Tilings, matrices, and representations through Schur generating functions.

Vadim Gorin
MIT (Cambridge) and IITP (Moscow)

July 2018

We study random ordered N-tuples of reals or integers

$$
\lambda_{1}>\lambda_{2}>\cdots>\lambda_{N}
$$

Central question: asymptotics as N or parameters vary.

We study random ordered N -tuples of reals or integers

$$
\lambda_{1}>\lambda_{2}>\cdots>\lambda_{N}
$$

Central question: asymptotics as N or parameters vary.

Sources and applications:

- Eigenvalues of random matrices
- Sections of stochastic systems in $2 d$ statistical mechanics
- Noncommutative harmonic analysis: decomposition of group representations into irreducible components

We study random ordered N -tuples of reals or integers

$$
\lambda_{1}>\lambda_{2}>\cdots>\lambda_{N}
$$

Central question: asymptotics as N or parameters vary.

Sources and applications:

- Eigenvalues of random matrices
- Sections of stochastic systems in $2 d$ statistical mechanics
- Noncommutative harmonic analysis: decomposition of group representations into irreducible components

Key tool: Schur generating functions and generalizations A new version of the Fourier transform

We study random ordered N -tuples of reals or integers

$$
\lambda_{1}>\lambda_{2}>\cdots>\lambda_{N}
$$

Central question: asymptotics as N or parameters vary.

Sources and applications:

- Eigenvalues of random matrices
- Sections of stochastic systems in $2 d$ statistical mechanics
- Noncommutative harmonic analysis: decomposition of group representations into irreducible components

Key tool: Schur generating functions and generalizations A new version of the Fourier transform

TODAY: Examples of stochastic systems and results. Next lectures: Detailed math.

Example 1: Noncolliding random walks

- N independent simple random walks
- probability of jump p
- started at arbitrary lattice points
- conditioned never to collide

Example 1: Noncolliding random walks

- N independent simple random walks
- probability of jump p
- started at arbitrary lattice points
- conditioned never to collide

Technical detail: "No collisions" is a zero probability event.

Example 1: Noncolliding random walks

- N independent simple random walks
- probability of jump p
- started at arbitrary lattice points
- conditioned never to collide

Technical detail: "No collisions" is a zero probability event.
Solution: Consider $\lim _{T \rightarrow \infty}($ (No collisions up to time T ")

Example 1: Noncolliding random walks

Macroscopic behavior of paths at time $t=\tau N$ as $N \rightarrow \infty$?

- N independent simple random walks
- probability of jump p
- started at arbitrary lattice points
- conditioned never to collide

Example 1: Noncolliding random walks

Theorem. (Bufetov-G.-13-17)
Suppose that the height
function satisfies at $t=0$:
$\lim _{N \rightarrow \infty} \frac{1}{N} H(0, y \cdot N) \rightarrow \mathfrak{h}(0, y)$
(For all $y>0$.)
Then

Example 1: Noncolliding random walks

Theorem. (Bufetov-G.-13-17)
Suppose that the height
function satisfies at $t=0$:

$$
\lim _{N \rightarrow \infty} \frac{1}{N} H(0, y \cdot N) \rightarrow \mathfrak{h}(0, y)
$$

(For all $y>0$.)
Then for deterministic $\mathfrak{h}(\tau, y)$, generalized Gaussian field $\xi(\tau, y)$

Law of Large Numbers: $\lim _{N \rightarrow \infty} \frac{1}{N} H(\tau \cdot N, y \cdot N)=\mathfrak{h}(\tau, y)$
CLT: $\lim _{N \rightarrow \infty}[H(\tau \cdot N, y \cdot N)-\mathbb{E} H(\tau \cdot N, y \cdot N)]=\xi(\tau, y)$

Example 1: Noncolliding random walks

Theorem. (Bufetov-G.-13-17) Suppose that the height function satisfies at $t=0$:

$$
\lim _{N \rightarrow \infty} \frac{1}{N} H(0, y \cdot N) \rightarrow \mathfrak{h}(0, y)
$$

(For all $y>0$.)
Then for deterministic $\mathfrak{h}(\tau, y)$, generalized Gaussian field $\xi(\tau, y)$

Law of Large Numbers: $\lim _{N \rightarrow \infty} \frac{1}{N} H(\tau \cdot N, y \cdot N)=\mathfrak{h}(\tau, y)$
CLT: $\lim _{N \rightarrow \infty}[H(\tau \cdot N, y \cdot N)-\mathbb{E} H(\tau \cdot N, y \cdot N)]=\xi(\tau, y)$
Important: No rescaling in CLT!

