General beta random matrix theory (at MATRIX Institute)

Vadim Gorin

University of Wisconsin — Madison and Institute for Information Transmission Problems of Russian Academy of Sciences

> Lecture 2 June 2021

Roadmap

- What are general β random matrices?
- Lecture 1: corners of β random matrices.
- Problem set 1.
- Lecture 2: sums of β random matrices.
- Problem set 2.
- Lecture 3: questions and discussion of problem sets.

[EXCLUSIVE OFFER: Submit homework - receive a postcard!]

Lectures 1 and 2 are recorded, but Lecture 3 (office hours) is not!

This is NOT a research talk about brand new results. Instead we explore basic structures and definitions. (See "Lattice Paths, Combinatorics and Interactions" in 2 weeks).

Definition. Eigenvalues of corners of $N \times N$ random β -matrix with uniformly random eigenvectors and fixed eigenvalues $(a_i)_{i=1}^N$ are a triangular array $(x_i^k)_{1 \le i \le N}$ satisfying

$$x_{i+1}^k \le x_i^k \le x_{i+1}^{k+1},$$
 $(x_1^N, \dots, x_N^N) = (a_1, \dots, a_N),$

with distribution of density

$$\left[\prod_{k=1}^{N} \frac{\Gamma(\frac{\beta k}{2})}{\Gamma(\frac{\beta}{2})^{k}}\right] \cdot \prod_{k=1}^{N-1} \prod_{1 \le i < j \le k} (x_{i}^{k} - x_{j}^{k})^{2-\beta} \prod_{a=1}^{k} \prod_{b=1}^{k+1} |x_{a}^{k} - x_{b}^{k+1}|^{\beta/2-1}.$$

Next question: What is the sum of random β -matrices?

Toy question: sum of independent random variables

Toy question: sum of independent random variables

Ш

Sum of matrices at $\beta = 1, 2, 4$.

Theorem. Random $N \times N$ self-adjoint independent matrices A, B. The law of the sum C = A + B is uniquely determined by

 $\mathbb{E} \exp (i \operatorname{Trace}(CZ)) = \mathbb{E} \exp (i \operatorname{Trace}(AZ)) \cdot \mathbb{E} \exp (i \operatorname{Trace}(BZ)),$

which should be valid for each self-adjoint Z.

Proof.

Reduction to eigenvalues

Definition 1. A: deterministic eigenvalues (a_1, \ldots, a_N) and uniformly random eigenvectors (invariant under $A \mapsto UAU^*$). Then law of $\operatorname{Trace}(AZ)$ depends only on eigenvalues $(z_i)_{i=1}^N$ of Z and we define the **multivariate Bessel function** through

$$B_{a_1,\ldots,a_N}(\mathbf{i}z_1,\ldots,\mathbf{i}z_N;\ \beta/2) = \mathbb{E}\exp\left(\mathbf{i}\operatorname{Trace}(AZ)\right)$$

Proof.

Reduction to corners

 $(x_i^k)_{1 \le i \le k \le N}$. The multivariate Bessel function is:

$$B_{a_1,...,a_N}(z_1,...,z_N; \beta/2) = \mathbb{E} \exp \left[\sum_{k=1}^N z_k \left(\sum_{i=1}^k x_i^k - \sum_{i=1}^{k-1} x_i^{k-1}\right)\right]$$

Important: This makes sense for each $\beta > 0$.

Proposition. Two definitions coincide, i.e., at $\beta = 1, 2, 4$ we have

$$\mathbb{E}\exp\left(\mathbf{i}\operatorname{Trace}(AZ)\right) = \mathbb{E}\exp\left[\mathbf{i}\sum_{k=1}^{N} z_{k}\left(\sum_{i=1}^{k} x_{i}^{k} - \sum_{i=1}^{k-1} x_{i}^{k-1}\right)\right]$$

Proof.

Eigenvalues of the sum of β random matrices

Definition. Given deterministic eigenvalues $(a_i)_{i=1}^N$ and $(b_i)_{i=1}^N$ we define (random) eigenvalues $(c_i)_{i=1}^N$ of the sum of independent β -matrices with uniformly random eigenvectors through

$$\mathbb{E}B_{c_1,\ldots,c_N}(z_1,\ldots,z_N;\beta/2) \\ = B_{a_1,\ldots,a_N}(z_1,\ldots,z_N;\beta/2) \cdot B_{b_1,\ldots,b_N}(z_1,\ldots,z_N;\beta/2)$$

- $c = a \boxplus_{\beta} b$ at $\beta = 1, 2, 4$ is the same old addition.
- At general β > 0 one needs to show the existence of probability measure defining (c_i)^N_{i=1}.
- It is well-defined as a generalized function (distribution), but being a measure is a known open problem.

[pprox need positivity of structure constants of multiplication for Macdonald polynomials]

Example: β -addition at N = 1.

What are $B_{a_1,...,a_N}(z_1,...,z_N; \frac{\beta}{2})$?

