
Probability Lecture I (August, 2006)

1 Probability

Flip a coin once. Assuming the coin we use is a fair coin, the probability of getting a head (H) and
a tail (T) on a given toss should be equal (we say H and T are equally likely outcomes). In short,

P ({H}) = P ({T}) (1)

where P is the probability function assigning equal probability to heads and tails.

Let Ω = {H, T} .

Definition 1 The set, Ω, of all possible outcomes of a particular experiment is called the sample
space for the experiment.

Definition 2 A probability function is a function P from subsets of Ω to the real numbers that
satisfies the following axioms:

1. P (A) ≥ 0 for any event A;

2. If A1, A2, ... are pairwise disjoint, then P (∪∞i=1Ai) =
∑∞

i=1 P (Ai);

3. P (Ω) = 1 where Ω is the sample space.

It is an immediate result from axiom 2, 3 and equation (1) that P ({H}) = P ({T}) = 1
2 .

When Ω is a countable set, i.e., it can be written as Ω = {ω1, ω2,...}, and every subset of Ω is
assigned a probability, then, by axiom 2, for any event A,

P (A) =
∑

ωi∈A

P ({ωi}). (2)

The coin-toss example above gives a special case in which Ω is finite, say of size N, and all
elements in Ω are equally likely. Then, P ({ωi}) = 1

N , i = 1, 2, ..., N,for any element ωi ∈ Ω, and

P (A) =
Number of elements in A

N
, where N is the total number of elements in Ω.

The following properties of probability functions are consequences of the axioms above:

1. P (Ac) = 1− P (A).

2. P (∅) = 0.

3. 0 ≤ P (A) ≤ 1.

4. If A ⊂ B, then P (A) ≤ P (B).

5. P (A ∪B) = P (A) + P (B)− P (A ∩B).

6. P (∪∞i=1Ai) ≤
∑∞

i=1 P (Ai).
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Remark 3 Property 5 gives a useful inequality for the probability of an intersection. Since by axiom
1 we have P (A ∪ B) ≤ 1, it follows from property 5 that P (A ∩ B) ≥ P (A) + P (B) − 1 which is
a special case of the Bonferroni’s Inequality and is useful for getting a bound for the intersection
probability when probabilities for the individual events are known and large . The general version of
Bonferroni’s Inequality is

(∩k
i=1Ai

) ≥ 1−
k∑

i=1

P (Ac
i ). (3)

One can check that property 5 is consistent with (3).

Example 4 Now, consider another experiment: tossing a fair coin 3 times. The sample space
corresponding to this experiment is

Ω = {HHH, HHT,HTH, THH, TTH, THT, HTT, TTT}

What is the probability of observing HHH ?

2 Conditional Probability

Suppose we observe H for the first toss, what is the probability of getting H again on the second
toss? We calculate regular probabilities (e.g., P ({T}) = 1

2 ) with respect to the sample space. But
in the case we have some information about the outcomes (e.g., in the experiment in example 4, we
might have observed that the outcome of the first toss is H), we would like to update the sample
space to the given event and calculate the conditional probabilities with respect to the given event.

Definition 5 If A and B are events in Ω and P (B) > 0 , then the conditional probability of A given
B, written P (A|B) is defined to be

P (A|B) =
P (A ∩B)

P (B)
(4)

Note that P (B|B) = 1 , and P (A|B) = 0 if A and B are disjoint.

A little algebra manipulation on (4) gives a useful formula for calculating intersection probability

P (A ∩B) = P (A|B)P (B) (5)

2.1 Bayes Rule

Suppose A1, A2, ...An are pairwise disjoint events of positive probability and their union is Ω. Since
B = ∪n

j=1(Ai ∩B),

P (B) = P (∪n
j=1{Ai ∩B})

=
n∑

j=1

P (Ai ∩B) by axiom 2 in definition 2

=
n∑

j=1

P (Aj)P (B|Aj) by (5). (6)
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If P (B) is positive, then

P (Aj |B) =
P (Aj ∩B)

P (B)

=
P (B|Aj)P (Aj)∑n

j=1 P (Aj)P (B|Aj)
by (5) and (6).

