∈ R. Moreover, these coefficients are unique, because if they weren’t,

we could also write v = s1v1 + s2v2 + . . . + snvn, and subtracting both sides we get

0 = v−v = (r1−s1)v1 +(r2−s2)v2 + . . .+(rn−sn)vn, and since the vi’s form basis and

are therefore linearly independent, we have ri = si ∀i, and the coefficients are indeed

unique.

5. v1 =









1

0









and v2 =









−5

0









both span x-axis, which is the subspace of R2. Moreover,

any one of these two vectors also spans x-axis by itself (thus a basis is not unique,

though dimension is), and they are not linearly independent since 5v1 + 1v2 = 0
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6. e1 =

















1

0

0

















, e2 =

















0

1

0

















, and e3 =

















0

0

1

















form the standard basis for R3, since every

vector

















x1

x2

x3

















in R
3 can be written as x1e1 + x2e2 + x3e3, so the three vectors span R

3

and their linear independence is easy to show. In general, Rn has dimension n.

7. Let dim(V ) = n, and let v1, v2, . . . , vm ∈ V , s.t. m > n. Then v1, v2, . . . , vm are linearly

dependent.

2.2 Orthogonality

An inner product is a function f : V × V → R (which we denote by f(v1, v2) =< v1, v2 >),

s.t. ∀ v, w, z ∈ V , and ∀r ∈ R:

1. < v,w + rz > =< v,w > +r < v, z >

2. < v,w >=< w, v >

3. < v, v >≥ 0 and < v, v >= 0 iff v = 0

We note here that not all vector spaces have inner products defined on them, but we will

only be dealing with the ones that do. Examples:
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1. Given 2 vectors x =

























x1

x2

...

xn

























and y =

























y1

y2

...

yn

























in Rn, we define their inner product x′y

=< x, y > =
n

∑

i=1

xiyi. You can check yourself that the 3 properties above are satisfied,

and the meaning of notation x′y will become clear from the next section.

2. Given f, g ∈ F[−1,1], we define < f, g >=
∫ 1

−1
f(x)g(x)dx. Once again, verification that

this is indeed an inner product is left as an exersise.

We point out here the relationship in Rn between inner products and the length (or norm)

of a vector. The length of a vector x = ‖x‖ =
√

x2
1 + x2

2 + . . . + x2
n =

√
x′x′, or ‖x‖2 = x′x.

We say that vectors v, w in V are orthogonal if < v,w >= 0. Notice that the zero

vector is the only vector orthogonal to itself (why?).

Examples:

1. In Rn the notion of orthogonality agrees with our usual perception of it. If x is orthog-

onal to y, then Pythagorean theorem tells us that ‖x‖2 + ‖y‖2 = ‖x− y‖2. Expending

this in terms of inner products we get:

x′x + y′y = (x − y)′(x − y) = x′x − y′x − x′y + y′y or 2x′y = 0

and thus < x, y >= x′y = 0.
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2. Nonzero orthogonal vectors are linearly independent. Suppose we have q1, q2, . . . , qn, a

set of nonzero mutually orthogonal (< qi, qj >= 0 ∀i 6= j) vectors in V , and suppose

that r1q1 + r2q2 + . . . + rnqn = 0. Then taking inner product of q1 with both sides, we

have r1 < q1, q1 > +r2 < q1, q2 > + . . . + rn < q1qn >=< q1, 0 >= 0. That reduces to

r1‖q1‖2 = 0 and since q1 6= 0, we conclude that r1 = 0. Similarly, ri = 0 ∀ 1 ≤ i ≤ n,

and we conclude that q1, q2, . . . , qn are linearly independent.

3. We leave it as an exersise to show that f(x) = 1 and g(x) = x are orthogonal in F[−1,1],

and that if n 6= m f(x) = sin(nx) and g(x) = sin(mx) are orthogonal in F[0,2π], and

sin(nx), cos(mx) are orthogonal in F[0,2π] for all values of n,m.

4. Suppose we have a n×1 vector of observations x =

























x1

x2

...

xn

























. Then if we let x̄ = 1
n

n
∑

i=1

xi,

we can see that vector e =

























x1 − x̄

x2 − x̄

...

xn − x̄

























is orthogonal to vector x̂ =

























x̄

x̄

...

x̄

























, since

n
∑

i=1

x̄(xi − x̄) = x̄
n

∑

i=1

xi − x̄
n

∑

i=1

x̄ = nx̄2 − nx̄2 = 0.

Suppose S, T are subspaces of V . Then we say that they are orthogonal subspaces

if every vector in S is orthogonal to every vector in T . We say that S is the orthogonal
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complement of T in V , if S contains ALL vectors orthogonal to vectors in T and we write

S = T⊥. For example, the x-axis and y-axis are orthogonal subspaces of R3, but they are

not orthogonal complements of each other, since y-axis does not contain

















0

0

1

















, which is

perpendicular to every vector in x-axis. However, y-z plane and x-axis ARE orthogonal

complements of each other in R
3. You should prove as an exersise that if dim(V ) = n, and

dim(S) = k, then dim(S⊥) = n − k.

2.3 Gram-Schmidt Process

Suppose we’re given linearly independent vectors v1, v2, . . . , vn in V , and there’s inner product

defined on V . Then we know that v1, v2, . . . , vn form a basis for the subspace which they

span (why?), and we can find an orthogonal basis for this subspace as follows. Let q1 = v1

Suppose v2 is not orthogonal to v1. then let rv1 be the projection of v2 on v1, i.e. we want to

find r ∈ R s.t. q2 = v2 − rq1 is orthogonal to q1. Well, we should have < q1, (v2 − rq1) >= 0,

and we get r = <q1,v2>
<q1,q1>

. Notice that the span of q1, q2 is the same as the span of v1, v2,

since all we did was to subtract multiples of original vectors from other original vectors.

Proceeding in similar fashion, we obtain qi = vi −
((

<q1,vi>
<q1,q1>

)

q1 + . . . +
(

<qi−1,vi>
<qi−1,qi−1>

)

qi−1

)

,

and we thus end up with an orthogonal basis for the subspace. If we furthermore divide each

of the resulting vectors q1, q2, . . . , qn by its length, we are left with orthonormal basis, i.e.

< qi, qj >= 0 ∀i 6= j and < qi, qi >= 1 ∀i (why?). We call these vectors that have length 1
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unit vectors.

As an exersise, you can now construct an orthonormal basis for the subspace of F[−1,1]

spanned by f(x) = 1, g(x) = x, and h(x) = x2. An important point to take away is that

given any basis for finite-dimensional V , if there’s an inner product defined on V , we can

always turn the given basis into an orthonormal basis.

3 Matrices and Matrix Alegbra

An m × n matrix A is a rectangular array of numbers that has m rows and n columns, and

we write:

A =

























a11 a12 . . . a1n

a21 a22 . . . a2n

...
. . .