Example 1: Noncolliding random walks

Theorem. (Bufetov-G.-13-17) Suppose that the height function satisfies at $t=0$:

$$
\begin{aligned}
& \quad \lim _{N \rightarrow \infty} \frac{1}{N} H(0, y \cdot N) \rightarrow \mathfrak{h}(0, y) \\
& (\text { For all } y>0 \text {.) }
\end{aligned}
$$

Then for deterministic $\mathfrak{h}(\tau, y)$, generalized Gaussian field $\xi(\tau, y)$

Law of Large Numbers: $\lim _{N \rightarrow \infty} \frac{1}{N} H(\tau \cdot N, y \cdot N)=\mathfrak{h}(\tau, y)$
CLT: $\lim _{N \rightarrow \infty}[H(\tau \cdot N, y \cdot N)-\mathbb{E} H(\tau \cdot N, y \cdot N)]=\xi(\tau, y)$
Answers $\mathfrak{h}(\tau, y), \xi(\tau, y)$: explicit non-trivial dependence on $\mathfrak{h}(0, y)$.

Example 1: Noncolliding random walks

Theorem. (Borodin-Ferrari-08)
Suppose that the height
function satisfies at $t=0$:
$\lim _{N \rightarrow \infty} \frac{1}{N} H(0, y \cdot N) \rightarrow y, \quad 0<y<1$
[Densely packed initial condition]

The fluctuation field $\xi(\tau, y)$:

- Vanishes outside the domain $(1-\sqrt{\tau})^{2}<y<(1+\sqrt{\tau})^{2}$.
- Inside the domain is identified with the pullback of the $2 d$ Gaussian Free Field with Dirichlet boundary conditions in the upper half-plane \mathbb{H} with respect to an explicit map Ω.
Covariance for GFF in \mathbb{H} :

$$
\mathbb{E} G(z) G(w)=-\frac{1}{2 \pi} \ln \left|\frac{z-w}{z-\bar{w}}\right|
$$

Example 2: Lozenge tilings

Let paths start and end densely packed.

These are uniformly random lozenge tillings of a hexagon.

Example 2: Lozenge tilings

■

Example 2: Lozenge tilings

Theorem. (Cohn-Larsen-Propp-98) The height function of uniformly random lozenge tilings of a hexagon converges to an explicit deterministic limit shape as the mesh size goes to 0 .

Frozen outside inscribed circle.

Example 2: Lozenge tilings

Theorem. (Cohn-Larsen-Propp-98) The height function of uniformly random lozenge tilings of a hexagon converges to an explicit deterministic limit shape as the mesh size goes to 0 .

Frozen outside inscribed circle.

Theorem. Centered height function converges in non-frozen region to a Gaussian Field - pullback of GFF with an explicit map Ω.
(Kenyon-Okounkov conjectured; Petrov-12, Duits-15, Bufetov-Gorin-16 proved)

Example 2: Random tilings of general domains

Theorem. Deterministic limit shape + algorithmic description (Cohn-Kenyon-Propp-01), (Kenyon-Okounkov-05)

Thanks to Alisa Knizel, Sevak Mkrtchyan, Leonid Petrov

Conjecture-Theorem. The Gaussian Free Field fluctuations.

(Kenyon-Okounkov-05), (Borodin-Ferrari-08), (Petrov-12), (Bufetov-Gorin-16,17), (Bufetov-Knizel-16)

Example 2: From lozenge tilings to GUE Local features of uniformly random tilings?

Example 2: From lozenge tilings to GUE

Local features of uniformly random tilings?

Conjecture-Theorem. As the mesh $\varepsilon \rightarrow 0$, after $\sqrt{\varepsilon}$ rescaling, the interlacing particles near boundary converge to GUE-corners process.
(Johnasson-Nordenstam-06), (Okounkov-Reshetikhin-06),
(Gorin-Panova-13), (Novak-14)
X - matrix of i.i.d. standard complex Gaussians. Hermitian matrix $A=\left(X+X^{*}\right) / 2$:

$$
\left(\begin{array}{ccc|c}
a_{11} & a_{12} & a_{13} & a_{14} \\
\cline { 1 - 1 } a_{21} & a_{22} & a_{23} & a_{24} \\
\cline { 1 - 2 } 31 & a_{32} & a_{33} & a_{34} \\
\hline a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right)
$$

GUE-corners process =
eigenvalues of principal corners.