This is the Bayes rule.

Exercise 6 There are two boxes. Box I has 2 red balls and 3 blue balls, and box II has 4 red balls
and 1 blue ball. Suppose I randomly select a box and take a ball at random from that box. If the ball
I drew was red, what would be the probability that the ball was from box B?

3 Independent Events

Definition 7 Two events are statistically independent if the occurrence of one event has no effect
on the probability of another; i.e.,

P (A|B) = P (A) (7)

By (5), this means

P (A ∩B) = P (A)P (B) (8)

which we will use as the definition of statistical independence.
The advantage of (8) is that it treats the events symmetrically and will be easier to generalize

to more than two events. Events A1, A2, ...An are mutually independent, if for any subcollection
Ai1 , Ai2 , ...Aik

, we have

P (∩k
j=1Aij ) = Πk

j=1P (Aij ) (9)

Note: P (∩n
j=1Aj) = Πn

j=1P (Aj) is not a sufficient condition for A1, A2, ...An to be mutually
independent. See Appendix for explanations and counter examples.

Since it is apparent that what we get on one toss should not have effect on the probability of the
outcomes on any other tosses, the outcome on each toss should be independent of each other. Thus,

P ({HHH}) = P (H on 1st toss )P (H on 2nd toss and H on 3rd toss|H on 1st toss)
= P (H on 1st toss )P (H on 2nd toss and H on 3rd toss)
= P (H on 1st toss )P (H on 2nd toss)P (H on 3rd toss|H on 2nd toss)
= P (H on 1st toss )P (H on 2nd toss)P (H on 3rd toss)

=
1
2
· 1
2
· 1
2

=
1
8

Similarly, we can see that each of the outcomes in the sample space Ω has this probability. ¤
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3.1 Binomial and Multinomial Distribution

Example 8 Consider betting on a series of n independent games, each with winning (success)
probability p, (and losing probability 1 − p). Let X = the number of successes in n trials. X could
be, for example, the number of heads in n tosses of a coin, or the number of times ”6” appears
when rolling a die n times. We say that X has Binomial (n, p) distribution. Find P (X = k) for
k = 0, 1, 2, ..., n.

Since the trials are independent, the probability of getting an outcome with successes for the
first k trials and failures for the last n− k trials is

pk(1− p)n−k, k = 0, 1, 2, ..., n.

But there are
(

n
k

)
= n!

k!(n−k)! ways that an outcome with k success and n − k failures can

happen; (think about how many ways we can arrange an array of k ”S” and (n − k) ”F”; see
discussion in class.)

Thus,

P (X = k) =
(

n
k

)
pk(1− p)n−k, k = 0, 1, 2, ..., n.

Exercise 9 A more general case of the Binomial distribution is the multinomial distribution. Sup-
pose instead of only the success and failure outcomes, an experiment could result in one of the q
possible outcomes, ω1, ..., ωq, each with probability p1, ..., pq, respectively. Let Ak1,...,kq be the event
that exactly ki ωi are observed in n trials, i = 1, ..., q. Derive a formula for P (Ak1,...,kq ).

3.2 Hypergeometric Distribution

The binomial distribution could be modeled by putting tickets labeled with ”S” and ”F”, each with
proportion p and 1 − p, into a box and drawing n tickets with replacement from the box. Since
the tickets are taken with replacement, the draws are independent of each other, What about if the
tickets were drawn without replacement? If n tickets are drawn without replacement from a box of
N ≥ n tickets labeled either ”S”, or ”F”, with the proportion of the tickets with ”S” to be p and
that with ”F” to be 1−p, the draws are dependent; Let G = the number of ”S” observed in n draws,
then

P (G = k) =
(

n
k

)
(Np)k(N(1− p))n−k

Nn

=

(
Np
k

)(
N(1− p)

n− k

)

(
N
n

) ,

where Nn =
(

N
n

)
n! and max(0, N(1− p)) ≤ k ≤ min(n,Np).