. . .
...

am1 am2 . . . amn

























For the time being we’ll restrict ourselves to real matrices, so ∀ 1 ≤ i ≤ m and ∀ 1 ≤ j ≤ n,

aij ∈ R. Notice that a familiar vector x =

























x1

x2

...

xn

























∈ Rn is just a n × 1 matrix (we say x is

a column vector. A 1× n matrix is referred to as a row vector. If m = n, we say that A

is square.
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3.1 Matrix Operations

Matrix addition is defined elementwise, i.e. A + B = C, where cij = aij + bij . Note that this

implies that A + B is defined only if A and B have the same dimensions. Also, note that

A + B = B + A.

Scalar multiplication is also defined elementwise. If r ∈ R, then rA = B, where bij = raij .

Any matrix can be multiplied by a scalar. Multiplication by 0 results in zero matrix, and

multiplication by 1 leaves matrix unchanged, while multiplying A by -1 results in matrix

−A, s.t. A + (−A) = A − A = 0m×n. You should check at this point that a set of all m × n

matrices is a vector space with operations of addition and scalar multiplication as defined

above.

Matrix multiplication is trickier. Given a m× n matrix A and a p× q matrix B, AB is only

defined if n = p. In that case we have AB = C, where cij =
n

∑

k=1

aikbkj, i.e. the i, j-th element

of AB is the inner product of the i-th row of A and j-th column of B, and the resulting

product matrix is m× q. You should at this point come up with your own examples of A,B

s.t both AB and BA are defined, but AB 6= BA. Thus matrix multiplication is, in general,

non-commutative. Below we list some very useful ways to think about matrix multiplication:

1. Suppose A is m×n matrix, and x is a n×1 column vector. Then if we let a1, a2, . . . , an

denote the respective columns of A, and x1, x2, . . . , xn denote the components of x, we

get a m× 1 vector Ax = x1a1 + x2a2 + . . . + xnan, a linear combination of the columns

of A. Thus applying matrix A to a vector always returns a vector in the column space
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of A (see below for definition of column space).

2. Now, let A be m×n, and let x be a 1×m row vector. Let a1, a2, . . . , am denote rows of

A, and x1, x2, . . . , xm denote the components of x. Then multiplying A on the left by

x, we obtain a 1 × n row vector xA = x1a1 + x2a2 + . . . + xmam, a linear combination

of the rows of A. Thus multiplying matrix on the right by a row vector always returns

a vector in the row space of A (see below for definition of row space)

3. Now let A be m × n, and let B be n × k, and let a1, a2, . . . , an denote columns of A

and b1, b2, . . . , bk denote the columns of B, and let cj denote the j-th column of m× k

C = AB. Then cj = Abj = b1ja1 + b2ja2 + . . . + bnjan, i.e. we get the columns of

product matrix by applying A to the columns of B. Notice that it also implies that

every column of product matrix is a linear combination of columns of A.

4. Once again, consider m×n A and n×k B, and let a1, a2, . . . an denote rows of A (they

are, of course, just 1× n row vectors). Then letting ci denote the i-th row of C = AB,

we have cj = ajB, i.e. we get the rows of the product matrix by applying rows of A to

B. Notice, that it means that every row of C is a linear combination of rows of B.

5. Finally, let A be m×n and B be n×k. Then if we let a1, a2, . . . , an denote the columns

of A and b1, b2, . . . , bn denote the rows of B, then AB = a1b1 + a2b2 + . . . + anbn, the

sum of n matrices, each of which is a product of a row and a column (check this for

yourself!).
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Let A be m × n, then we say that transpose of A is the n × m matrix A′, s.t. aij = a′
ji.

Now the notation we used to define the inner product on Rn makes sense, since given two

n × 1 column vectors x and y, their inner product < x, y > is just x′y according to matrix

multiplication.

Let In×n, denote the n × n identity matrix, i.e. the matrix that has 1’s down its main

diagonal and 0’s everywhere else (in future we might omit the dimensional subscript and

just write I, the dimension should always be clear from the context). You should check that

in that case, In×nA = AIn×n = A for every n×n A. We say that n×n A, has n×n inverse,

denoted A−1, if AA−1 = A−1A = In×n. If A has inverse, we say that A is invertible. Not

every matrix has inverse, as you can easily see by considering the n×n zero matrix. We will

assume that you are familiar with the use of elimination to calculate inverses of invertible

matrices and will not present this material. The following are some important results about

inverses and transposes:

1. (AB)′ = B′A′

2. If A is invertible and B is invertible, then AB is invertible, and (AB)−1 = B−1A−1

3. If A is invertible, then (A−1)′ = (A′)−1

4. A is invertible iff Ax = 0 =⇒ x = 0 (we say that N(A) = {0}, where N(A) is the

nullspace of A, to be defined shortly).

You should prove all of these identities as an exersise.
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3.2 Special Matrices

A square matrix A is said to be symmetric if A = A′. If A is symmetric, then A−1 is

also symmetric (prove this). A square matrix A is said to be orthogonal if A′ = A−1.

You should prove that columns of an orthogonal matrix are orthonormal, and so are the

rows. Conversely, any square matrix with orthonormal columns is orthogonal. We note that

orthogonal matrices preserve lengths and inner products: < Qx,Qy >= x′Q′Qy = x′In×ny =

x′y. In particular ‖Qx‖ =
√

x′Q′Qx = ‖x‖. Also, if A, and B are orthogonal, then so are

A−1 and AB. We say that a square matrix A is idempotent if A2 = A.

We say that a square matrix A is positive definite if A is symmetric and if ∀ n× 1 vectors

x 6= 0n×1, we have x′Ax > 0. We say that A is positive semi-definite (or non-negative

definite if A is symmetric and ∀ n×1 vectors x 6= 0n×1, we have x′Ax ≥ 0. You should prove

for yourself that every positive definite matrix is invertible (think about nullspaces). Also

show that if A is positive definite, then so is A′ (more generally, if A is positive semi-definite,

then so is A′).

We say that a square matrix A is diagonal if aij = 0 ∀ i 6= j. We say that A is upper

triangular if aij = 0 ∀ i > j. Lower triangular matrices are defined similarly.

We also introduce another concept here: for a square matrix A, its trace is defined to be

the sum of the entries on main diagonal(tr(A) =
n

∑

i=1

aii). For example, tr(In×n) = n. You

should prove for yourself (by method of entry-by-entry comparison) that tr(AB) = tr(BA),

and tr(ABC) = tr(CAB). It’s also immediately obvious that tr(A + B) = tr(A) + tr(B).
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3.3 Fundamental Spaces

Let A be m×n. We will denote by col(A) the subspace of Rm that is spanned by columns of

A, and we’ll call this subspace column space of A. Similarly, we define the row space of

A to be the subspace of Rn spanned by rows of A and we notice that it is precisely col(A′).

