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We study random ordered N—tuples of reals or integers
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We study random ordered N—tuples of reals or integers
>\1>)\2>"'>)\/\/

Central question: asymptotics as N or parameters vary.

Sources and applications:

® Figenvalues of random matrices
® Sections of stochastic systems in 2d statistical mechanics

® Noncommutative harmonic analysis: decomposition of group
representations into irreducible components

Key tool: Schur generating functions and generalizations
A new version of the Fourier transform

TODAY: Examples of stochastic systems and results.
Next lectures: Detailed math.
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Technical detail: “No collisions” is a zero probability event.



Example 1: Noncolliding random walks

N independent simple
random walks

probability of jump p

started at arbitrary lattice
points

:

\\

conditioned never to

timne ¢ collide

v

Technical detail: “No collisions” is a zero probability event.

Solution: Consider lim (“No collisions up to time T")
T—o0



Example 1: Noncolliding random walks

Macroscopic behavior of paths at time t = 7N as N — oo?
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Example 1: Noncolliding random walks

Theorem. (Bufetov—G.-13-17)
Suppose that the height
function satisfies at t = 0:
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Theorem. (Bufetov—G.-13-17)
Suppose that the height
function satisfies at t = 0:
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(For ally > 0.)

ﬁ: 0 4 Then for deterministic h(7,y),

> generalized Gaussian field (7, y)

Law of Large Numbers: lim NH(T N,y -N)=b(r,y)

N—oo
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Example 1: Noncolliding random walks

t Y 4 4/ Theorem. (Bufetov-G.—13-17)
3 Suppose that the height

function satisfies at t = 0:

9 Jim %H(O,y - N) = 5(0,y)
9 1
/ (For all y > 0.)
‘—1/_H/ _ (4 Thenfor deterministic h(r,y),

> generalized Gaussian field £(7,y)

1
Law of Large Numbers: |im NH(T N,y - N)="0b(r,y)

N—oo

CLT: lim [H(r N,y N) =EH(r- N,y N)] = &(r.y)

Important: No rescaling in CLT!



Example 1: Noncolliding random walks

4 Y 4 4/ Theorem. (Bufetov—G.-13-17)
3 Suppose that the height
function satisfies at t = O:

2 A}T@%H(O,y-N) —5(0,)
9 1
(Forall y > 0.)
ﬁ: 0 4 Then for deterministic (7, y),

> generalized Gaussian field £(7,y)

1
/JTOONH(T'N’V'N) =b(7,y)

CLT: lim [H(r N,y N)=EH(r- N,y N)] = (r.y)

Law of Large Numbers:

Answers h(T,y), £(7,y): explicit non-trivial dependence on h(0, y).



Example 1: Noncolliding random walks

Theorem. (Borodin-Ferrari-08)
Suppose that the height
function satisfies at t = 0:

1
lim —H(0, y-N 1
Jim (0,y-N) =y, 0<y<

./_1/_/ [Densely packed initial condition]
H=0 ¢

> The fluctuation field &(7,y):

® Vanishes outside the domain (1 — /7)? <y < (1L +/7)%
® |nside the domain is identified with the pullback of the 2d
Gaussian Free Field with Dirichlet boundary conditions in the
upper half-plane H with respect to an explicit map Q.
1

Covariance for GFF in H: EG(z)G(w) = ~o- In
T

z—w’

zZ—Ww



Example 2: Lozenge tilings

Let paths start and end densely packed.
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These are uniformly random lozenge tilings of a hexagon.
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Example 2: Lozenge tilings

Theorem. (Cohn-Larsen-Propp-98)
The height function of uniformly
random lozenge tilings of a
hexagon converges to an explicit
deterministic limit shape as the
mesh size goes to 0.

Frozen outside inscribed circle.




Example 2: Lozenge tilings

Theorem. (Cohn-Larsen-Propp-98)
The height function of uniformly
random lozenge tilings of a
hexagon converges to an explicit
deterministic limit shape as the
mesh size goes to 0.

Frozen outside inscribed circle.

