Probability Lecture III (August, 2006)

1 Some Properties of Random Vectors and Matrices

We generalize univariate notions in this section.

Definition 1 Let U = ||U;j||kxi, a matriz of random variables. Suppose E|U;;| < oo for all i,j.
Define the expectation of U by
E(U) = (EUs))kxt-

The following are some properties of random vectors:

Let U, respectively V, denote a random k, respectively [, vector.

1. If A, xk, Bimnx; are nonrandom and FU, EV are defined, then

E(AU + BV) = AE(U) + BE(V).

Definition 2 For a random vector U, suppose EU? < oo for i = 1,---  k or equivalently
E(|U|?) < oo, where || denotes Euclidean distance. Define the variance of U, often called the
variance-covariance matrix, by

Var(U) = E(U — E(U))(U — E(U))T
= (COV(Uiv Uj))kxk
a symmetric matrix.

2. If A is m x k as before,
Var(AU) = A Var(U)A”.

Note that Var(U) is k x k, Var(AU) is m x m.
3. Let cix1 denote a constant vector. Then
Var(U + c) = Var(U).
Var(c) = (0),.. -
4. The variance of any random vector is nonnegative definite symmetric matriz.
To see this, note that if ajy; is constant we can apply Var(AU) = A Var(U)A” to obtain

Var(a’U) = Var(Z?zlajUj)
=a’Var(U)a = %, ja,a;Cov(U;, Uj).

Because the variance of any random variable is nonnegative and a is arbitrary, we conclude
from the above equalities that Var(U) is a nonnegative definite symmetric matrix.

Definition 3 Define the moment generating function (m.g.f.) of Upx1 for t € R* by
M(t) = My(t) = E(etTU) = E(ezletjUj)_

5. If Ugx1, Vix1 are independent then

My yv(t) = Mu(t)Mvy(t).



2 The Bivariate Normal Distribution

The family of k-variate normal distributions arises on theoretical grounds when we consider the
limiting behavior of sums of independent k-vectors of random variables. In this section we focus on
the case k = 2 where all properties can be derived relative easily.

A planar vector (X,Y) has a bivariate normal distribution if, and only if, there exist constants
aij, 1 <i4,5 <2, p1, pu2, and independent standard normal random variables Z;, Z> such that

X =p1+an2i + a2z
Y = ps + a1 21 + axnZs.

In matrix notation, if A = (a;;),p = (1, p2)7, X = (X, V)T, Z = (Z1,22)7, the definition is
equivalent to
X =AZ+p. (1)

Two important properties follow from the definition.

Proposition 4 The marginal distributions of the components of a bivariate normal random vector
are (univariate) normal or degenerate (concentrate on one point).

Note that the converse of the proposition is not true (See problem B.4.10 in Bickel and Doksum
[2001]). Also, note that
E(X) = K1 + auE(Zl) + algE(ZQ) = U1, E(Y) = U2

and define
o1 =vVar X, oo =vVVarY.

Then X has N(uy,0%) and Y a N (uz,02) distribution.

Proposition 5 If we apply an affine transformation g(x) = Cz + d to a vector X, which has a
bivariate normal distribution, then g(X) also has such a distribution.

This is clear because

CX+d=C(AZ+pu)+d=(CA)Z+ (Cp+d). (2)

We define the wvariance-covariance matriz of (X,Y) (or of the distribution of (X,Y)) as the
matrix of central second moments

2
z=< 71 ponT ) (3)

pPoO102 g5

where Cov(X. Y
p=Cor(X,Y) = M.

0102

This symmetric matrix is in many ways the right generalization of the variance to two dimensions.

Theorem 6 Suppose that o109 # 0 and |p| < 1. Then the density of X is
) = e (g x = )T E - ) 0
=———exp|—=(x— - .
P arvdots D\ 20 :

Remark 7 From (3) we see that ¥ is nonsigular iff o102 # 0 and |p| < 1. Bivariate normal distri-
bution with o109 # 0 and |p| < 1 are referred to as nondegenerate, whereas others are degenerate.



Remark 8 When p = 0, px(x) becomes the joint density of two independent normal variables.
Thus, in the bivariate normal case, correlation zero is equivalent to independence.