Now, let N(A) = {x ∈ Rn : Ax = 0}. You should check for yourself that this set, which

we call kernel or nullspace of A is indeed subspace of Rn. Similary we define the left

nullspace of A, to be {x ∈ Rm : x′A = 0}, and we notice that this is precisely N(A′).

The fundamental theorem of linear algebra states:

1. dim(col(A)) = r = dim(col(A′)). Dimension of column space is the same as dimension

of row space. This dimension is called rank of A.

2. col(A) = (N(A′))⊥ and N(A) = (col(A′))⊥. The columns space is the orthogonal

complement of the left nullspace in Rm, and the nullspace is the orthogonal complement

of the row space in R
n. We also conclude that dim(N(A)) = n − r, and dim(N(A′))

= m − r.

We will not present the proof of the theorem here, but we hope you are familiar with these

results. If not, you should consider taking a course in linear algebra (math 110).

We can see from the theorem, that the columns of A are linearly independent iff the nullspace

doesnt’ contain any vector other than zero. Similarly, rows are linearly independent iff the

left nullspace doesn’t contain any vector other than zero.
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We now make some remarks about solving equations of the form Ax = b, where A is a m×n

matrix, x is n × 1 vector, and b is m × 1 vector, and we are trying to solve for x. First of

all, it should be clear at this point that if b /∈ col(A), then the solution doesn’t exist. If

b ∈ col(A), but the columns of A are not linearly independent, then the solution will not

be unique. That’s because there will be many ways to combine columns of A to produce

b, resulting in many possible x’s. Another way to see this is to notice that if the columns

are dependent, the nullspace contains some non-trivial vector x∗, and if x is some solution

to Ax = b, then x + x∗ is also a solution. Finally we notice that if r = m > n (i.e. if the

rows are linearly independent), then the columns MUST span the whole Rm, and therefore

a solution exists for every b (though it may not be unique).

We conclude then, that if r = m, the solution to Ax = b always exists, and if r = n, the

solution (if it exists) is unique. This leads us to conclude that if n = r = m (i.e. A is full-rank

square matrix), the solution always exists and is unique. The proof based on elimination

techniques (which you should be familiar with) then establishes that a square matrix A is

full-rank iff it is invertible.

You should be able now to prove the following results:

1. rank(A′A) = rank(A). In particular, if rank(A) = n (columns are linearly independent),

then A′A is invertible. Similarly, show that rank(AA′) = rank(A), and if the rows are

linearly independent, AA′ is invertible. (Hint: show that the nullspaces of the two

matrices are the same).
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2. N(AB) ⊃ N(B)

3. col(AB) ⊂ col(A), the column space of product is subspace of column space of A.

4. col((AB)′) ⊂ col(B′), the row space of product is subspace of row space of B.

4 Least Squares Estimation

4.1 Projections

Suppose we have n linearly independent vectors a1, a2, . . . , an in R
m, and we want to find

the projection of a vector b in Rm onto the space spanned by a1, a2, . . . , an, i.e. to find some

linear combination x1a1 + x2a2 + . . . + xnan = b′, s.t. ‖b‖ = ‖b′‖ + ‖b − b′‖. It’s clear that

if b is already in the span of a1, a2, . . . , an, then b′ = b (vector just projects to itself), and if

b is perpendicular to the space spanned by a1, a2, . . . , an, then b′ = 0 (vector projects to the

zero vector).

We can now re-write the above situation in matrix terms. Let ai be now the i-th column

of the m × n matrix A. Then we want to find x ∈ Rn s.t. (b − Ax) ⊥ col(A), or in other

words A′(b − Ax) = 0n×1. We now have A′b = A′Ax or x = (A′A)−1A′b (why is A′A

invertible?). Then for every vector b in Rm, its projection onto the column space of A is

Ax = A(A′A)−1A′b. We call the matrix P = A(A′A)−1A′ that takes a vector in Rm and

returns its projection onto col(A) the projection matrix. We follow up with some properties

of projection matrices that you should prove for yourself (unless the proof is supplied):
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1. P is symmetric and idempotent (what should happen to a vector if you project it and

then project it again?).

2. I − P is the projection onto orthogonal complement of col(A) (i.e. the left nullspace

of A)

3. Given any vector b ∈ Rm and any subspace S of Rm, b can be written (uniquely) as

the sum of its projections onto S and S⊥

4. P (I − P ) = (I − P )P = 0 (what should happen to a vector when it’s first projected

to S and then S⊥?)

5. col(P ) = col(A)

6. Every symmetric and idempotent matrix P is a projection. All we need to show if

that when we apply P to a vector b, the remaining part of b is orthogonal to col(P ),

so P projects onto its column space. Well, P ′(b − Pb) = P ′(I − P )b = P (I − P )b =

(P − P 2)b = 0b = 0.

7. Let a be a vector in R
m. Then a projection matrix onto the line through a is P = aa′

‖a‖2 ,

and if a = q is a unit vector, then P = qq′.

8. Combining the above result with the fact that we can always come up with an or-

thonormal basis for Rm (Gram-Schmidt) and with the fact about splitting vector into
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projections, we see that we can write b ∈ R
m as q1q

′
1b + q2q

′
2b + . . . + qmq′mb for some

orthonormal basis {q1, q2, . . . , qm}.

9. tr(P ) = r.

4.2 Applications to Statistics

Suppose we have a linear model, where we model some response as Yi = xi1β1 + xi2β2 +

. . . + xipβp + εi, where xi1, xi2, . . . , xip are the values of explanatory variables for observation

i, εi is the error term for observaion i that has an expected value of 0, and β1, β2, . . . , βp

are the coefficients we’re interested in estimating. Suppose we have n > p observations.

Then writing the above system in matrix notation we have Y = Xβ + ε, where X is the

n × p matrix of explanatory variables, Y and ε are n × 1 vectors of observations and errors

respectively, and p × 1 β is what we’re interested in. We will furthermore assume that the

columns of X are linearly independent.

Since we don’t actually observe the values of the error terms, we can’t determine the value of

β and have to estimate it. One estimator of β that has some nice properties (which you will

learn about in statistics lectures of this camp) is β̂ that minimizes
n

∑

i=1

(yi − xiβ)2, where xi

is the i-th row of X. We recognize that in matrix notation β̂ minimizes (Y −Xβ)′(Y −Xβ).

From this point there are two (or more ways) that we can arrive at the same conclusion.

First, we could recognize that the same β̂ has to minimize ‖Y − Xβ‖ (since the expresison

above was just ‖Y − Xβ‖2, and ‖Y − Xβ‖ is always non-negative), and therefore we pick
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β̂ is such a way that Xβ is the projection of Y onto columns of X. Alternatively, we could

differenitate (Y −Xβ)′(Y −Xβ) with respect to β (see section on vector derivatives to find

out how to carry out such a differentiation) and set it to zero (since if β̂ minimizes the

expression, the derivative at β̂ should be 0) to get: −X ′Y − X ′Y + 2X ′Xβ̂ = 0, or once

again β̂ = (X ′X)−1X ′Y . The projected values Ŷ = X(X ′X)−1X ′Y are known as fitted

values, and the portion e = Y − Ŷ of Y (which is orthogonal to the column space of X) is

known as residuals.