Theorem. Centered height function converges in non-frozen region
to a Gaussian Field — pullback of GFF with an explicit map €.

(Kenyon—Okounkov conjectured; Petrov-12, Duits-15, Bufetov-Gorin-16 proved)



Example 2: Random tilings of general domains

Theorem. Deterministic limit shape + algorithmic description
(Cohn-Kenyon-Propp-01), (Kenyon-Okounkov-05)

Thanks to Alisa Knizel, Sevak Mkrtchyan,
Leonid Petrov

Conjecture-Theorem. The Gaussian Free Field fluctuations.

(Kenyon-Okounkov-05), (Borodin-Ferrari-08), (Petrov-12), (Bufetov-Gorin-16,17), (Bufetov-Knizel-16)



Example 2: From lozenge tilings to GUE

Local features of uniformly random tilings?
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Example 2: From lozenge tilings to GUE

Local features of uniformly random tilings?

Conjecture-Theorem. As the mesh ¢ — 0,
after /e rescaling, the interlacing particles near
boundary converge to GUE—corners process.
(Johnasson-Nordenstam-06), (Okounkov-Reshetikhin-06),

(Gorin-Panova-13), (Novak-14)

X — matrix of i.i.d. standard complex Gaus-
sians. Hermitian matrix A = (X + X*)/2:

a11 | 912 | 413 | 914
a1 a2 | a23 | a4
a31 432 433 | d34
d41 442 A43 44

GUE—corners process =
eigenvalues of principal corners.



Example 3: Random matrices

® A= (X+ X*)/2, with X — N x N matrix of i.i.d. standard
complex Gaussians N(0, t) + iN(0, t).
® B — deterministic N x N with eigenvalues by, ..., by.

What can we do with two square matrices?
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o A= (X+ X*)/2, with X — N x N matrix of i.i.d. standard
complex Gaussians N(0, t) +iN(0, t).
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|}
M C=A+B
/“’ Lemma. The eigenvalues of C

are Dyson Brownian Motion par-
ticles at time t, when started from

f (b1,...,by) at time 0.
DBM = N independent Brownian

\J M Motions conditioned on no collisions.
Continuous noncolliding random walks
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Example 3: Random matrices

o A= (X+ X*)/2, with X — N x N matrix of i.i.d. standard
complex Gaussians N(0, t) +iN(0, t).
® B — deterministic N x N with eigenvalues by, ..., by.

|}
M C=A+B
/“’ Lemma. The eigenvalues of C

are Dyson Brownian Motion par-
ticles at time t, when started from

f (b1,...,by) at time 0.
DBM = N independent Brownian

\J M Motions conditioned on no collisions.
A Continuous noncolliding random walks

Theorem. Eigenvalues of C satisfy macroscopic LLN and CLT.



Example 3: Random matrices

ar 0 b1 O
0 an 0 0 b2 0
0 0 o . 0
0 apn 0 by

U,V — Haar-random in Unitary(N;R /C /H)

| C = UAU* + vBV*
NS

uniformly random eigenvectors

Question: What can you say about eigenvalues of C?



Example 3: Random matrices as N — oo

ap O b1 O
0 an 0 0 b2 0
A= ] B = .
o . 0 0 0
0 an 0 b/\/

lim | C = UAU* + VBV*
N—ro0

Theorem. (Voiculescu, 80s) The empirical measure (=derivative
of height function) of eigenvalues of C is deterministic as N — oo.

1 1 & 1
ha = lim 2w = fim 5 ) 0 e = fim 5> O
_ [ p(dx) _ -1 1
Gu(z) = / 2 — Ru.(z) = (G,Az)) 2

Ruc(z) = Rua(2) + Ryup(2).

Free convolution via Voiculescu R—transform.