The distribution of G is called hypergeometric (D,N, n) distribution, where D = Np.
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4 Random Variables and Vectors

Some comments on notations:

1. If (a1,b1), ..., (ak, bk) are k open intervals, we shall call the set (a1,b1) × ... × (ak, bk) =
{(x1, ...xk) : ai < xi < bi, 1 ≤ i ≤ k} an open k rectangle.

2. The Borel field in Rk, which we denote by Bk, is defined to be the smallest sigma field having
all open k rectangles as members. Any subset of Rk we might conceivably be interested in
turns out to be a member of Bk. We will write R for R1 and B for B1.

Let X = number of ” H ” for the experiment as described in example 4. Then, X is a function
mapping each outcome in Ω into a number on the real line as depicted in figure 1.

Figure 1: Random Variable X mapping from S to the real line

Definition 10 A random variable X is a mapping from a sample space Ω into the real numbers,
and a random vector X = (X1, ..., Xk)T is k-tuple of random variables.

Let χ = {0, 1, 2, 3} =range of X. The probability function PX associates with X is

PX(X = xi) = P ({ωi ∈ Ω : X(ωi) = xi}) ∀xi ∈ χ. (10)

Note that the function PX is an induced probability function defined in terms of the original
function P . Because of the equivalence in (10), we will simply write PX(X = xi) as P (X = xi).
Also, note that if we know the values returned by the probability function for all x, we know the
probability distribution of X.

Random variables can be categorized into two types: discrete and continuous. While a discrete
variable takes values in a countable set, a continuous variable takes values in an uncountable set.
Our X defined above for the number of ” H ” for the experiment in example 4 is a discrete variable
since it takes values in the countable set χ = {0, 1, 2, 3}.

4.1 Distribution Functions

Definition 11 Another function that associates with a random variable is called cumulative distri-
bution function (cdf) of X, denoted by FX ,

FX(x) = P (X ≤ x)∀x. (11)

For example 4, the cdf of X is
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x FX(x)
(−∞, 0) 0
[0, 1) 1

8

[1, 2) 1
2

[2, 3) 7
8

[3,∞) 1

Table 1: Table for probability distribution function of X

Figure 2: Graph of cdf of X

From figure (2), we see that

FX(x) = P (X ≤ x) =
∑

{k∈χ:k≤x}
P (X = k), (12)

and it is not hard to see that this formula holds in general for any discrete variable. We also write
Fx as F (x) sometimes for simplicity.

The cdf has the following properties:

1. limx→−∞F (x) = 0 and limx→∞F (x) = 1 .

2. F (x) is a nondecreasing function of x.

3. F (x) is right-continuous. That is, for every number x0, limx↓x0F (x) = F (x0) .

These three properties can easily be verified by writing F in terms of the probability function.

4.1.1 Geometric Distribution

Example 12 Consider an experiment that consists of tossing a coin until a head appears. Let p =
probability of a head on any given toss and define a random variable X =number of tosses required
to get a head. Then, for any x = 1, 2, ...,

P (X = x) = (1− p)x−1p, (13)

since we must get x−1 tails followed by a head for the event to occur and all trials are independent.
From (13), we calculate, for any positive integer x,
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P (X ≤ x) =
x∑

i=1

P (X = i)

=
x∑

i=1

(1− p)i−1p, x = 1, 2, ...

Recall that the partial sum of the geometric series is

n∑

k=1

tk−1 =
1− tn

1− t
, t 6= 1.

Applying this formula to our probability, we find that the cdf of the random variable X is

FX(x) = P (X ≤ x)

=
1− (1− p)x

1− (1− p)
p

= 1− (1− p)x, x = 1, 2, ....