Finally, suppose there’s a column xj in X that is perpendicular to all other columns. Then

because of the results on the separation of projections (xj is the orthogonal complement in

col(X) of the space spanned by the rest of the columns), we can project b onto the line

spanned by xj, then project b onto the space spanned by rest of the columns of X and add

the two projections together to get the overall projected value. What that means is that

if we throw away the column xj, the values of the coefficients in β corresponding to other

columns will not change. Thus inserting or deleting from X columns orthogonal to the rest

of the column space has no effect on estimated coefficients in β corresponding to the rest of

the columns.

4.3 Matrix Derivatives and Other Identities

Here we just list the results on taking derivatives of expressions with respect to a vector

of variables (as opposed to a single variable). We start out by defining what that actually
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means: Let x =

























x1

x2

...

xk

























be a vector of variables, and let f be some real-valued function of x

(for example f(x) = sin(x2)+x4 or f(x) = x1
x7 +x11log(x3)). Then we define ∂f

∂x
=

























∂f
∂x1

∂f
∂x2

...

∂f
∂xk

























.

Below are the extensions (which you should verify for yourself) together with some general

results on expectations and variances. We supply reasonings for some of them, and you

should verify the rest (usually by the method of entry-by-entry comparison). We assume in

what follows that k × k A and k × 1 a are constant, and we let k × 1 µ = E(x) and k × k

V = cov(x) (vij = cov(xi, xj)):

1. Let a ∈ Rk, and let y = a′x = a1x1 + a2x2 + . . . + akxk. Then ∂y
∂x

= a

2. Let y = x′x, then ∂y
∂x

= 2x

3. Let A be k × k, and a be k × 1, and y = a′Ax. Then ∂y
∂x

= A′a

4. Let y = x′Ax, then ∂y
∂x

= Ax + A′x and if A is symmetric ∂y
∂x

= 2Ax. We call the

expression x′Ax =
k

∑

i=1

k
∑

j=1

aijxixj, a quadratic form with corresponding matrix A.

5. E(Ax) = AE(x)
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6. V ar(a′x) = var(a1x1 + a2x2 + . . . + akxk) =
k

∑

i=1

k
∑

j=1

aiajcov(xixj) =
k

∑

i=1

k
∑

j=1

vijaiaj =

a′V a

7. V ar(Ax) = AV A′

8. E(x′Ax) = tr(AV ) + µ′Aµ

9. Covariance matrix V is positive semi-definite. Proof: y′V y = V ar(y′x) >≥ 0 ∀y 6= 0.

Since V is symmetric (why?), prove for yourself that V 1/2 = (V 1/2)′ (this requires

knowing the results on diagonalization of symmetric matrices to be presented later).

10. Cov(a′x, b′x) = a′V b

11. If x, y are two k × 1 vectors of random varialbes, we define their cross-covariance

matrix C as follows : cij = cov(xi, yj). Notice that unlike usual covariance matrices, a

cross-covariance matrix is not (usually) symmetric. We still use the notation cov(x, y)

and the meaning should be clear from the context. Now, suppose A,B are k×k. Then

cov(Ax,Bx) = AV B ′.

5 Matrix Decompositions

We will assume that you are familiar with LU and QR matrix decompositions. If you are

not, you should look them up, they are easy to master. We will in this section restrict

ourselves to eigenvalue-preserving decompositions.
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5.1 Determinants

We will assume that you are familiar with the idea of determinants, and specifically calculat-

ing determinants by the method of cofactor expansion along a row or a column of a square

matrix. Below we list the properties of determinants of real square matrices. The first 3

properties are defining, and the rest are established from those 3.

1. det(A) depends linearly on the first row.

det

























a11 + a′
11 a12 + a′

12 . . . a1n + a′
1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

























=

det
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






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a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

























+ det










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











a′
11 a′

12 . . . a′
1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

























.

det
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





ra11 ra12 . . . ra1n
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
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












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= r det

























a11 a12 . . . a1n
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





















2. Determinant changes sign when two rows are exchanged. This also implies that the

determinant depends linearly on EVERY row, since we can exhange rowi with row 1,
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split the determinant, and exchange the rows back, restoring the original sign.

3. det(I) = 1

4. If two rows of A are equal, det(A) = 0 (why?)

5. Subtracting a multiple of one row from another leaves determinant unchanged. Proof:

Suppose instead of row i we now have row i − rj. Then splitting the determinant of

the new matrix along this row we have det(original) + det(original matrix with row rj

in place of row i. That last determinant is just r times determinant of original matrxi

with row j in place of row i, and since the matrix has two equal rows, the determinant

is 0. So we have that the determinant of the new matrix is equal to the determinant

of the original.

6. If a matrix has a zero row, its determinant is 0. (why?)

7. If a matrix is triangular, its determinant is the product of entries on main diagonal

(why?)

8. det(A) = 0 iff A is not invertible (proof involves ideas of elimination)

9. det(AB) = det(A)det(B). Proof: Suppose det(B) = 0. Then B is not invertible, and

AB is not invertible, therefore det(AB) = 0. If det(B) 6= 0, show that d(A) = det(AB)
det(B)

satisfies the first 3 properties, and therefore d(A) = det(A). In particular det(A−1) =

1
det(A)

.
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10. det(A′) = det(A). This is true since expanding along the row of A′ is the same as

expanding along the corresponding column of A.

5.2 Eigenvalues and Eigenvectors

Given a square n × n matrix A, we say that λ is an eigenvalue of A, if for some non-zero

x ∈ Rn we have Ax = λx. We then say that x is an eigenvector of A, with corresponding

eigenvalue λ. For small n, we find eigenvalues by noticing that Ax = λx ⇐⇒ (A− λI)x = 0

⇐⇒ A − λI is not invertible ⇐⇒ det(A − λI) = 0. We then write out the formula for the

determinant (which will be a polynomial of degree n in λ) and solve it. Every n× n A then

has n eigenvalues (possibly repeated and/or complex), since every polynomial of degree n

has n roots. Eigenvectors for a specific value of λ are found by calculating the basis for

nullspace of A − λI via standard elimination techniques. If n ≥ 5, there’s a theorem in

algebra that states that no formulaic expression for the roots of the polynomial of degree n

exists, so other techniques are used, which we will not be covering. Also, you should be able

to see that the eigenvalues of A and A′ are the same (why? Do the eigenvecors have to be

the same?), and that if x is an eigenvector of A (Ax = λx), then so is every multiple rx of

x, with same eigenvalue (Arx = λrx). In particular, a unit vector in the direction of x is an

eigenvector.

