
Probability Lecture III (August, 2006)

1 Some Properties of Random Vectors and Matrices

We generalize univariate notions in this section.

Definition 1 Let U = ||Uij ||k×l, a matrix of random variables. Suppose E|Uij | < ∞ for all i, j.
Define the expectation of U by

E(U) = (E(Uij))k×l.

The following are some properties of random vectors:
Let U, respectively V, denote a random k, respectively l, vector.

1. If Am×k,Bm×l are nonrandom and EU, EV are defined, then

E(AU + BV) = AE(U) + BE(V).

Definition 2 For a random vector U, suppose EU2
i < ∞ for i = 1, · · · , k or equivalently

E(|U|2) < ∞, where |·| denotes Euclidean distance. Define the variance of U, often called the
variance-covariance matrix, by

Var(U) = E(U− E(U))(U− E(U))T

= (Cov(Ui, Uj))k×k

a symmetric matrix.

2. If A is m× k as before,
Var(AU) = A Var(U)AT .

Note that Var(U) is k × k, Var(AU) is m×m.

3. Let ck×1 denote a constant vector. Then

Var(U + c) = Var(U).

Var(c) = (0)k×k .

4. The variance of any random vector is nonnegative definite symmetric matrix.
To see this, note that if ak×1 is constant we can apply Var(AU) = A Var(U)AT to obtain

Var(aT U) = Var(Σk
j=1ajUj)

= aT Var(U)a = Σi,jaiajCov(Ui, Uj).

Because the variance of any random variable is nonnegative and a is arbitrary, we conclude
from the above equalities that Var(U) is a nonnegative definite symmetric matrix.

Definition 3 Define the moment generating function (m.g.f.) of Uk×1 for t ∈ Rk by

M(t) = MU(t) = E(etT U) = E(eΣk
j=1tjUj ).

5. If Uk×1,Vk×1 are independent then

MU+V(t) = MU(t)MV(t).
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2 The Bivariate Normal Distribution

The family of k-variate normal distributions arises on theoretical grounds when we consider the
limiting behavior of sums of independent k-vectors of random variables. In this section we focus on
the case k = 2 where all properties can be derived relative easily.

A planar vector (X, Y ) has a bivariate normal distribution if, and only if, there exist constants
aij , 1 ≤ i, j ≤ 2, µ1, µ2, and independent standard normal random variables Z1, Z2 such that

X = µ1 + a11Z1 + a12Z2

Y = µ2 + a21Z1 + a22Z2.

In matrix notation, if A = (aij), µ = (µ1, µ2)T ,X = (X, Y )T ,Z = (Z1, Z2)T , the definition is
equivalent to

X = AZ + µ. (1)

Two important properties follow from the definition.

Proposition 4 The marginal distributions of the components of a bivariate normal random vector
are (univariate) normal or degenerate (concentrate on one point).

Note that the converse of the proposition is not true (See problem B.4.10 in Bickel and Doksum
[2001]). Also, note that

E(X) = µ1 + a11E(Z1) + a12E(Z2) = µ1, E(Y ) = µ2

and define
σ1 =

√
Var X, σ2 =

√
Var Y .

Then X has N (µ1, σ
2
1) and Y a N (µ2, σ

2
2) distribution.

Proposition 5 If we apply an affine transformation g(x) = Cx + d to a vector X, which has a
bivariate normal distribution, then g(X) also has such a distribution.

This is clear because

CX + d = C(AZ + µ) + d = (CA)Z + (Cµ + d). (2)

We define the variance-covariance matrix of (X, Y ) (or of the distribution of (X, Y )) as the
matrix of central second moments

Σ =
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
, (3)

where

ρ = Cor(X,Y ) =
Cov(X, Y )

σ1σ2
.

This symmetric matrix is in many ways the right generalization of the variance to two dimensions.

Theorem 6 Suppose that σ1σ2 6= 0 and |ρ| < 1. Then the density of X is

pX(x) =
1

2π
√

detΣ
exp

(
−1

2
(x− µ)T Σ−1(x− µ)

)
. (4)

Remark 7 From (3) we see that Σ is nonsigular iff σ1σ2 6= 0 and |ρ| < 1. Bivariate normal distri-
bution with σ1σ2 6= 0 and |ρ| < 1 are referred to as nondegenerate, whereas others are degenerate.
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Remark 8 When ρ = 0, pX(x) becomes the joint density of two independent normal variables.
Thus, in the bivariate normal case, correlation zero is equivalent to independence.