Example 3: Random matrices

- $A=\left(X+X^{*}\right) / 2$, with $X-N \times N$ matrix of i.i.d. standard complex Gaussians $N(0, t)+\mathbf{i} N(0, t)$.
- B - deterministic $N \times N$ with eigenvalues b_{1}, \ldots, b_{N}.

What can we do with two square matrices?

Example 3: Random matrices

- $A=\left(X+X^{*}\right) / 2$, with $X-N \times N$ matrix of i.i.d. standard complex Gaussians $N(0, t)+\mathbf{i} N(0, t)$.
- B - deterministic $N \times N$ with eigenvalues b_{1}, \ldots, b_{N}.

$$
C=A+B
$$

Lemma. The eigenvalues of C are Dyson Brownian Motion particles at time t, when started from $\left(b_{1}, \ldots, b_{N}\right)$ at time 0 .
DBM $=N$ independent Brownian Motions conditioned on no collisions.

Continuous noncolliding random walks

Example 3: Random matrices

- $A=\left(X+X^{*}\right) / 2$, with $X-N \times N$ matrix of i.i.d. standard complex Gaussians $N(0, t)+\mathbf{i} N(0, t)$.
- B - deterministic $N \times N$ with eigenvalues b_{1}, \ldots, b_{N}.

$$
C=A+B
$$

Lemma. The eigenvalues of C are Dyson Brownian Motion particles at time t, when started from $\left(b_{1}, \ldots, b_{N}\right)$ at time 0 .
DBM $=N$ independent Brownian Motions conditioned on no collisions.

Continuous noncolliding random walks
Theorem. Eigenvalues of C satisfy macroscopic LLN and CLT.

Example 3: Random matrices

$$
\begin{aligned}
A= & \left(\begin{array}{cccc}
a_{1} & 0 & & \\
0 & a_{2} & 0 & \\
& 0 & \ddots & 0 \\
& 0 & a_{N}
\end{array}\right) \quad B=\left(\begin{array}{cccc}
b_{1} & 0 & & \\
0 & b_{2} & 0 & \\
& 0 & \ddots & 0 \\
& & 0 & b_{N}
\end{array}\right) \\
& U, V-\text { Haar-random in Unitary }(N ; \mathbb{R} / \mathbb{C} / \mathbb{H})
\end{aligned}
$$

$$
\frac{\square C=U A U^{*}+V B V^{*}}{\nwarrow \nearrow}
$$

uniformly random eigenvectors

Question: What can you say about eigenvalues of C ?

Example 3: Random matrices as $N \rightarrow \infty$

$$
\begin{gathered}
A=\left(\begin{array}{cccc}
a_{1} & 0 & & \\
0 & a_{2} & 0 & \\
& 0 & \ddots & 0 \\
& & 0 & a_{N}
\end{array}\right) \quad B=\left(\begin{array}{cccc}
b_{1} & 0 & & \\
0 & b_{2} & 0 & \\
& 0 & \ddots & 0 \\
& & 0 & b_{N}
\end{array}\right) \\
\lim _{N \rightarrow \infty} C=U A U^{*}+V B V^{*}
\end{gathered}
$$

Theorem. (Voiculescu, 80s) The empirical measure (=derivative of height function) of eigenvalues of C is deterministic as $N \rightarrow \infty$.

$$
\begin{gathered}
\mu_{A}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} \delta_{a_{i}} \quad \mu_{B}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} \delta_{b_{i}} \quad \mu_{C}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} \delta_{c_{i}} \\
G_{\mu}(z)=\int \frac{\mu(d x)}{z-x}, \quad R_{\mu}(z)=\left(G_{\mu}(z)\right)^{-1}-\frac{1}{z} . \\
R_{\mu_{C}}(z)=R_{\mu_{A}}(z)+R_{\mu_{B}}(z) .
\end{gathered}
$$

Free convolution via Voiculescu R-transform.