From this expression of the cdf for X, we can check that FX satisfies the properties for cdf above.
FX(x) is the cdf of a distribution called the geometric distribution. ¤

4.2 Probability Density(Mass) functions

Definition 13 The probability mass function (pmf) fX(x) of a discrete random variable X is the
function given by

fX(x) = P (X = x) ∀x. (14)

For our random variable X defined for example 4, the pmf is

x P (X = x)
0 1

8

1 3
8

2 3
8

3 1
8

Table 2: Table for probability mass function of X

An analogy to the probability mass function of a discrete variable is the probability density
function (pdf) of a continuous random variable.

Definition 14 The probability density function (pdf) fX(x) of a continuous random variable X is
the function that satisfies

FX(x) =
∫ x

−∞
fX(t)dt ∀x. (15)

We can think of the cdf as ”adding up” the ”point probability” fX(x) to obtain interval proba-
bilities.
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Remark 15 Recall that for a discrete variable X, FX(x) = P (X ≤ x) =
∑
{k∈χ:k≤x} P (X = k).

For a continuous variable X, as the usual, sums becomes integrals. If X has density fX(x), then
FX(x) is the area from the left up to x under the curve of the density fX(x).

Similarly, discrete difference become derivatives,

dFX(x) = FX(x + dx)− FX(x) = P (X ∈ dx) = f(x)dx

Thus,

fX(x) =
dFX(x)

dx
= F

′
X(x).

Therefore, if the cdf FX(x) is everywhere continuous, and differentiable at all except at a finite
number of points, then the corresponding distribution has density fX(x) = F

′
X(x).

In summery, we have seen the cdf and pdf (pmf) for continuous (discrete) variables.

Discrete variable Continuous variable
pmf/pdf fX(x) = P (X = x) ∀x. fX(x) that satisfies FX(x) =

∫ x

−∞ fX(t)dt ∀x
cdf FX(x) = P (X ≤ x) =

∑
{k∈S:k≤x} P (X = k) ∀x FX(x) = P (X ≤ x) =

∫ x

−∞ fX(t)dt ∀x

Definition 16 Random variables X and Y are identically distributed if they have the same range
and for every set A in the range

P (X ∈ A) = P (Y ∈ A).

The next example shows that two random variables that are identically distributed are not
necessarily equal.

Example 17 Consider the experiment of tossing a fair coin three times as in example 4. Define
the random variables X and Y by

X = number of heads observed
Y = number of tails observed

We can verify that X and Y have the same distribution; it is sufficient to check that for each
k = 0, 1, 2, 3, we have P (X = k) = P (Y = k). However, Y = 3−X and for no sample points do we
have X(k) = Y (k). ¤

In the example above, Y is a function of X since Y = g(X). In general, let g be any function
from Rk to Rm, k,m ≥ 1, such that g−1(B) = {y ∈ Rk : g(y) ∈ B} ∈ Bk for every B ∈ Bm. Then,
the random transformation Y = g(X) is defined by

Y = g(X)(ω) = g(X(ω)).

Some examples of such a transformation are g =
(

g1

g2

)
, where g1(X) = 1

k

∑k
i=1 Xi = X, and

g2(X) = 1
k

∑k
i=1(Xi −X)2, and g(X) =

(
max{Xi}
min{Xi}

)

The probability distribution of g(X) is completely determined by that of X through

P [g(X) ∈ B] = P [X ∈ g−1(B)].
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If X is discrete with mass function pX , then g(X) is discrete and has mass function

pg(X)(t) =
∑

{X:g(X)=t}
pX(X).

Remark 18 If two random vectors X and Y are independent, so are g(X) and h(Y).

Theorem 19 Suppose that X ∈ R is continuous with density pX and g is real-valued and one-to-one
on an open set S such that P [X ∈ S] = 1. Furthermore, assume that the derivative g′ of g exists
and does not vanish on S. Then g(X) is continuous with density given by

pg(X)(t) =
pX(g−1(t))
|g′(g−1(t))|

for t ∈ g(S), and 0 otherwise. This is called the change of variable formula.