We can show that eigenvectors corresponding to distinct eigenvalues are linearly indepen-

dent. Suppose that there are only two distinct eigenvalues (A could be 2 × 2 or it could
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have repeated eigenvalues), and let r1x1 + r2x2 = 0. Applying A to both sides we have

r1Ax1 + r2Ax2 = A0 = 0 =⇒ λ1r1x1 + λ2r2x2 = 0. Multiplying first equation by λ1 and

subtracting it from the second, we get λ1r1x1 + λ2r2x2 − (λ1r1x1 + λ1r2x2) = 0− 0 = 0 =⇒

r2(λ2 − λ1)x2 = 0 and since x1 6= 0, and λ1 6= λ2, we conclude that r2 = 0. Similarly, r1 = 0

as well, and we conclude that x1 and x2 are in fact linearly independent. The proof extends

to more than 2 eigenvalues by induction and is left as exersise.

We say that n × n A is diagonalizable if it has n linearly independent eigenvectors. Cer-

tainly, every matrix that has n DISTINCT eigenvalues is diagonalizable (by the proof above),

but some matrices that fail to have n distinct eigenvalues may still be diagonalizable, as we’ll

see in a moment. The reasoning behind the term is as follows: Let s1, s2, . . . , sn ∈ Rn be the

set of linearly independent eigenvectors of A, let λ1, λ2, . . . , λn be corresponding eigenvalues

(note that they need be distinct), and let S be n × n matrix the j-th column of which is

sj. Then if we let Λ be n × n diagonal matrix s.t. the ii-th entry on the main diagonal is

λi, then from familiar rules of multiple multiplication we can see that AS = SΛ, and since

S is invertible (why?) we have S−1AS = Λ. Now suppose that we have n × n A and for

some S, we have S−1AS = Λ, a diagonal matrix. Then you can easily see for yourself that

the columns of S are eigenvectors of A and diagonal entries of Λ are corresponding eigenval-

ues. So the matrices that can made into a diagonal matrix by pre-multiplying by S−1 and

post-multiplying by S for some invertible S are precisely those that have n linearly inde-

pendent eigenvectors (which are, of course, the columns of S). Clearly, I is diagonalizable
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(S−1IS = I) ∀ invertible S, but I only has a single eigenvalue 1. So we have an example of

a matrix that has a repated eigenvalue but nonetheless has n independent eigenvectors.

If A is diagonalizable, calculation of powers of A becomes very easy, since we can see that

Ak = SΛkS−1, and taking powers of a diagonal matrix is about as easy as it can get. This

is often a very helpful identity when solving recurrent relationships. A classical example is

the Fibonacci sequence 1, 1, 2, 3, 5, 8, . . . , where each term (starting with 3rd one) is the

sum of the preceding two: Fn+2 = Fn + Fn+1. We want to find an explicit formula for n-th

Fibonacci number, so we start by writing









Fn+1

Fn









=








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1 0
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


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Fn
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
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
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or un = Aun−1, which becomes un = Anu0, where A =


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

1 1

1 0


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
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, and u0 =
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

1

0
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. Diagonal-

izing A we find that S =









1+
√

5
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√

5
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1 1









and Λ =


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



1+
√

5
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√

5
2


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

, and identifying Fn with

the second component of un = Anu0 = SΛnS−1u0, we obtain Fn = 1√
5

[(

1+
√

5
2

)n

−
(

1−
√

5
2

)n]

We finally note that there’s no relationship between being diagonalizable and being invert-

ible.









1 0

0 1









is both invertible and diagonalizable,









0 0

0 0









is diagonalizable (it’s already
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diagonal) but not invertible,









3 1

0 3




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is invertible but not diagonalizable (check this!), and


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

0 1

0 0









is neither invertible nor diagonalizable (check this too).

5.3 Complex Matrices and Basic Results

We know allow complex entries in vectors and matrices. Scalar multiplicaiton now also

allows multiplication by complex numbers, so we’re gonna be dealing with vectors in C
n,

and you should check for yourself that dim(Cn = dim(Rn) = n (Is Rn a subspace of Cn?)

We also note that we need to tweak a bit the earlier definition of transpose to account for

the fact that if x =









1

i









∈ C2, then x′x = 1+ i2 = 0 6= 1 = ‖x‖2. We note that in complex

case ‖x‖2 = (x̄)′x, where x̄ is the complex conjugate of x, and we introduce the notation

xH to denote the transpose-conjugate x̄′ (thus we have xHx = ‖x‖2). You can easily see for

yourself that if x ∈ R
n, then xH = x′. AH = (Ā)′ for n × n matrix A is defined similarly

and we call AH Hermitian transpose of A. You should check that (AH)H = A and that

(AB)H = BHAH (you might want to use the fact that for complex numbers x, y ∈ C,

x + y = x̄ + ȳ and xy = x̄ȳ). We say that x and y in Cn are orthogonal if xHy = 0 (note

that this implies that yHx = 0, although it is NOT true in general that xHy = yHx).

We say that n × n matrix A is Hermitian if A = AH . We say that ntimesn A is unitary

if AHA = AAH = I(AH = A−1). You should check for yourself that every symmetric real
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matrix is Hermitian, and every orthogonal real matrix is unitary. We say that a square matrix

A is normal if it commutes with its Hermitian transpose: AHA = AAH . You should check

for yourself that Hermitian (and therefore symmetric) and unitary (and therefore orthogonal)

matrices are normal. We next present some very important results about Hermitian and

unitary (which also include as special cases symmetric and orthogonal matrices respectively):

1. If A is Hermitian, then ∀x ∈ Cn, y = xHAx ∈ R. Proof: taking the hermitian transpose

we have yH = xHAHx = xHAx = y, and the only scalars in C that are equal to their

own conjugates are the reals.

2. If A is Hermitian, and λ is an eigenvalue of A, then λ ∈ R. In particular, all eigenvalues

of a symmetric real matrix are real (and so are the eigenvectors, since they are found

by elimination on A − λI, a real matrix). Proof: suppose Ax = λx for some nonzero

x, then pre-multiplying both sides by xH , we get xHAx = xHλx = λxHx = λ‖x‖2, and

since the left-hand side is real, and ‖x‖2 is real and positive, we conclude that λ ∈ R.

3. If A is positive definite, and λ is an eigenvalue of A, then λ > 0 (note that since

A is symmetric, we know that λ ∈ R). Proof: Let nonzero x be the eigenvector

corresponding to λ. Then since A is positive definite, we have x′Ax > 0 =⇒ x′(λx) > 0

=⇒ λ‖x‖2 > 0 =⇒ λ > 0.

