## PROBLEM SESSION I

LECTURER: VADIM GORIN TA: EVGENI DIMITROV

## July 12, 2018

The following session elaborates Lecture 2. The focus is on the relationship between Schur symmetric polynomials and uniform lozenge tilings of trapezoidal domains.

## 1. Preliminaries

In this section we gather some basic facts about Schur symmetric polynomials. We refer the reader to [1, Chapter 1] for a more detailed exposition, which goes well beyond what we will need.

A signature of length N is a sequence  $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_N) \in \mathbb{Z}^N$  of integers such that  $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_N$ . We denote by  $\mathbb{Y}_N$  the set of signatures of length N, which satisfy  $\lambda_N \geq 0$  (these are sometimes referred to as Young diagrams or partitions). The weight of  $\lambda$  is given by  $|\lambda| = \lambda_1 + \lambda_2 + \dots + \lambda_N$ . There is a natural ordering on the space of signatures, called the reverse lexicographic order, given by

$$\lambda > \mu \iff \exists k \in \{1, \dots, N\}$$
 such that  $\lambda_i = \mu_i$ , whenever  $i < k$  and  $\lambda_k > \mu_k$ .

Suppose that we have finitely many variables  $x_1, \ldots, x_N$ . Let  $x^{\alpha} = x_1^{\alpha_1} \cdots x_N^{\alpha_N}$  be a monomial and consider its antisymmetrization  $a_{\alpha}$ : that is

$$a_{\alpha} = \sum_{\sigma \in S_N} \operatorname{sign}(\sigma) \sigma(x^{\alpha}) = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) x_{\sigma(1)}^{\alpha_1} \cdots x_{\sigma(N)}^{\alpha_N},$$

where  $S_N$  is the group of permutations of N elements and the action of  $\sigma \in S_N$  on any polynomial is through permutation of the variables. Observe that  $a_{\alpha}$  is skew-symmetric, i.e.  $\sigma(a_{\alpha}) = \operatorname{sign}(\sigma) \cdot a_{\alpha}$ and so  $a_{\alpha} = 0$  unless  $\alpha_1, \ldots, \alpha_N$  are all distinct. We may thus assume that  $\alpha_1 > \alpha_2 > \cdots > \alpha_N \ge 0$ and therefore write  $\alpha = \lambda + \delta$ , where  $\lambda \in \mathbb{Y}_N$  and  $\delta = (N - 1, N - 2, \ldots, 1, 0)$ . We then have

$$a_{\alpha} = a_{\lambda+\delta} = \sum_{\sigma} \operatorname{sign}(\sigma) \cdot \sigma(x^{\lambda+\delta}) = \det \left[ x_i^{\lambda_j + N - j} \right]_{i,j=1}^N$$

Since  $a_{\lambda+\delta}$  is skew-symmetric it vanishes when  $x_i = x_j$  for any  $i \neq j$  and so  $a_{\lambda+\delta}$  is divisible (over  $\mathbb{Z}[x_1, \ldots, x_N]$ ) by  $x_i - x_j$  for  $1 \leq i < j \leq N$  and consequently by their product, which is the Vandermonde determinant

$$\prod_{1 \le i < j \le N} (x_i - x_j) = \det \left[ x_i^{N-j} \right]_{i,j=1}^N = a_\delta.$$

λT

So  $a_{\lambda+\delta}$  is divisible by  $a_{\delta}$  in  $\mathbb{Z}[x_1,\ldots,x_N]$  and their quotient

(1) 
$$s_{\lambda}(x_1, \dots, x_N) := \frac{a_{\lambda+\delta}}{a_{\delta}} = \frac{\det \left[x_i^{\lambda_j + N - j}\right]_{i,j=1}^N}{\prod_{1 \le i < j \le N} (x_i - x_j)}$$

is readily seen to be a symmetric and homogeneous polynomial of degree  $|\lambda|$ .

Definition (1) also makes sense for any  $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_N) \in \mathbb{Z}^N$ , so that the resulting  $s_{\lambda}(x_1, \ldots, x_N)$  is a symmetric and homogeneous *Laurent* polynomial of degree  $|\lambda| = \lambda_1 + \cdots + \lambda_N$ . Indeed, we have the explicit relationship

$$s_{\lambda+r^N}(x_1,\ldots,x_N) = (x_1\cdots x_N)^r \cdot s_\lambda(x_1,\ldots,x_N),$$

where  $\lambda + r^N = (\lambda_1 + r, \cdots, \lambda_N + r)$  and  $r \in \mathbb{Z}$ .

We end this section with several of useful facts about Schur polynomials.

Fact 1. The set  $\{s_{\lambda}(x_1, \ldots, x_N) : \lambda \in \mathbb{Y}_N\}$  forms a  $\mathbb{Z}$ -basis of  $\mathbb{Z}[x_1, \ldots, x_N]^{S_N} :=: \Lambda_N$  (the space of symmetric polynomials with integer coefficients). Another popular basis for  $\Lambda_N$  is formed by the monomial symmetric polynomials

$$m_{\lambda}(x_1,\ldots,x_N) = \sum x^{\alpha}$$

summed over all distinct permutations  $\alpha$  of  $\lambda = (\lambda_1, \ldots, \lambda_N)$ , where again  $\lambda$  ranges over  $\mathbb{Y}_N$ .