Example 3: Random matrices as $N \rightarrow \infty$

Many ways to continue after Voiculescu's LLN:

- The Gaussian fluctuations for $C=U A U^{*}+V B V^{*}$ - second order freeness of (Collins-Mingo-Sniady-Speicher-06).

Example 3: Random matrices as $N \rightarrow \infty$

Many ways to continue after Voiculescu's LLN:

- The Gaussian fluctuations for $C=U A U^{*}+V B V^{*}$ - second order freeness of (Collins-Mingo-Sniady-Speicher-06).
- Multiplication of matrices $C=U A U^{*} \cdot V B V^{*}$ (Voiculescu)

Example 3: Random matrices as $N \rightarrow \infty$

Many ways to continue after Voiculescu's LLN:

- The Gaussian fluctuations for $C=U A U^{*}+V B V^{*}$ - second order freeness of (Collins-Mingo-Sniady-Speicher-06).
- Multiplication of matrices $C=U A U^{*} \cdot V B V^{*}$ (Voiculescu)
- T_{λ} irreducible (linear) representations of $U(N ; \mathbb{C})$

$$
\lambda_{1}>\lambda_{2}>\cdots>\lambda_{N}, \quad \lambda_{i} \in \mathbb{Z} . \quad T_{\lambda} \otimes T_{\nu}=\bigoplus_{\kappa} c_{\lambda, \nu}^{\kappa} T_{\kappa}
$$

Littlewood-Richardson coefficients $c_{\lambda, \nu}^{\kappa}$ hard as $N \rightarrow \infty$.

Example 3: Random matrices as $N \rightarrow \infty$

Many ways to continue after Voiculescu's LLN:

- The Gaussian fluctuations for $C=U A U^{*}+V B V^{*}$ - second order freeness of (Collins-Mingo-Sniady-Speicher-06).
- Multiplication of matrices $C=U A U^{*} \cdot V B V^{*}$ (Voiculescu)
- T_{λ} irreducible (linear) representations of $U(N ; \mathbb{C})$

$$
\lambda_{1}>\lambda_{2}>\cdots>\lambda_{N}, \quad \lambda_{i} \in \mathbb{Z} . \quad T_{\lambda} \otimes T_{\nu}=\bigoplus_{\kappa} c_{\lambda, \nu}^{\kappa} T_{\kappa}
$$

Littlewood-Richardson coefficients $c_{\lambda, \nu}^{\kappa}$ hard as $N \rightarrow \infty$.
Approach of (Biane-95), (Bufetov-Gorin-13), (Collins-Novak-Sniady-16):
Random κ through

$$
P(\kappa)=\frac{\operatorname{dim}\left(T_{\kappa}\right) c_{\lambda, \nu}^{\kappa}}{\operatorname{dim} T_{\lambda} \cdot \operatorname{dim} T_{\nu}}
$$

Example 3: Random matrices as $N \rightarrow \infty$

Many ways to continue after Voiculescu's LLN:

- The Gaussian fluctuations for $C=U A U^{*}+V B V^{*}$ - second order freeness of (Collins-Mingo-Sniady-Speicher-06).
- Multiplication of matrices $C=U A U^{*} \cdot V B V^{*}$ (Voiculescu)
- T_{λ} irreducible (linear) representations of $U(N ; \mathbb{C})$

$$
\lambda_{1}>\lambda_{2}>\cdots>\lambda_{N}, \quad \lambda_{i} \in \mathbb{Z} . \quad T_{\lambda} \otimes T_{\nu}=\bigoplus_{\kappa} c_{\lambda, \nu}^{\kappa} T_{\kappa}
$$

Littlewood-Richardson coefficients $c_{\lambda, \nu}^{\kappa}$ hard as $N \rightarrow \infty$.
Approach of (Biane-95), (Bufetov-Gorin-13), (Collins-Novak-Sniady-16):
Random κ through

$$
P(\kappa)=\frac{\operatorname{dim}\left(T_{\kappa}\right) c_{\lambda, \nu}^{\kappa}}{\operatorname{dim} T_{\lambda} \cdot \operatorname{dim} T_{\nu}}
$$