4. If A is Hermitian, and x, y are the eigenvectors of A, corresponding to different eigen-

values (Ax = λ1x,Ay = λ2y), then xHy = 0. Proof: λ1x
Hy = (λ1x)Hy (since λ1 is
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real) = (Ax)Hy = xH(AHy) = xH(Ay) = xH(λ2y) = λ2x
Hy, and get (λ1−λ2)x

Hy = 0.

Since λ1 6= λ2, we conclude that xHy = 0.

5. The above result means that if a real symmetric n × n matrix A has n distinct eigen-

values, then the eigenvectors of A are mutally orthogonal, and if we restrict ourselves

to unit eigenvectors, we can decompose A as QΛQ−1, where Q is orthogonal (why?),

and therefore A = QΛQ′. We will later present the result that shows that it is true of

EVERY symmetric matrix A (whether or not it has n distinct eigenvalues).

6. Unitary matrices preserve inner products and lengths. Proof: Let U be unitary. Then

(Ux)H(Uy) = xHUHUy = xHIy = xHy. In particular ‖Ux‖ = ‖x‖.

7. Let U be unitary, and let λ be an eigenvalue of U . Then |λ| = 1 (Note that λ could be

complex, for example i, or 1+i√
2
). Proof: Suppose Ux = λx for some nonzero x. Then

‖x‖ = ‖Ux‖ = ‖λx‖ = |λ|‖x‖, and since ‖x‖ > 0, we have |λ| = 1.

8. Let U be unitary, and let x, y be eigenvectors of U , corresponding to different eigen-

values (Ux = λ1x, Uy = λ2y). Then xHy = 0. Proof: xHy = xHIy = xHUHUy =

(Ux)H(Uy) = (λ1x)H(λ2y) = λH
1 λ2x

Hy = λ̄1λ2x
Hy (since λ1 is a scalar). Suppose now

that xHy 6= 0, then λ̄1λ2 = 1. But |λ1| = 1 =⇒ λ̄1λ1 = 1, and we conclude that

λ1 = λ2, a contradiction. Therefore, xHy = 0.

9. For EVERY square matrix A, ∃ some unitary matrix U s.t. U−1AU = UHAU = T ,

where T is upper triangular. We will not prove this result, but the proof can be found,
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for example, in section 5.6 of G.Strang’s ’Linear Algebra and Its Applications’ (3rd

ed.) This is a very important result which we’re going to use in just a moment to

prove the so-called Spectral Theorem.

10. If A is normal, and U is unitary, then B = U−1AU is normal. Proof: BBH =

(UHAU)(UHAU)H = UHAUUHAHU = UHAAHU = UHAHAU (since A is normal)

= UHAHUUHAU = (UHAU)H(UHAU) = BHB.

11. If n × n A is normal, then ∀x ∈ C
n we have ‖Ax‖ = ‖AHx‖. Proof: ‖Ax‖2 =

(Ax)HAx = xHAHAx = xHAAHx = (AHx)H(AHx) = ‖AHx‖2. And since ‖Ax‖ >

0 < ‖AHx‖, we have ‖Ax‖ = ‖AH‖.

12. If A is normal and A is upper triangular, then A is diagonal. Proof: Consider the first

row of A. In the preceding result, let x =

























1

0

...

0

























. Then ‖Ax‖2 = |a11|2(since the only

non-zero entry in first column of A is a11) and ‖AHx‖2 = |a11|2 + |a12|2 + . . .+ |a1n|2. It

follows immediately from the preceding result that a12 = a13 = . . . = a1n = 0, and the

only non-zero entry in the first row of A is a11. You can easily supply the proof that

the only non-zero entry in the i-th row of A is aii and we conclude that A is diagonal.

13. We have just succeded in proving the Spectral Theorem: If A is n × n symmetric

matrix, then we can write it as A = QΛQ′. We know that if A is symmetric, then it’s
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normal, and we know that we can find some unitary U s.t. U−1AU = T , where T is

upper triangular. But we know that T is also normal, and being upper triangular, it

is then diagonal. So A is diagonalizable and by discussion above, the entries of T = Λ

are eigenvalues of A (and therefore real) and the columns of U are corresponding unit

eigenvectors of A (and therefore real), so U is a real orthogonal matrix.

14. More generally, we have shown that every normal matrix is diagonalizable.

15. If A is positive definite, it has a square root B, s.t. B2 = A. We know that we can

write A = QΛQ′, where all diagonal entries of Λ are positive. Let B = QΛ1/2Q′, where

Λ1/2 is the diagonal matrix that has square roots of main diagonal elements of Λ along

its main diagonal, and calculate B2 (more generally if A is positive semi-definite, it

has a square root). You should now prove for yourself that A−1 is also positive definite

and therefore A−1/2 also exists.

16. If A is symmetric and idempotent, and λ is an eigenvalue of A, then λ = 1 or λ = 0.

Proof: we know that A = QΛQ′ and A2 = A, therefore QΛQ′QΛQ′ = QΛ2Q′ =

QΛQ′, and we conclude that Λ = Λ2. You should prove for yourself that this implies

that diagonal entries of Λ are either 0 or 1, and that the number of 1’s along the

main diagonal of Λ = rank(A). Why is this another proof that rank(A) = tr(A) for

symmetric and idempotent A?
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There is another way to think about the result of the Spectral theorem. Let x ∈ R
n and

consider Ax = QΛQ′x. Then (do it as an exersise!) carrying out the matrix multiplication

on QΛQ′ and letting q1, q2, . . . , qn denote the columns of Q and λ1, λ2, . . . , λn denote the

diagonal entries of Λ, we have: QΛQ′ = λ1q1q
′
1 +λ2q2q

′
2 + . . .+λnqnq′n and so Ax = λ1q1q

′
1x+

λ2q2q
′
2x + . . . + λnqnq

′
nx. We recognize qiq

′
i as the projection matrix onto the line spanned

by qi, and thus every n × n symmetric matrix is the sum of n 1-dimensional projections.

That should come as no surprise: we have orthonormal basis q1, q2, . . . qn for R
n, therefore

we can write every x ∈ Rn as a unique combination c1q1 + c2q2 + . . . + cnqn, where c1q1 is

precisely the projection of x onto line through q1. Then applying A to the expression we

have Ax = λ1c1q1 + λ2c2q2 + . . . + λncnqn, which of course is just the same thing as we have

above.

6 Further Applications to Statistics: Normal Theory

and F-test

6.1 Bivariate Normal Distribution

Suppose X is a vector of continuous random variables and Y = AX + c, where A is an in-

vertible matrix. Then if X has probability density funciton pX , then the probability density

function of Y is given by pY (y) = |det(A)|−1pX(A−1(Y − c)). The proof of this result can be

found in appendix B.2.1 of Bickel and Doksum.
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We say that 2×1 vector X =









X1

X2









has a bivariate normal distribution if ∃ Z1, Z2 I.I.D

N(0, 1), s.t. X = AZ + µ. In what follows we will moreover assume that A is invertible.