Example 3: Random matrices as N — oo
Many ways to continue after Voiculescu's LLN:

® The Gaussian fluctuations for ’ C = UAU* + VBV*
order freeness of (Collins-Mingo-Sniady-Speicher-06).
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Example 3: Random matrices as N — oo
Many ways to continue after Voiculescu's LLN:
® The Gaussian fluctuations for ’ C = UAU* + VBV~
order freeness of (Collins-Mingo-Sniady-Speicher-06).
® Multiplication of matrices ’ C = UAU" - VBV™ | (Voiculescu)
e T, irreducible (linear) representations of U(N;C)

— second

A > X > > Ay, A EZ. T)\®T:®C§7VT,@

Littlewood—Richardson coefficients c§,, hard as N — oo.
Approach of (Biane-95), (Bufetov-Gorin-13), (Collins-Novak-Sniady-16):
dim(Ty)cy,

Random & through P(H = M—dlm

Semi-classical limit degenerates representations of a Lie group
into orbital measures on its Lie algebra

T\® T, — UAU* + VBV~



Example 4: Random matrices as 5(= 1,2,4) — oo
Theorem. (Gorin—Marcus-17) Eigenvalues of C crystallize
(= become deterministic) as dimension of the base field § — co:

lim | C = UAU" + VBV*

e N 1 N
H(Z —d) = > Iz ai = by

" oeS(N) i=1

lim | C = (UAU") - (VBV")

e N ) N
[[z-c)= NI > 11z = aibey)
i=1

oEeS(N) i=1

lim | C = P(UAU")P,
B—r00

k

gN—k N
H(Z — i)~ ON—K H(Z —ai)
i=1

i=1



Example 4: Random matrices as 5(= 1,2,4) — oo
Theorem. (Gorin—Marcus-17) Eigenvalues of C crystallize
(= become deterministic) as dimension of the base field § — co:

lim | C = UAU" + VBV*

e N 1 N
H(Z —d) = > Iz ai = by

" oeS(N) i=1

lim | C = (UAU") - (VBV")

e N ) N
[[z-c)= NI > 11z = aibey)
i=1

oEeS(N) i=1

lim | C = P(UAU")P,
B—r00

k

gN—k N
H(Z — i)~ ON—K H(Z —ai)
i=1

i=1
How to add matrices over S—dimensional field??7?



Summary of examples
3 d11 | d12 | 913 | 914
/_/_/ 21 a2 | @23 | 424

Y 44

P

4 2 a31 a3 as3 | az;
/_2/—[ d41  A42  A43 A4
Gt

| C = UAU* + VBV*
‘ neT, =P, T
K

Recurring question: asymptotic behavior of random N-tuple

AL > A > > Ay

Our aim: uniform approach to the analysis.



Reminder: characteristic functions, Fourier transform

A classical powerful tool:

Random variable & «— ¢¢(t) = Eexp(itf)

® The law of £ is uniquely determined by ¢..
® Works nicely with addition of independent &1, &:

¢§1+§2(t) = ¢>§1(f) ) (;352(1')
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Reminder: characteristic functions, Fourier transform

A classical powerful tool:

Random variable & «— ¢¢(t) = Eexp(itf)

® The law of £ is uniquely determined by ¢..
® Works nicely with addition of independent &1, &:

¢§1+§2(t) = ¢>§1(f) : ¢£2(t)
Application: proof of the CLT for i.i.d. random variables &;

S[N] = \FZ — E¢)

Ssi(t) = <1 - Var(fi);W +0 (N—3/2)>N — exp <—Var(£f)t22> .

Can not work this way in our framework, but there is an analogue!



Schur generating functions
P(-) — probability measure on

)\12)\22-'-Z>\NEZN.

Its Schur generating function is

N e C R

Aj+N—jqN
det [x;” ]i,j:l
Hi<j(Xi X;)



Schur generating functions
P(-) — probability measure on

A >N > > Ay ez

Its Schur generating function is

Aj+N—j1 N
det[ ]
sx(xt, ..., x
G = 3 F() 2O ) = g

e 1) [Tic;(xi =)
N =1 — moment generating function. Gp = Z]P’(k)xk

x = exp(it) turns it into the conventional characteristic function.



Schur generating functions
P(-) — probability measure on

/\12)\22-"2)\N€ZN.