- Symmetric functions in z_1, \ldots, z_N .
- Limits of Jack or Macdonald polynomials. N = 1: $e^{az} = \lim_{m \to \infty} (1 + z/m)^{\lfloor ma \rfloor}$
- Explicit Taylor series expansion in Jack polynomials. N = 1: $e^{az} = 1 + az + \frac{(az)^2}{2!} + \frac{(az)^2}{2!} + \dots$

$$B_{a_1,\ldots,a_N}(z_1,\ldots,z_N;\frac{\beta}{2}) = \sum_{\mu} \frac{P_{\mu}(z_1,\ldots,z_N;\frac{\beta}{2})Q_{\mu}(a_1,\ldots,a_N;\frac{\beta}{2})}{(N\frac{\beta}{2})_{\mu}}$$

• Eigenfunctions of (symmetric) Dunkl operators

$$D_i := rac{\partial}{\partial z_i} + rac{eta}{2} \sum_{j:j
eq i} rac{1}{z_i - z_j} \circ (1 - s_{i,j})$$

 $\sum_{i=1}^{N} (D_i)^k B_{a_1,\ldots,a_N}(z_1,\ldots,z_N;\frac{\beta}{2}) = \sum_{i=1}^{N} (a_i)^k B_{a_1,\ldots,a_N}(z_1,\ldots,z_N;\frac{\beta}{2})$

Theorem: At $\beta = 0$ the operation $(a, b) \mapsto c = a \boxplus_0 b$ has the form: Choose a permutation $\sigma \in S(N)$ uniformly at random and set $(c_1, \ldots, c_N) = (a_1 + b_{\sigma(1)}, \ldots, a_N + b_{\sigma(N)}).$

Proof I.

Theorem: At $\beta = 0$ the operation $(a, b) \mapsto c = a \boxplus_0 b$ has the form: Choose a permutation $\sigma \in S(N)$ uniformly at random and set $(c_1, \ldots, c_N) = (a_1 + b_{\sigma(1)}, \ldots, a_N + b_{\sigma(N)}).$

Proof II.

Expected characteristic polynomial Theorem. At $\beta = 0$ the operation $(a, b) \mapsto c = a \boxplus_0 b$ is: Choose a permutation $\sigma \in S(N)$ uniformly at random and set $(c_1, \ldots, c_N) = (a_1 + b_{\sigma(1)}, \ldots, a_N + b_{\sigma(N)}).$

Corollary. At $\beta = 0$, we have

$$\mathbb{E}\prod_{i=1}^{N}(z-c_i)=\frac{1}{N!}\sum_{\sigma\in S(N)}\prod_{i=1}^{N}(z-a_i-b_{\sigma(i)}).$$

Theorem. The last expectation identity holds for all $\beta \in [0, +\infty]$. [At $\beta = \infty$, expectation sign can be removed.] **Expected characteristic polynomial Theorem.** At $\beta = 0$ the operation $(a, b) \mapsto c = a \boxplus_0 b$ is: Choose a permutation $\sigma \in S(N)$ uniformly at random and set $(c_1, \ldots, c_N) = (a_1 + b_{\sigma(1)}, \ldots, a_N + b_{\sigma(N)}).$

Corollary. At $\beta = 0$, we have

$$\mathbb{E}\prod_{i=1}^{N}(z-c_i)=\frac{1}{N!}\sum_{\sigma\in S(N)}\prod_{i=1}^{N}(z-a_i-b_{\sigma(i)}).$$

Theorem. The last expectation identity holds for all $\beta \in [0, +\infty]$. [At $\beta = \infty$, expectation sign can be removed.]

Hint on the proof.

- Expectations of Jack polynomials in eigenvalues (c_1, \ldots, c_N) .
- One-column Jacks do not depend on β : $P_{(1^k)}(c_1, \ldots, c_N; \frac{\beta}{2}) = e_k(c_1, \ldots, c_N).$
- There are coefficients of expected characteristic polynomial.

Another asymptotic result: free convolution Theorem. Suppose that as $N \rightarrow \infty$

$$rac{1}{N}\sum_{i=1}^N \delta_{a_i/N} o \mu_a, \qquad ext{with} \quad G_{\mu_a}(z) = \int rac{\mu_a(dx)}{z-x},$$

$$\frac{1}{N}\sum_{i=1}^N \delta_{b_i/N} \to \mu_b, \qquad \text{with} \quad G_{\mu_b}(z) = \int \frac{\mu_b(dx)}{z-x}.$$

Then for $c = a \boxplus_{\beta} b$

$$\frac{1}{N}\sum_{i=1}^N \delta_{c_i/N} \to \mu_c, \qquad \text{with} \quad G_{\mu_c}(z) = \int \frac{\mu_c(dx)}{z-x},$$

[Come back to my talk in two weeks for the critical $\beta \textit{N} \rightarrow \gamma$ regime.]

End of Lecture 2.

Don't forget about Problem set 2.

												_

End of Lecture 2.

Don't forget about Problem set 2.

												_