You should check at this point for yourself that X1 ∼ N(µ1, σ1) and X2 ∼ N(µ2, σ2), where

σ1 =
√

a11
2 + a12

2 and σ2 =
√

a21
2 + a22

2, and that cov(X1, X2) = a11a21 + a12 + a22. We

then say that X ∼ N(02×1, Σ), where Σ = AA′ =









σ2
1 ρσ1σ2

ρσ1σ2 σ2
2









and ρ = cov(X1,X2)
σ1σ2

(you should verify that the entries of Σ = AA′ are as we claim). The meaning behind this

definition is made explicit by the following theorem:

Theorem: Suppose σ1 6= 0 6= σ2 and |ρ| < 1. Then

pX(x) = 1

2π
√

det(Σ)
exp

[

−1
2
((x − µ)′Σ−1(x − µ))

]

.

where exp denotes the exponential function.

Proof Note first of all that if A is invertible, then it follows directly that σ1 6= 0 6= σ2 and

|ρ| < 1 (why?). Also,
√

det(Σ =
√

det(AA′) =
√

det(A)2 = |det(A)| = σ1σ2

√

1 − ρ2 (you

should verify the last step). We know that pZ(z) = 1
2π

exp
(

−1
2
z′z

)

and since X = AZ + µ

we have by the result above:
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pX(x) = 1
2π|det(A)|exp

(

−1
2
(A−1(x − µ))′(A−1(x − µ))

)

= 1
2π|det(A)|exp

(

−1
2
(x − µ)′(A−1)′(A−1)(x − µ)

)

= 1
2π|det(A)|exp

(

−1
2
(x − µ)′(AA′)−1(x − µ)

)

= 1

2π
√

det(Σ)
exp

(

−1
2
(x − µ)′Σ−1(x − µ)

)

which proves the theorem. The symmetric matrix Σ is the covariance matrix of X.

You should prove for yourself now that if X has a bivariate normal distribution N(µ, V ,

and B is invertible, then Y = BX +d has a bivariate normal distribution N(Bµ+d,BV B ′).

These results generalize to more than two variables and lead to multivariate normal

distributions. You can familiarize yourself with some of the extensions in appendix B.6 of

Bickel and Doksum. In particular,we note here that if x is a k × 1 vector of IID N(0, σ2)

random variables, then Ax is distributed as a multivariate N(0, σ2AA′) random vector.

6.2 F-test

We will need a couple more results about quadratic forms:

1. Suppose k × k A is symmetric and idempotent and k × 1 x ∼ N(0k×1, σ
2Ik×k). Then

x′Ax
σ2 ∼ χr

2, where r = rank(A). Proof: We write x′Ax
σ2 = x′Q

σ
ΛQ′x

σ
and we note that

Q′x
σ

∼ N(0, 1
σ2 × σ2Q′Q) = N(0, I), i.e.Q′x

σ
is a vector of IID N(0, 1) random variables.

We also know that the Λ is diagonal and its main diagonal consist of r 1’s and k − r

0’s, where r = rank(A). You can then easily see from matrix multiplication that

x′Q
σ

ΛQ′x
σ

= z1
2 + z2

2 + . . . + zr
2, where the zi’s are IID N(0, 1). Therefore x′Ax

σ2 ∼ χr
2.

36



2. The above result generalizes further: suppose k × 1 x ∼ N(0, V ), and k × k symmet-

ric A is s.t. AV or V A is idempotent. Then x′Ax ∼ χr
2, where r = rank(AV )

or rank(V A), respectively. We will prove it for the case of idempotent AV and

the proof for idempotent V A is essentially the same. We know that x ∼ V 1/2z,

where z ∼ N(0, Ik×k), and we know that V 1/2 = (V 1/2)′, so we have: x′Ax =

z′(V 1/2)′AV 1/2z = z′V 1/2AV 1/2z. Consider B = V 1/2AV 1/2. B is symmetric, and

B2 = V 1/2AV 1/2V 1/2AV 1/2 = V 1/2AV AV V −1/2 = V 1/2AV V −1/2 = V 1/2AV 1/2 = B,

so B is also idempotent. Then from the previous result (with σ = 1), we have

z′Bz ∼ χr
2, and therefore x′Ax ∼ χr

2, where r = rank(B) = rank(V 1/2AV 1/2). It is

a good exersise now to show that rank(B) = rank(AV ) (hint: consider the nullspaces,

and invertible transformation v = V 1/2w).

3. Let U = x′Ax and V = x′Bx. Then the two quadratic forms are independent (in the

probabilistic sense of the word) if AV B = 0. We will not prove this result, but we will

use it.

Now, let’s go back to our linear system from the first lecture. Recall that we had a model

Y = Xβ+ε, where Y is n×1 vector of observations, X is n×p matrix of explanatory variables

(with linearly independent columns), β is p × 1 vector of coefficients that we’re interested

in estimating, and ε is n × 1 vector of error terms with E(ε) = 0. Recall that we estimate

β̂ = (X ′X)−1X ′Y , and we denote fitted values Ŷ = Xβ̂ = PY , where P = X(X ′X)−1X ′

is the projection matrix onto columns of X, and e = Y − Ŷ = (I − P )Y is the vector of
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residuals. Recall also that X ′e = 0. Suppose now that ε ∼ N(0, σ2I), i.e. the errors are IID

N(0, σ2) random variables. Then we can derive some very useful distributional results:

1. Ŷ ∼ N(Xβ, σ2P ). Proof: Clearly, Y ∼ N(Xβ, σ2I), and Ŷ = PY =⇒ Ŷ ∼

N(PXβ, Pσ2IP ′) = N(X(X ′X)−1X ′Xβ, σ2PP ′) = N(Xβ, σ2P ).

2. e ∼ N(0, σ2(I − P )). Proof is analgous and is left as an exersise.

3. Ŷ and e are independent (in probabilistic sense of the word). Proof: cov(Ŷ , e) =

cov(PY, (I −P )Y ) = P (var(Y ))(I −P ) = Pσ2I(I −P ) = σ2P (I −P ) = 0. And since

both vectors were normally distributed, zero correlation implies independence. Notice

that cov above referred to the cross-covariance matrix.

4. ‖e‖2

σ2 ∼ χ2
n−p. Proof: First notice that e = (I − P )Y = (I − P )(Xβ + ε) = (I − P )ε

(why?). Now, ‖e‖2

σ2 = e′e
σ2 = ε′(I−P )′(I−P )ε

σ2 = ε′(I−P )ε
σ2 . Since (I − P ) is symmetric and

idempotent, and ε ∼ N(0, σ2), by one of the above results we have ε′(I−P )ε
σ2 ∼ χr

2,

where r = rank(I − P ). But we know (why?) that rank(I − P ) = tr(I − P ) = tr(I −

X(X ′X)−1X ′) = tr(I) − tr(X(X ′X)−1X ′) = n − tr(X ′X(X ′X)−1) = n − tr(Ip×p) =

n − p. So we have ‖e‖2

σ2 ∼ χ2
n−p, and in particular E(‖e‖

2

n−p
) = σ2.