Example 20 If g(X) = σX + µ, where σ 6= 0, and X is continuous, then

pg(X)(t) =
1
σ

pX

(
t− µ

σ

)
.

¤

Exercise 21 Suppose X has density fX(x). Find a formula for the density of Y = X2.

5 Expected Values

Definition 22 The expected value or mean of a random variable g(X), denoted by Eg(X) is

Eg(X) =
{ ∑

x∈X g(x)fX(x) =
∑

x∈X g(x)P (X = x) if X is discrete∫∞
−∞ g(x)fX(x)dx if X is continous (16)

provided the integral or sum exists. If E|g(X)| = ∞, we say that Eg(X) does not exist.

Example 23 Roll a fair die once. Let X =the number shown on the die. Then, by the definition
of E(X)
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E(X) = 1P (X = 1) + 2P (X = 2) + ... + 6P (X = 6) = 1× 1
6

+ 2× 1
6

+ ... + 6× 1
6

= 3.5

E(X) gives the expected average of the rolls when rolling the fair die a large number of time. ¤

Example 24 Roll a fair die repeatedly. You and I are betting on the number shown on each roll.
If the number is 4 or less, you win $1; otherwise, you pay me $2.5. Is this a fair game? By ”fair”,
we mean that if we play this game repeatedly for a long time, we can expect that our winnings turn
out to be even.

Let Y =your winning. Then

E(Y ) = 1P (Y = 1) + (−2.5)P (Y = −2.5)
= 1P (die shows 1, 2, 3, or 4)− 2.5P (die shows 5, or 6)

= 1× 4
6
− 2.5× 2

6

= −1
6

¤
This says that if we play this game many times, on average, you will loss about $ 1

6 to me per
bet. Thus, this is not a fair game. On a fair game, the winnings of the players should turn out even
in the long run; i.e., E(Y ) = 0.

Properties There are some properties of the expectation. For random variables X1, X2, ..., and
Xn,

Addition Rule E(
∑n

i=1 Xi) =
∑n

i=1 E(Xi) however dependent X1, X2, ..., Xn are;
Multiplication Rule E(X1X2) = E(X1)E(X2) if X1 and X2 are independent;
Scaling & Shifting E(aX + b) = aEX + b for constants a and b.

5.1 Moments

Definition 25 The kth moment of X is defined to E(Xk) for k ∈ Z+ and X a random variable,
provided E(Xk) exists.

By (16),

E(Xk) =
{ ∑

x∈X xkP (X = x) if X is discrete∫∞
−∞ xkfX(x)dx if X is continous

Definition 26 The kth central moment of X is defined E[(X − EX)k].

Remark 27 The second central moment of X is called the variance of X and will be introduced
next.

6 Variance

Suppose we measure the distance between a random variable X and a constant b by (X − b)2. The
closer b is to X, the smaller this quantity is. We can now determine the value of b that minimizes
E(X − b)2 and this quantity will give us a good predictor of X.

We claim that b = EX is the value that minimizes E(X − b)2. This is because, for any value b
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E[(X − b)2] = E[(X − EX + EX − b)2]

= E[(X − EX)2] + 2E[(X − EX)(EX − b)] + E[(EX − b)2]

= E[(X − EX)2] + 2(EX − b)E(X − EX) + (EX − b)2 since (EX − b) is a constant

= E[(X − EX)2] + (EX − b)2 since E (X − EX ) = EX − EX by the linearity of ”E”

Since (EX − b)2 is non-negative, E[(X − b)2] is minimized when (EX − b)2 = 0; i.e., when
EX = b. ¤

Definition 28 The variance of a random variable X is defined as

Var(X) = E[(X − EX)2] = E(X2)− (EX)2 (17)

which measures the mean squared deviation of X from its expected value EX.
Note that the variance of X is finite if and only if the second moment of X is finite.
The standard deviation of X, denoted SD(X), is

SD(X) =
√

Var(X). (18)

Remark 29 If X is any random variable with finite mean and variance, the standardized version
or Z-score of X is the random variable Z = (X − E(X))/

√
Var(X). It follows that

E(Z) = 0 and Var(Z) = 1.

