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Roadmap
• What are general β random matrices?

• Lecture 1: corners of β random matrices.

• Problem set 1.

• Lecture 2: sums of β random matrices.

• Problem set 2.

• Lecture 3: questions and discussion of
problem sets.

[EXCLUSIVE OFFER: Submit homework - receive a postcard!]

Lectures 1 and 2 are recorded, but Lecture 3 (office hours) is not!

This is NOT a research talk about brand new results.
Instead we explore basic structures and definitions.

(See “Lattice Paths, Combinatorics and Interactions” in 2 weeks).



Recap: β–corners process

Fix β > 0
N = 1, 2, . . .
a1, . . . , aN ∈ R
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Definition. Eigenvalues of corners of N × N random β-matrix
with uniformly random eigenvectors and fixed eigenvalues (ai )

N
i=1

are a triangular array (xki )1≤i≤N satisfying

xki+1 ≤ xki ≤ xk+1
i+1 , (xN1 , . . . , x

N
N ) = (a1, . . . , aN),

with distribution of density[
N∏

k=1

Γ (βk2 )

Γ (β2 )k

]
·
N−1∏
k=1

∏
1≤i<j≤k

(xki − xkj )2−β
k∏

a=1

k+1∏
b=1

|xka − xk+1
b |β/2−1.

Next question: What is the sum of random β-matrices?



Toy question: sum of independent random variables I



Toy question: sum of independent random variables II



Sum of matrices at β = 1, 2, 4.

Theorem. Random N ×N self-adjoint independent matrices A, B.
The law of the sum C = A + B is uniquely determined by

E exp (iTrace(CZ )) = E exp (iTrace(AZ )) · E exp (iTrace(BZ )) ,

which should be valid for each self-adjoint Z .

Proof.



Reduction to eigenvalues

Definition 1. A: deterministic eigenvalues (a1, . . . , aN) and
uniformly random eigenvectors (invariant under A 7→ UAU∗).
Then law of Trace(AZ ) depends only on eigenvalues (zi )

N
i=1 of Z

and we define the multivariate Bessel function through

Ba1,...,aN (iz1, . . . , izN ; β/2) = E exp (iTrace(AZ ))

Proof.



Reduction to corners

Fix β > 0
N = 1, 2, . . .
a1, . . . , aN ∈ R
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Definition 2. Take β–corners process with top row (ai )
N
i=1;

(xki )1≤i≤k≤N . The multivariate Bessel function is:

Ba1,...,aN (z1, . . . , zN ; β/2) = E exp

[
N∑

k=1

zk

(
k∑

i=1

xki −
k−1∑
i=1

xk−1i

)]

Important: This makes sense for each β > 0.



Proposition. Two definitions coincide, i.e., at β = 1, 2, 4 we have

E exp (iTrace(AZ )) = E exp

[
i

N∑
k=1

zk

(
k∑

i=1

xki −
k−1∑
i=1

xk−1i

)]

Proof.



Eigenvalues of the sum of β random matrices

Definition. Given deterministic eigenvalues (ai )
N
i=1 and (bi )

N
i=1 we

define (random) eigenvalues (ci )
N
i=1 of the sum of independent

β-matrices with uniformly random eigenvectors through

EBc1,...,cN (z1, . . . , zN ; β/2)

= Ba1,...,aN (z1, . . . , zN ; β/2) · Bb1,...,bN (z1, . . . , zN ; β/2)

• c = a�β b at β = 1, 2, 4 is the same old addition.

• At general β > 0 one needs to show the existence of
probability measure defining (ci )

N
i=1.

• It is well-defined as a generalized function (distribution), but
being a measure is a known open problem.

[≈ need positivity of structure constants of multiplication for Macdonald polynomials]



Example: β–addition at N = 1.



What are Ba1,...,aN(z1, . . . , zN ;
β
2 )?

• Symmetric functions in z1, . . . , zN .
• Limits of Jack or Macdonald polynomials.

N = 1 : eaz = lim
m→∞

(1 + z/m)bmac

• Explicit Taylor series expansion in Jack polynomials.

N = 1 : eaz = 1 + az + (az)2

2! + (az)2

3! + . . .

Ba1,...,aN (z1, . . . , zN ; β
2 ) =

∑
µ

Pµ(z1, . . . , zN ; β
2 )Qµ(a1, . . . , aN ; β

2 )

(N β
2 )µ

• Eigenfunctions of (symmetric) Dunkl operators

Di :=
∂

∂zi
+
β

2

∑
j :j 6=i

1

zi − zj
◦ (1− si ,j)

N∑
i=1

(Di )
kBa1,...,aN (z1, . . . , zN ; β

2 ) =
N∑
i=1

(ai )
kBa1,...,aN (z1, . . . , zN ; β

2 )



Theorem: At β = 0 the operation (a, b) 7→ c = a�0 b has the form:
Choose a permutation σ ∈ S(N) uniformly at random and set
(c1, . . . , cN) = (a1 + bσ(1), . . . , aN + bσ(N)).

Proof I.



Theorem: At β = 0 the operation (a, b) 7→ c = a�0 b has the form:
Choose a permutation σ ∈ S(N) uniformly at random and set
(c1, . . . , cN) = (a1 + bσ(1), . . . , aN + bσ(N)).

Proof II.



Expected characteristic polynomial
Theorem. At β = 0 the operation (a, b) 7→ c = a�0 b is:
Choose a permutation σ ∈ S(N) uniformly at random and set
(c1, . . . , cN) = (a1 + bσ(1), . . . , aN + bσ(N)).

Corollary. At β = 0, we have

E
N∏
i=1

(z − ci ) =
1

N!

∑
σ∈S(N)

N∏
i=1

(z − ai − bσ(i)).

Theorem. The last expectation identity holds for all β ∈ [0,+∞].
[At β =∞, expectation sign can be removed.]

Hint on the proof.
• Expectations of Jack polynomials in eigenvalues (c1, . . . , cN).
• One-column Jacks do not depend on β:
P(1k )(c1, . . . , cN ; β2 ) = ek(c1, . . . , cN).
• There are coefficients of expected characteristic polynomial.
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Another asymptotic result: free convolution
Theorem. Suppose that as N →∞

1

N

N∑
i=1

δai/N → µa, with Gµa(z) =

∫
µa(dx)

z − x
,

1

N

N∑
i=1

δbi/N → µb, with Gµb(z) =

∫
µb(dx)

z − x
.

Then for c = a�β b

1

N

N∑
i=1

δci/N → µc , with Gµc (z) =

∫
µc(dx)

z − x
,

Rµ(z) = (Gµ(z))(−1) − 1

z
, Rµc (z) = Rµa(z) + Rµb(z) .

Holds for each β > 0, but not for β = 0.
[Come back to my talk in two weeks for the critical βN → γ regime.]



End of Lecture 2. Don’t forget about Problem set 2.



End of Lecture 2. Don’t forget about Problem set 2.