Its Schur generating function is

A+N—ji N
S)\(Xl,...,XN) d t[Xi ]i,j:l
g]P’ ; ( ) 5)\(17-'.,1) 9 S)\(le 7XN) H’.<J.(Xi XJ)

How is it good?

1. The distribution P can be efficiently reconstructed from Gp.
® Exactly at finite V.
® Asymptotically as N — oo.
2. Gp changes nicely upon operations on the system, such as:
® Evolution of non-colliding random walks. (x by a function)
® Moving section in a random tiling. (plug in some x; = 1)
® Computing tensor products, adding/multiplying matrices. (x)



Schur generating functions: Uniqueness

A+N—j1 N

sa(x1, ..., xN) det[x; szl

= ]P) _— == : .
or ZA ) sa(1,...,1) 7 o, ) [Tic;(xi = x)

Lemma. Fixed N. Gp on the torus |x;| = 1 uniquely determines P.



Schur generating functions: Uniqueness

X1 det )‘JFNJN,_l
gIP’—Z]P))\) ))’ (51, ) = 1‘[[<( ]XJ,,) .

Lemma. Fixed N. Gp on the torus |x;| = 1 uniquely determines P.

Proof. Scalar product — integral against uniform measure on TV,

<f,g>:///|Xi|:1f(x1,...,x,v) (x1,... XN)H]X,—XJ|

i<j
Then (sy,s,) = N!0y, hence

P(\) = i



Schur generating functions: Uniqueness

Xl det )\+NJN._1
gIP’—Z]P))\) ))’ (51, ) = 1‘[[<( ]><;J)_'

Lemma. Fixed N. Gp on the torus |x;| = 1 uniquely determines P.

Proof. Scalar product — integral against uniform measure on TV,

<f,g>:///|Xi|:1f(x1,...,x,v) (x1,... XN)H]X,—XJ|

i<j
Then (sy,s,) = N!0y, hence

1

P(\) = i

(5)\7gP>' O

Conceptual: Reminiscent of direct/inverse Fourier transform.
This is harmonic analysis on the unitary group U(N).



Schur generating functions: N — oo

de t[ en J]I,J 1

S X1, .- -5 XN
QP—ZP 1—) sy(xt, ..., xn) =

b)) [Tic;(xi =)

Many problems deal with N — oco. But how can you work with
functions of growing number of variables?



Schur generating functions: N — oo

de t[ en J]I,J 1

S X1, .- -5 XN
QP—ZP 1—) sy(xt, ..., xn) =

b)) [Tic;(xi =)

Many problems deal with N — oco. But how can you work with
functions of growing number of variables?

General idea: Asymptotic probabilistic characteristics of A's are in
correspondence with finite-dimensional features of Gp as N — oo.

There are topological choices to be made depending on the
desired asymptotic regime.



Asymptotic statement of (Bufetov—Gorin—13,16,17)
« RO G|, . G
_ SZ(X,...,XN) ° aiaa,b| G d,
Q_Z]P)(g) Se(].,...,].) ( i ( J') n( )"":1—> 7t.J
* [[15=1 9] In(g)}zl — 0, [{ia}] >2

if and only if
N ; o Lok — p(k)
P = Z (gf) * Epkpm — EpkEpm — coo(k, m)
i=1 N ® p,. — Epy — Gaussians

o k+1
1 1 1+z caz‘%l
p(k) = [z ](k+1)(1+z)< - +(1+z);(a_1)!>
1 -1 > z? da a—1 -1
cov(k,m)=[z""w ]( ;WHQ) 2 WZ w? )
x <1+z—|—(1—|—z Z CaZ 1)!> <1tvw+(1+w)zl(c‘:”_’a;)!>

a=1




Coming next:

Schur generating functions (=harmonic analysis on U(N)) as a
tool in 2d statistical mechanics and random matrix theory.

We will develop theory in three examples:

® Lecture 2: Gaussian Unitary Ensemble as a limit in uniformly
random tilings.

® |ecture 3: Addition of large independent random matrices
leading to the free convolution.

® Lecture 4: 8 — oo limit of random matrix operations leading
to polynomial operations preserving real-rootedness ( “finite
free probability”)