Exercise 9 Given nonnegative constants σ1, σ2, a number ρ such that |ρ| < 1 and numbers µ1, µ2,
construct a random vector (X, Y )T , where

X = µ1 + σ1Z1, Y = µ2 + σ2(ρZ1 +
√

1− ρ2Z2)

Check that (X,Y )T has a bivariate normal distribution with vector of means (µ1, µ2)T and variance-
covariance matrix Σ as given in (3).

3 Convergence in Probability v.s. in Distribution

3.0.1 Chebyshev‘s inequality

If X is any random variable and a is a constant, then

P (|X| ≥ a) ≤ E(X2)
a2

.

3.1 Converagence in Probability

Definition 10 If a sequence of random variables, {Zn}, is such that P (|Zn − α| > ε) approaches
zero as n approaches infinity, for any ε > 0 and where α is some scalar, then Zn is said to converge
in probability to α.

Definition 11 A sequence of random vectors Zn ≡ (Zn1, Zn2, ..., Znd)T converages in probability to
Z ≡(Z1, Z2, ..., Zd)T iff

|Zn − Z| P−→ 0

or equivalently Znj
P−→ Zj for 1 ≤ j ≤ d.

3.1.1 A Law of Large Numbers

Theorem 12 Example 13 Let X1, X2, · · · , Xi, · · · be a sequence of independent random variables
with E(Xi) = µ and V ar(Xi) = σ2. Let X̄n = 1

n

∑n
i=1 Xi. Then, for any ε > 0,

P (
∣∣X̄n − µ

∣∣ > ε) → 0 as n →∞
Proof. We first find E(X̄n) and V ar(X̄n):

E(X̄n) =
1
n

n∑

i=1

E(Xi) = µ

Since the Xi are independent,

V ar(X̄n) =
1
n2

n∑

i=1

V ar(Xi) =
σ2

n

The desired result now follows immediately from Chebyshev‘s inequality, which states that

P (
∣∣X̄n − µ

∣∣ > ε) ≤ V ar(X̄n)
ε2

=
σ2

nε2
→ 0, as n →∞
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3.2 Convergence in Distribution

Definition 14 Let X1, X2, · · · be a sequence of random variables with cumulative distribution func-
tions F1, F2, · · · , and let X be a random variable with distribution function F . We say that Xn

converges in distribution to X if
lim

n→∞
Fn(x) = F (x)

at every point at which F is continuous.

Definition 15 A sequence {Zn} of random vvectors converges in law (in distribution) to Z, written
Zn −→ Z, iff

h(Zn) L−→ h(Z)

for all functions h : Rd −→ R, h continuous.

3.2.1 Central Limit Theorem

Theorem 16 The Multivariate Central Limit Theorem. Let X1,X2, · · · ,Xn be independent
and identically distributed random k vectors with E|X1|2 < ∞. Let E(X1) = µ, V ar(X1) = Σ, and
let Sn = Σn

i=1Xi. Then, for every continuous functiong: g : Rk → R,

g

(
Sn − nµ√

n

)
L→ g(Z)

where Z ∼ Nk(0,Σ).

3.2.2 The OP ,³ p, and oP Notation

The following asymptotic order in probability notation is useful.

Un = oP (1) iff Un
P→ 0

Un = OP (1) iff ∀ε > 0, ∃M < ∞ such that ∀n P [|Un| ≥ M ] ≤ ε

Un = oP (Vn) iff
|Un|
|Vn| = oP (1)

Un = OP (Vn) iff
|Un|
|Vn| = OP (1)

Un ³ p Vn iff Un = OP (Vn) and Vn = OP (Un).

Note that
OP (1)oP (1) = oP (1), OP (1) + oP (1) = OP (1),

and Un
L→ U =⇒ Un = OP (1).

Example 17 Suppose Z1,Z2, · · · ,Zn are iid as Z1 with E|Z1|2 < ∞. Set µ =E|Z1|, then Zn =
µ+Op(n−

1
2 ) by the central limit theorem.

Exercise 18 Let Xi be the last digit of D2
i , where Di is a random digit between 0 and 9. For

instance, if Di = 7 then D2
i = 49 and Xi = 9. Let X̄n = (X1 + · · ·+Xn)/n be the average of a large

number n of such last digits, obtained from independent random digits D1, · · · , Dn.
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a) Predict the value of X̄n for large n.
b) Find a number ε such that for n = 10, 000 the chance that your prediction is off by more than

ε is about 1 in 200.
c) Find approximately the least value of n such that your prediction of X̄n is correct to within

0.01 with probability at least 0.99.
d) Which can be predicted more accurately for large n: the value of X̄n, or the value of D̄n =

(D1 + · · ·+ Dn)/n?
e) If you just had to predict the first digit of X̄100, what digit should you choose to maximize

your chance of being correct, and what is that chance?
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