Before we introduce the F-test, we are going to establish one fact about partitioned

matrices. Suppose we partition X = [X1X2]. Then [X1X2] = X(X ′X)−1X ′[X1, X2] =⇒

X1 = X(X ′X)−1X ′X1 and X2 = X(X ′X)X ′X2 (by straightforward matrix multiplicaiton)

or PX1 = X1 and PX2 = X2. Taking transposes we also obtain X ′
1 = X ′

1X(X ′X)−1X ′
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and X ′
2 = X ′

2X(X ′X)−1X ′. Now suppose we want to test a theory that the last p2 coeffi-

cients of β are actually zero (note that if we’re interested in coefficients scattered throught

β, we can just re-arrange the columns of X). In other words, splitting our system into

Y = X1β1 + X2β2 + ε, with n× p1 X1 and n× p2 X2 (p1 + p2 = p), we want to see if β2 = 0.

We consider the test statistic
‖Ŷf‖2−‖Ŷr‖2

σ2 =
Y ′(X(X′X)−1X′−X1(X′

1
X1)−1X′

1
)Y

σ2 , where Ŷf is the

vector of fitted values when we regress with respect to all columns of X (full system), and Ŷr is

the vector of fited values when we regress with respect to only first p1 columns of X (restricted

system). Under null hypothesis (β2 = 0), we have Y = X1β1 + ε, and expanding the numera-

tor of the expression above, we get Y ′(X(X ′X)−1X ′−X1(X
′
1X1)

−1X ′
1)Y = ε′(X(X ′X)−1X ′−

X1(X
′
1X1)

−1X ′
1)ε + β′

1X
′
1(X(X ′X)−1X ′ − X1(X

′
1X1)

−1X ′
1)X1β1. We recognize the second

summand as (β ′
1X

′
1X(X ′X)−1X ′ − β′

1X
′
1X1(X

′
1X1)

−1X ′
1)X1β1 = (β′

1X
′
1 − β′

1X
′
1)X1β1 = 0.

So, letting A = (X(X ′X)−1X ′ − X1(X
′
1X1)

−1X ′
1), under null hypothesis our test statistic

is ε′Aε
σ2 . You should prove for yourself that A is symmetric and idempotent of rank p2, and

therefore ε′Aε
σ2 ∼ χ2

p2 (use trace to determine rank of A). That doesn’t help us all that much

yet since we don’t know the value of σ2.

We have already established above that
‖ef‖2

σ2 ∼ χ2
n−p, where ‖ef‖2 = ε′(I−P )ε. We proceed

to show now that the two quadratic forms ε′(I − P )ε and ε′Aε are independent, by showing

that (I − P )σ2IA = σ2(I − P )A = 0. The proof is left as an exersise for you. We will now

denote
‖ef‖2

n−p
by MSRes, and we conclude that ε′Aε

p2σ2 /
ε′(I−P )ε
(n−p)σ2 =

‖Ŷf‖2−‖Ŷr‖2

p2MSRes
∼ Fp2,n−p. We can
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now test our null hypothesis β2 = 0, using this statistic, and we would reject for large values

of F .

6.3 SVD and Pseudo-inverse

Theorem: Every m × n matrix A can be written as A = Q1ΣQ′
2, where Q1 is m × m

orthogonal, Σ is m × n pseudo-diagonal (meaning that that the first r diagonal entries σii

are non-zero and the rest of the matrix entries are zero, where r = rank(A)), and Q2 is n×n

orthogonal. Moreover, the first r columns of Q1 form an orthonormal basis for col(A), the

last m − r columns of Q1 form an orthonormal basis for N(A′), the first r columns of Q2

form an orthonormal basis for col(A′), last n − r columns of Q2 form an orthonormal basis

for N(A), and the non-zero entries of Σ are the square roots of non-zero eigenvalues of both

AA′ and A′A. (It is a good exersise at this point for you to prove that AA′ and A′A do in

fact have same eigenvalues. What is the relationship between eigenvectors?). This is know

as Singular Value Decomposition or SVD.

Proof : A′A is n×n symmetric and therefore has a set of n real orthonormal eigenvectors.

Since rank(A′A) = rank(A) = r, we can see that A′A has r non-zero (possibly-repeated)

eigenvalues (why?). Arrange the eigenvectors x1, x2, . . . , xn is such a way that the first

x1, x2, . . . , xr correspond to non-zero λ1, λ2, . . . , λr and put x1, x2, . . . , xn as columns of Q2.

You should easily verify for yourself that xr+1, xr+2, . . . , xn form a basis for N(A) and there-
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fore x1, x2, . . . , xr form a basis for row space of A. Now set σii =
√

λi for 1 ≤ i ≤ r, and

let the rest of the entries of m × n Σ be 0. Finally, for 1 ≤ i ≤ r, let qi = Axi

σii
. You

should prove for yourself that qi’s are orthonormal (q′iqj = 0 if i 6= j, and q′iqi = 1). By

Gram-Schmidt, we can extend the set q1, q2, . . . , qr to a complete orthonormal basis for Rm,

q1, q2, . . . , qr, qr+1, . . . , qn. You should verify for yourself that q1, q2, . . . , qr form orthonormal

basis for column space of A and that therefore qr+1, qr+2, . . . , qn form an orthonormal basis

for left nullspace of A. We now verify that A = Q1ΣQ′
2 by checking that Q′

1AQ2 = Σ.

Consider ij-th entry of Q′
1AQ2. It is equal to q′iAxj. For j > r, Axj = 0 (why?), and for

j ≤ r the expresison becomes q′iσjjqj = σjjq
′
iqj = 0(if i 6= j) or 1 (if i = j). And therefore

Q′
1AQ2 = Σ, as claimed.

One important application of this decomposition is in estimating β in the system we had

before when the columns of X are linearly dependent. Then X ′X is not invertible, and more

than one value of β̂ will result in X ′(Y − Xβ̂) = 0. By convention, in cases like this, we

choose β̂ that has the smallest length. For example, if both

















1

1

1

















and

















1

1

0

















satisfy the

normal equations, then we’ll choose the latter and not the former. This optimal value of β̂

is given by β̂ = X+Y , where X+ is a p × n matrix defined as follows: suppose X has rank

r < p and it has S.V.D. Q1ΣQ′
2. Then X+ = Q2Σ

+Q′
1, where Σ+ is p × n matrix s.t. for

1 ≤ i ≤ r we let σ+
ii = 1/σii and σ+

ij = 0 otherwise. We will not prove this fact, but the
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proof can be found (among other places) in appendix 1 of Strang’s book.
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