If X1 and X2 are random variables, the product moment of order (i, j) of X1 and X2 is, by
definition, E(Xi

1X
j
2), i, j ∈ Z+, and the central product moment of order (i, j) of X1 and X2

is E
[
(X1 − E(X1))

i (X2 − E(X2))
j
]
. The central product moment of order (1, 1) is called the

covariance of X1 and X2 and is written as Cov(X1, X2).

Cov(X1, X2) = E(X1X2)− E(X1)E(X2). (19)

If we put X1 = X2 = X, we get back the formula for Var as in (17)

The covariance is defined whenever X1 and X2 have finite variances and in that case

|Cov(X1, X2)| ≤
√

(Var X1) (Var X2). (20)

Correlation of two variables X1 and X2 is defined as

Corr(X1, X2) =
Cov(X1, X2)√

(Var X1) (Var X2)
. (21)

Note that

|Corr(X1, X2)| ≤ 1 always.

If X1 and X2 are independent and integrable,
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Cov(X1, X2) = Corr(X1, X2) = 0 when Var(Xi) > 0, i = 1, 2.

However, it is not true in general that X1 and X2 that satisfy this (i.e. are uncorrelated) need be
independent.

Properties Some properties of the variance. For random variables X1, X2, ..., and Xn,
Addition Rule Var(

∑n
i=1 Xi) =

∑n
i=1 Var(Xi) if X1, X2, ..., and Xn are independent;

Scaling & Shifting Var(aX + b) = a2Var(X) for constants a and b.

Exercise 30 Let X1, X2, ..., Xn be n independent identically distributed (iid) random variables. De-
fine Sn =

∑n
i=1 Xi, and Xn = Sn/n the average. Find E(Sn), E(Xn),Var(Sn), and Var(Xn).

7 Some Named Distributions

7.1 More on Binomial Distribution

Example 31 (Binomial) Consider betting on a series of n independent games, each with winning

(success) probability p. Let Ii be the random variable such that Ii =
{

1; if you win (succeed) on the ith bet
0; otherwise .

Ii is called the indicator of success on trial i. Let X =
∑n

i=1 Ii; then, X is the number of successes
in n trials and X has Binomial (n, p) distribution. Calculate EX and V ar(X) by using the I ′is.

EIi = 1P (Ii = 1) + 0P (Ii = 0) = p

E(I2
i ) = 12P (Ii = 1) + 02P (Ii = 0) = p

which implies that

V ar(Ii) = E(I2
i )− (EIi)2 = p− p2 = p(1− p) (22)
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Thus,

E(X) = E(
n∑

i=1

Ii)

=
n∑

i=1

E(Ii) by the linearity of ”E”

=
n∑

i=1

E(I1) since I1,I2, ...In are identically distributed

=
n∑

i=1

p

= np

and

V ar(X) = V ar(
n∑

i=1

Ii)

=
n∑

i=1

V ar(Ii) since I1,I2, ...In are independent

=
n∑

i=1

V ar(I1) since I1,I2, ...In are indentically distributed

= np(1− p) by (22)

¤

7.2 Poisson Distribution

Exercise 32 (Poisson) The Poisson distribution with parameter µ, denoted Poisson(µ) distribution
is the distribution of probabilities Pµ(k) over {0, 1, 2, ...} defined by

Pµ(k) = e−µµk/k! (k = 0, 1, 2, ...)

show that EY = µ and V ar(Y ) = µ for a random variable Y of Poisson(µ) distribution.

13



7.3 Exponential Distribution

Exercise 33 A random time T has exponential distribution with rate λ, denoted exponential(λ),
where λ is a positive parameter, if T has probability density

f(t) = λe−λt.