Semi-classical limit degenerates representations of a Lie group into orbital measures on its Lie algebra

$$
T_{\lambda} \otimes T_{\nu} \longrightarrow U A U^{*}+V B V^{*}
$$

Example 4: Random matrices as $\beta(=1,2,4) \rightarrow \infty$

Theorem. (Gorin-Marcus-17) Eigenvalues of C crystallize ($=$ become deterministic) as dimension of the base field $\beta \rightarrow \infty$: $\lim _{\beta \rightarrow \infty} C=U A U^{*}+V B V^{*}$

$$
\prod_{i=1}^{N}\left(z-c_{i}\right)=\frac{1}{N!} \sum_{\sigma \in S(N)} \prod_{i=1}^{N}\left(z-a_{i}-b_{\sigma(i)}\right)
$$

$\lim _{\beta \rightarrow \infty} C=\left(U A U^{*}\right) \cdot\left(V B V^{*}\right)$

$$
\prod_{i=1}^{N}\left(z-c_{i}\right)=\frac{1}{N!} \sum_{\sigma \in S(N)} \prod_{i=1}^{N}\left(z-a_{i} b_{\sigma(i)}\right)
$$

$\lim _{\beta \rightarrow \infty} C=P_{k}\left(U A U^{*}\right) P_{k}$

$$
\prod_{i=1}^{k}\left(z-c_{i}\right) \sim \frac{\partial^{N-k}}{\partial z^{N-k}} \prod_{i=1}^{N}\left(z-a_{i}\right)
$$

Example 4: Random matrices as $\beta(=1,2,4) \rightarrow \infty$

Theorem. (Gorin-Marcus-17) Eigenvalues of C crystallize ($=$ become deterministic) as dimension of the base field $\beta \rightarrow \infty$: $\lim _{\beta \rightarrow \infty} C=U A U^{*}+V B V^{*}$

$$
\prod_{i=1}^{N}\left(z-c_{i}\right)=\frac{1}{N!} \sum_{\sigma \in S(N)} \prod_{i=1}^{N}\left(z-a_{i}-b_{\sigma(i)}\right)
$$

$\lim _{\beta \rightarrow \infty} C=\left(U A U^{*}\right) \cdot\left(V B V^{*}\right)$

$$
\prod_{i=1}^{N}\left(z-c_{i}\right)=\frac{1}{N!} \sum_{\sigma \in S(N)} \prod_{i=1}^{N}\left(z-a_{i} b_{\sigma(i)}\right)
$$

$\lim _{\beta \rightarrow \infty} C=P_{k}\left(U A U^{*}\right) P_{k}$

$$
\prod_{i=1}^{k}\left(z-c_{i}\right) \sim \frac{\partial^{N-k}}{\partial z^{N-k}} \prod_{i=1}^{N}\left(z-a_{i}\right)
$$

How to add matrices over β-dimensional field????

Summary of examples

$$
\begin{aligned}
& \left(\begin{array}{lllll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right) \\
& C=U A U^{*}+V B V^{*} \\
& T_{\lambda} \otimes T_{\nu}=\bigoplus_{\kappa} c_{\lambda, \nu}^{\kappa} T_{\kappa}
\end{aligned}
$$

Recurring question: asymptotic behavior of random N-tuple

$$
\lambda_{1}>\lambda_{2}>\cdots>\lambda_{N}
$$

Our aim: uniform approach to the analysis.

Reminder: characteristic functions, Fourier transform

> A classical powerful tool:
> Random variable $\xi \longleftrightarrow \phi_{\xi}(t)=\mathbb{E} \exp (\mathbf{i} t \xi)$

- The law of ξ is uniquely determined by ϕ_{ξ}.
- Works nicely with addition of independent ξ_{1}, ξ_{2} :

$$
\phi_{\xi_{1}+\xi_{2}}(t)=\phi_{\xi_{1}}(t) \cdot \phi_{\xi_{2}}(t)
$$

Reminder: characteristic functions, Fourier transform

A classical powerful tool:

```
Random variable }\xi\longleftrightarrow\mp@subsup{\phi}{\xi}{}(t)=\mathbb{E}\operatorname{exp}(\mathbf{i}t\xi
```