Exercise 9 Given nonnegative constants o1,09, a number p such that |p| < 1 and numbers p1, po,
construct a random vector (X,Y)T, where

X=w+012,, Y = py +02(pZ1 + 1 - p?Z3)

Check that (X,Y)7 has a bivariate normal distribution with vector of means (p1, p2)” and variance-
covariance matrix X as given in (3).

3 Convergence in Probability v.s. in Distribution

3.0.1 Chebyshev‘s inequality

If X is any random variable and a is a constant, then

BE(X?)

P(X|2 a) < =5

3.1 Converagence in Probability

Definition 10 If a sequence of random variables, {Z,}, is such that P(|Z, — a| > €) approaches
zero as n approaches infinity, for any € > 0 and where « is some scalar, then Z,, is said to converge
in probability to «.

Definition 11 A sequence of random vectors Zy, = (Zn1, Zna, ...y Zna)® converages in probability to
Z E(Zh 227 ceey Zd)T Zﬁ
Z,, — Z| 250

or equivalently Z,; 7, Z; for 1 <j <d.

3.1.1 A Law of Large Numbers

Theorem 12 Example 13 Let X1, Xo, -+, X;, -+ be a sequence of independent random variables

with BE(X;) = p and Var(X;) = 0%, Let X,, = %Z?:1 X;. Then, for any e > 0,
P(| X, —p| >€) >0 asn— oo

Proof. We first find F(X,,) and Var(X,):
E(X,) =~ B(X)=u

Since the X; are independent,

> 1< o?
Var(X,) = - ZVar(Xi) =
i=1

The desired result now follows immediately from Chebyshev‘s inequality, which states that

Var(X o?
<¥:—2HO, as n — 0o
€ ne

P(| X, — p| >¢)



3.2 Convergence in Distribution

Definition 14 Let Xy, X5, -+ be a sequence of random variables with cumulative distribution func-
tions Fy,Fy,---, and let X be a random variable with distribution function F. We say that X,
converges in distribution to X if

lim F,(z) = F(x)

n—oo

at every point at which F is continuous.

Definition 15 A sequence {Z,} of random vvectors converges in law (in distribution) to Z, written

h(Zn) > h(Z)

for all functions h : R* — R, h continuous.

3.2.1 Central Limit Theorem

Theorem 16 The Multivariate Central Limit Theorem. Let X{,Xo, - ,X,, be independent
and identically distributed random k vectors with E|X1]?> < co. Let E(X1) = p, Var(Xy) =X, and
let S,, = X" ,X;. Then, for every continuous functiong: g : R¥ — R,

g (Sn_\/ﬁn“> £ g(2)

where Z ~ Ny (0,%).

3.2.2 The Op,= p, and op Notation

The following asymptotic order in probability notation is useful.

U, =op(1) if U, 50
U, =0p(1) iff Ve > 0, IM < oo such that Vn P[|U,| > M] <e

o [Un|
U, = V,,) iff = 1
OP( ) 1 |Vn| OP( )
U, = 0p(V,) iff ‘S”: = 0p(1)

U, =xpV,iff U, =0p(V,) and V,, = Op(U,,).

Note that
Op(1)op(1) = op(1), Op(1) +0p(1) = Op(1),
and U, 5 U = U, = 0p(1).

Example 17 Suppose Z1,Zs,--- ,Z, are iid as Z, with E|Z,|?> < oco. Set u =E|Z1|, then Z,, =
/H—Op(n_%) by the central limit theorem.

Exercise 18 Let X; be the last digit of D?, where D; is a random digit between 0 and 9. For
instance, if D; = 7 then D? =49 and X; =9. Let X,, = (X1 +---+ X,,)/n be the average of a large
number n of such last digits, obtained from independent random digits D1, --- , Dy,.



a) Predict the value of X,, for large n.

b) Find a number € such that for n = 10,000 the chance that your prediction is off by more than
€ is about 1 in 200.

c¢) Find approximately the least value of n such that your prediction of X,, is correct to within
0.01 with probability at least 0.99.

d) Which can be predicted more accurately for large n: the value of X,,, or the value of D,, =
(D1 +---+Dy,)/n?

e) If you just had to predict the first digit of X;o9, what digit should you choose to maximize
your chance of being correct, and what is that chance?
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