Fact 2. The leading (in reverse lexicographic order) monomial in  $s_{\lambda}$  is  $m_{\lambda}$ .

Fact 3. If  $\lambda = (k, 0, ..., 0) = (k)$  then  $s_{(k)}(x_1, ..., x_N) = \sum_{|\lambda|=k} m_{\lambda} =: h_k$  - called the k-th complete symmetric polynomial.

Fact 4. If 
$$\lambda = (\underbrace{1, \dots, 1}_{k}, \underbrace{0, \dots, 0}_{N-k}) = (1^k)$$
 then  $s_{(1^k)}(x_1, \dots, x_N) = \sum_{i_1 < \dots < i_k} x_{i_1} \cdots x_{i_k} = m_{(1^k)} =: e_k$ 

- called the k-th elementary symmetric polynomial.

2. Problems

**Problem 1**. Prove the Weyl dimension formula

(2) 
$$s_{\lambda}(1^{N}) := s_{\lambda}(\underbrace{1, \dots, 1}_{N}) = \prod_{1 \le i < j \le N} \frac{\lambda_{i} - \lambda_{j} + j - i}{j - i}$$

by first computing  $s_{\lambda}(1, q, q^2, \dots, q^{N-1})$  and then letting  $q \to 1$ .

**Problem 2**. Prove the following branching rule for Schur symmetric polynomials

(3) 
$$s_{\lambda}(x_1, \dots, x_N) = \sum_{\mu \leq \lambda} s_{\mu}(x_1, \dots, x_{N-1}) x_N^{|\lambda| - |\mu|},$$

where the sum is over  $\mu = (\mu_1, \ldots, \mu_{N-1})$  such that  $\mu_1 \leq \lambda_1 \leq \mu_2 \leq \lambda_2 \cdots \leq \mu_{N-1} \leq \lambda_N$  - such signatures are said to *interlace*.

**Hint:** Compute  $s_{\lambda}(x_1, \ldots, x_{N-1}, 1)$  directly from (1) and apply properties of determinants to match the right side of (3); then use Fact 1 to finish.

**Problem 3.** We introduce a coordinate system on the hexagonal lattice with basis vectors  $\mathbf{e}_1$  and  $\mathbf{e}_2$  as in Figure 1. Recall from lecture that a trapezoidal domain is one that is encoded by an *N*-tuple of integers  $\ell = (\ell_1 > \ell_2 > \cdots > \ell_N) \in \mathbb{Z}^N$  – an example is given in Figure 1.

A tiling of the domain is a cover by lozenges of three types, given in the right part of Figure 2. Show that the total number of lozenge tilings is given by  $s_{\lambda}(1^N)$ , where  $\ell_i = \lambda_i + N - i$ .

Some ideas: Let the centers of the blue lozenges have coordinates  $(N, \ell_1 + 1/2), \ldots, (N, \ell_N + 1/2)$ . Suppose you place a particle in the center of each lozenge of Type 1 – so their coordinates in our basis are (a, b+1/2) with  $a, b \in \mathbb{Z}$ . Try to argue that there are exactly k particles with first coordinate k in each tiling. If  $(k, y_1^k + 1/2) \ldots, (k, y_k^k + 1/2)$ are the coordinates of particles on k-th column set  $\lambda_i^k = y_i^k - k + i$  and convince yourself that  $\lambda^k \leq \lambda^{k+1}$  (notation from Problem 2). The latter gives a bijection between tilings and interlacing sequences of signatures – now use Problem 2.



FIGURE 1. Example of a trapezoidal domain.



FIGURE 2. Types of lozenges and triangles.

**Problem 4**. Prove the famous Macmahon formula (see https://en.wikipedia.org/wiki/Plane\_partition) that gives the number of tilings of a hexagon of sides A, B, C. Explicitly, show that it equals

$$\prod_{a=1}^{A} \prod_{b=1}^{B} \prod_{c=1}^{C} \frac{a+b+c-1}{a+b+c-2}.$$

Hint: Look at Figure 3.



FIGURE 3. Tiling of hexagon.

**Problem 5.** Take  $N \leq \min(B, C)$  and consider the vertical section of the hexagon by the N-th vertical line from the left. There are precisely N horizontal lozenges on this vertical section. The positions of these lozenges in a uniformly random tiling form a random N-tuple of ordered integers  $\ell_1 > \ell_2 > \cdots > \ell_N$ . Prove that the probability distribution on such N-tuples has the form

(4) 
$$\mathbb{P}(\ell_1, \dots, \ell_N) = \frac{1}{Z} \prod_{1 \le i < j \le N} (\ell_i - \ell_j)^2 \prod_{i=1}^N w(\ell_i),$$

find explicit expressions for Z and w.

**Hint:** When one fixes the horizontal lozenges along a vertical line, the tiling splits into two: to the left and to the right of this line. The left and right tilings then can be counted by the same trick as in Problem 3.

## References

[1] Macdonald, I.G. "Symmetric functions and Hall polynomials". Second Edition. Oxford University Press, 1999.