- The law of ξ is uniquely determined by ϕ_{ξ}.
- Works nicely with addition of independent ξ_{1}, ξ_{2} :

$$
\phi_{\xi_{1}+\xi_{2}}(t)=\phi_{\xi_{1}}(t) \cdot \phi_{\xi_{2}}(t)
$$

Application: proof of the CLT for i.i.d. random variables ξ_{i}

$$
\begin{gathered}
S[N]=\frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left(\xi_{i}-\mathbb{E} \xi_{i}\right) \\
\phi_{S[N]}(t)=\left(1-\operatorname{Var}\left(\xi_{i}\right) \frac{t^{2}}{2 N}+O\left(N^{-3 / 2}\right)\right)^{N} \rightarrow \exp \left(-\operatorname{Var}\left(\xi_{i}\right) \frac{t^{2}}{2}\right)
\end{gathered}
$$

Reminder: characteristic functions, Fourier transform

A classical powerful tool:

```
Random variable }\xi\longleftrightarrow\mp@subsup{\phi}{\xi}{}(t)=\mathbb{E}\operatorname{exp}(\mathbf{i}t\xi
```

- The law of ξ is uniquely determined by ϕ_{ξ}.
- Works nicely with addition of independent ξ_{1}, ξ_{2} :

$$
\phi_{\xi_{1}+\xi_{2}}(t)=\phi_{\xi_{1}}(t) \cdot \phi_{\xi_{2}}(t)
$$

Application: proof of the CLT for i.i.d. random variables ξ_{i}

$$
S[N]=\frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left(\xi_{i}-\mathbb{E} \xi_{i}\right)
$$

$\phi_{S[N]}(t)=\left(1-\operatorname{Var}\left(\xi_{i}\right) \frac{t^{2}}{2 N}+O\left(N^{-3 / 2}\right)\right)^{N} \rightarrow \exp \left(-\operatorname{Var}\left(\xi_{i}\right) \frac{t^{2}}{2}\right)$.
Can not work this way in our framework, but there is an analogue!

Schur generating functions

$\mathbb{P}(\cdot)$ - probability measure on

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{N} \in \mathbb{Z}^{N}
$$

Its Schur generating function is
$\mathcal{G}_{\mathbb{P}}=\sum_{\lambda} \mathbb{P}(\lambda) \frac{s_{\lambda}\left(x_{1}, \ldots, x_{N}\right)}{s_{\lambda}(1, \ldots, 1)}$,
$s_{\lambda}\left(x_{1}, \ldots, x_{N}\right)=\frac{\operatorname{det}\left[x_{i}^{\lambda_{j}+N-j}\right]_{i, j=1}^{N}}{\prod_{i<j}\left(x_{i}-x_{j}\right)}$.

Schur generating functions

$\mathbb{P}(\cdot)$ - probability measure on

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{N} \in \mathbb{Z}^{N}
$$

Its Schur generating function is
$\mathcal{G}_{\mathbb{P}}=\sum_{\lambda} \mathbb{P}(\lambda) \frac{s_{\lambda}\left(x_{1}, \ldots, x_{N}\right)}{s_{\lambda}(1, \ldots, 1)}, \quad s_{\lambda}\left(x_{1}, \ldots, x_{N}\right)=\frac{\operatorname{det}\left[x_{i}^{\lambda_{j}+N-j}\right]_{i, j=1}^{N}}{\prod_{i<j}\left(x_{i}-x_{j}\right)}$.
$N=1$ - moment generating function. $\quad \mathcal{G}_{\mathbb{P}}=\sum_{k} \mathbb{P}(k) x^{k}$
$x=\exp (\mathbf{i t})$ turns it into the conventional characteristic function.

Schur generating functions

$\mathbb{P}(\cdot)$ - probability measure on

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{N} \in \mathbb{Z}^{N}
$$

Its Schur generating function is
$\mathcal{G}_{\mathbb{P}}=\sum_{\lambda} \mathbb{P}(\lambda) \frac{s_{\lambda}\left(x_{1}, \ldots, x_{N}\right)}{s_{\lambda}(1, \ldots, 1)}$,

$$
s_{\lambda}\left(x_{1}, \ldots, x_{N}\right)=\frac{\operatorname{det}\left[x_{i}^{\lambda_{j}+N-j}\right]_{i, j=1}^{N}}{\prod_{i<j}\left(x_{i}-x_{j}\right)} .
$$

How is it good?

1. The distribution \mathbb{P} can be efficiently reconstructed from $\mathcal{G}_{\mathbb{P}}$.

- Exactly at finite N.
- Asymptotically as $N \rightarrow \infty$.