Show that P (T > t) = e−λt and E(T ) = SD(T ) = 1
λ .

Remark 34 Memoryless Property of the Exponential Distribution: A positive random variable T
has exponential(λ) distribution for some λ > 0 if and only if T has the memoryless property

P (T > t + s|T > t) = P (T > s); s ≥ 0, t ≥ 0

This means that given survival to time t, the chance of surviving a further time s is the same as
the chance of surviving to time s in the first place.

Binomial(n,p) & geometric(p) v.s. Poisson(λt) & exponential(λ)
A sequence of n independent Bernoulli trials, with probability p of success on each trial, can be

characterized in two ways: the number of successes in n trials has binomial(n, p) distribution, and
the waiting times between each success and the next are independent with geometric(p) distribution.

Let n− > ∞ and p− > 0.with np = λ a constant Then, the number of arrivals N(I) in a fixed
time interval I of length t is Poisson(λt) distributed, and the waiting times between each arrival and
the next are independent with exponential(λ).

Exercise 35 Suppose calls are coming into a telephone exchange at an average rate of 3 per minute,
according to a Poisson arrival process. So, for instance, N(2, 4), the number of calls coming in
between t = 2 and t = 4, has Poisson distribution with mean λ(4 − 2) = 3 × 2 = 6; and W3, the
waiting time between the second and the third calls, has exponential(3) distribution. Calculate:
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a) The probability that no calls arrive between t = 0 and t = 2.
b) The probability that the first call after t = 0 takes more than 2 minutes to arrive.
c) The probability that no calls arrive between t = 0 and t = 2 and at most four calls arrive

between t = 2 and t = 3.
d) The probability that the fourth call arrives within 30 seconds of the third.
e) The probability that the first call after t = 0 takes less than 20 seconds to arrive, and the

waiting time between the first and second calls is more than 3 minutes.
f) The probability that the fifth call takes more than 2 minutes to arrive.

8 Appendix

P (∩n
j=1Aj) = Πn

j=1P (Aj)

is not a sufficient condition for A1, A2, ...An to be mutually independent. To see why, consider
the following example.

Example 36 Toss a coin twice. The table below lists the outcomes in the sample space for the
experiment.
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1st Toss
1 2 3 4 5 6

1 (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
2 (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)

2nd 3 (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
Toss 4 (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)

5 (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
6 (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

Let A1 = {the sum is even} = {(1, 1), (1, 3), (1, 5), (2, 2), (2, 4), (2, 6), (3, 1), (3, 3), (3, 5), (4, 2), (4, 4),
(4, 6), (5, 1), (5, 3), (5, 5), (6, 2), (6, 4), (6, 6), }

A2 = {the sum ≥ 10} = {(4, 6), (5, 5), (6, 4), (5, 6), (6, 5), (6, 6)}
A3 = {the sum is a multiple of 3} = {(1, 2), (2, 1), (1, 5), (2, 4), (3, 3), (4, 2), (5, 1), (3, 6), (4, 5), (5, 4),

(6, 3), (6, 6)}.

Thus,

P (A1) =
1
2
, P (A2) =

1
6
, P (A3) =

1
3
.

and

P (A1 ∩A2 ∩A3) = P{(6, 6)}
=

1
36

=
1
2
× 1

6
× 1

3
= P (A1)P (A2)P (A3).

However,

P (A2 ∩A3) = P{(6, 6)}
=

1
36

6= P (A2)P (A3)

Similarly, one can show that P (A1∩A2) 6= P (A1)P (A2). Thus, the condition P (A1∩A2∩A3) =
P (A1)P (A2)P (A3) is not strong enough to force the pairwise independence between the events.

The next natural proposal for the sufficient condition for the general definition of the indepen-
dence might be pairwise independence of the events, A1, A2, ...An. Unfortunately, this condition is
still not strong enough. (See Casella and Berger [3])
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