2. $\mathcal{G}_{\mathbb{P}}$ changes nicely upon operations on the system, such as:

- Evolution of non-colliding random walks. (* by a function)
- Moving section in a random tiling. (plug in some $x_{i}=1$)
- Computing tensor products, adding/multiplying matrices. (*)

Schur generating functions: Uniqueness

$$
\mathcal{G}_{\mathbb{P}}=\sum_{\lambda} \mathbb{P}(\lambda) \frac{s_{\lambda}\left(x_{1}, \ldots, x_{N}\right)}{s_{\lambda}(1, \ldots, 1)}, \quad s_{\lambda}\left(x_{1}, \ldots, x_{N}\right)=\frac{\operatorname{det}\left[x_{i}^{\lambda_{j}+N-j}\right]_{i, j=1}^{N}}{\prod_{i<j}\left(x_{i}-x_{j}\right)} .
$$

Lemma. Fixed $N . \mathcal{G}_{\mathbb{P}}$ on the torus $\left|x_{i}\right|=1$ uniquely determines P.

Schur generating functions: Uniqueness

$$
\mathcal{G}_{\mathbb{P}}=\sum_{\lambda} \mathbb{P}(\lambda) \frac{s_{\lambda}\left(x_{1}, \ldots, x_{N}\right)}{s_{\lambda}(1, \ldots, 1)}, \quad s_{\lambda}\left(x_{1}, \ldots, x_{N}\right)=\frac{\operatorname{det}\left[x_{i}^{\lambda_{j}+N-j}\right]_{i, j=1}^{N}}{\prod_{i<j}\left(x_{i}-x_{j}\right)} .
$$

Lemma. Fixed $N . \mathcal{G}_{\mathbb{P}}$ on the torus $\left|x_{i}\right|=1$ uniquely determines P. Proof. Scalar product - integral against uniform measure on \mathbb{T}^{N}.

$$
\langle f, g\rangle=\iiint_{\left|x_{i}\right|=1} f\left(x_{1}, \ldots, x_{N}\right) \cdot \overline{g\left(x_{1}, \ldots, x_{N}\right)} \prod_{i<j}\left|x_{i}-x_{j}\right|^{2}
$$

Then $\left\langle s_{\lambda}, s_{\mu}\right\rangle=N!\cdot \delta_{\lambda, \mu}$, hence

$$
\mathbb{P}(\lambda)=\frac{1}{N!}\left\langle s_{\lambda}, \mathcal{G}_{P}\right\rangle .
$$

Schur generating functions: Uniqueness

$$
\mathcal{G}_{\mathbb{P}}=\sum_{\lambda} \mathbb{P}(\lambda) \frac{s_{\lambda}\left(x_{1}, \ldots, x_{N}\right)}{s_{\lambda}(1, \ldots, 1)}, \quad s_{\lambda}\left(x_{1}, \ldots, x_{N}\right)=\frac{\operatorname{det}\left[x_{i}^{\lambda_{j}+N-j}\right]_{i, j=1}^{N}}{\prod_{i<j}\left(x_{i}-x_{j}\right)} .
$$

Lemma. Fixed $N . \mathcal{G}_{\mathbb{P}}$ on the torus $\left|x_{i}\right|=1$ uniquely determines P. Proof. Scalar product - integral against uniform measure on \mathbb{T}^{N}.

$$
\langle f, g\rangle=\iiint_{\left|x_{i}\right|=1} f\left(x_{1}, \ldots, x_{N}\right) \cdot \overline{g\left(x_{1}, \ldots, x_{N}\right)} \prod_{i<j}\left|x_{i}-x_{j}\right|^{2}
$$

Then $\left\langle s_{\lambda}, s_{\mu}\right\rangle=N!\cdot \delta_{\lambda, \mu}$, hence

$$
\mathbb{P}(\lambda)=\frac{1}{N!}\left\langle s_{\lambda}, \mathcal{G}_{P}\right\rangle
$$

Conceptual: Reminiscent of direct/inverse Fourier transform.
This is harmonic analysis on the unitary group $U(N)$.

Schur generating functions: $N \rightarrow \infty$

$$
\mathcal{G}_{\mathbb{P}}=\sum_{\lambda} \mathbb{P}(\lambda) \frac{s_{\lambda}\left(x_{1}, \ldots, x_{N}\right)}{s_{\lambda}(1, \ldots, 1)}, \quad s_{\lambda}\left(x_{1}, \ldots, x_{N}\right)=\frac{\operatorname{det}\left[x_{i}^{\lambda_{j}+N-j}\right]_{i, j=1}^{N}}{\prod_{i<j}\left(x_{i}-x_{j}\right)}
$$

Many problems deal with $N \rightarrow \infty$. But how can you work with functions of growing number of variables?

Schur generating functions: $N \rightarrow \infty$

$$
\mathcal{G}_{\mathbb{P}}=\sum_{\lambda} \mathbb{P}(\lambda) \frac{s_{\lambda}\left(x_{1}, \ldots, x_{N}\right)}{s_{\lambda}(1, \ldots, 1)}, \quad s_{\lambda}\left(x_{1}, \ldots, x_{N}\right)=\frac{\operatorname{det}\left[x_{i}^{\lambda_{j}+N-j}\right]_{i, j=1}^{N}}{\prod_{i<j}\left(x_{i}-x_{j}\right)} .
$$

Many problems deal with $N \rightarrow \infty$. But how can you work with functions of growing number of variables?

General idea: Asymptotic probabilistic characteristics of λ 's are in correspondence with finite-dimensional features of $\mathcal{G}_{\mathbb{P}}$ as $N \rightarrow \infty$.

There are topological choices to be made depending on the desired asymptotic regime.

Asymptotic statement of (Bufetov-Gorin-13,16,17)

$$
\mathcal{G}=\sum_{\ell} \mathbb{P}(\ell) \frac{s_{\ell}\left(x_{1}, \ldots, x_{N}\right)}{s_{\ell}(1, \ldots, 1)} \begin{array}{ll}
\bullet & \left.\frac{1}{N}\left(\partial_{i}\right)^{a} \ln (\mathcal{G})\right|_{x_{1}=\ldots=x_{N}=1} \rightarrow c_{a} \\
& \left.\left.\bullet\left[\partial_{i}\right)^{a}\left(\partial_{j}\right)^{b} \ln (\mathcal{G})\right|_{a=1} ^{k} \rightarrow \partial_{i_{a}}\right]\left.\ln (\mathcal{G})\right|_{=1} \rightarrow 0,\left|\left\{i_{a}\right\}\right|>2
\end{array}
$$

if and only if

- $\frac{1}{N} p_{k} \rightarrow \mathfrak{p}(k)$

$$
p_{k}=\sum_{i=1}^{N}\left(\frac{\ell_{i}}{N}\right)^{k}
$$

- $\mathbb{E} p_{k} p_{m}-\mathbb{E} p_{k} \mathbb{E} p_{m} \rightarrow \mathfrak{c o v}(k, m)$
- $p_{k}-\mathbb{E} p_{k} \rightarrow$ Gaussians

$$
\begin{gathered}
\mathfrak{p}(k)=\left[z^{-1}\right] \frac{1}{(k+1)(1+z)}\left(\frac{1+z}{z}+(1+z) \sum_{a=1}^{\infty} \frac{c_{a} z^{a-1}}{(a-1)!}\right)^{k+1} \\
\mathfrak{c o v}(k, m)=\left[z^{-1} w^{-1}\right]\left(\left(\sum_{a=0}^{\infty} \frac{z^{a}}{w^{1+a}}\right)^{2}+\sum_{a, b=1}^{\infty} \frac{d_{a, b}}{(a-1)!(b-1)!} z^{a-1} w^{b-1}\right) \\
\quad \times\left(\frac{1+z}{z}+(1+z) \sum_{a=1}^{\infty} \frac{c_{a} z^{a-1}}{(a-1)!}\right)^{k}\left(\frac{1+w}{w}+(1+w) \sum_{a=1}^{\infty} \frac{c_{a} w^{a-1}}{(a-1)!}\right)^{m}
\end{gathered}
$$

Coming next:

Schur generating functions (=harmonic analysis on $U(N)$) as a tool in $2 d$ statistical mechanics and random matrix theory.

We will develop theory in three examples:

- Lecture 2: Gaussian Unitary Ensemble as a limit in uniformly random tilings.
- Lecture 3: Addition of large independent random matrices leading to the free convolution.
- Lecture 4: $\beta \rightarrow \infty$ limit of random matrix operations leading to polynomial operations preserving real-rootedness ("finite free probability")

