General beta random matrix theory (at MATRIX Institute)

Vadim Gorin

University of Wisconsin - Madison
and
Institute for Information Transmission Problems of Russian Academy of Sciences

Lecture 2
June 2021

Roadmap

- What are general β random matrices?
- Lecture 1: corners of β random matrices.
- Problem set 1.
- Lecture 2: sums of β random matrices.
- Problem set 2.
- Lecture 3: questions and discussion of problem sets.
[EXCLUSIVE OFFER: Submit homework - receive a postcard!]

Lectures 1 and 2 are recorded, but Lecture 3 (office hours) is not!
This is NOT a research talk about brand new results. Instead we explore basic structures and definitions.
(See "Lattice Paths, Combinatorics and Interactions" in 2 weeks).

Recap: β-corners process

Fix $\beta>0$
$N=1,2, \ldots$
$a_{1}, \ldots, a_{N} \in \mathbb{R}$

Definition. Eigenvalues of corners of $N \times N$ random β-matrix with uniformly random eigenvectors and fixed eigenvalues $\left(a_{i}\right)_{i=1}^{N}$ are a triangular array $\left(x_{i}^{k}\right)_{1 \leq i \leq N}$ satisfying

$$
x_{i+1}^{k} \leq x_{i}^{k} \leq x_{i+1}^{k+1}, \quad\left(x_{1}^{N}, \ldots, x_{N}^{N}\right)=\left(a_{1}, \ldots, a_{N}\right)
$$

with distribution of density

$$
\left[\prod_{k=1}^{N} \frac{\Gamma\left(\frac{\beta k}{2}\right)}{\Gamma\left(\frac{\beta}{2}\right)^{k}}\right] \cdot \prod_{k=1}^{N-1} \prod_{1 \leq i<j \leq k}\left(x_{i}^{k}-x_{j}^{k}\right)^{2-\beta} \prod_{a=1}^{k} \prod_{b=1}^{k+1}\left|x_{a}^{k}-x_{b}^{k+1}\right|^{\beta / 2-1}
$$

Next question: What is the sum of random β-matrices?

Toy question: sum of independent random variables

Toy question: sum of independent random variables

Sum of matrices at $\beta=1,2,4$.

Theorem. Random $N \times N$ self-adjoint independent matrices A, B. The law of the sum $C=A+B$ is uniquely determined by

```
E exp (iTrace(CZ)) =\mathbb{E}\operatorname{exp}(iTrace(AZ)) ) \mathbb{E}\operatorname{exp}(iTrace(BZ)),
```

which should be valid for each self-adjoint Z.
Proof.

Reduction to eigenvalues

Definition 1. A : deterministic eigenvalues $\left(a_{1}, \ldots, a_{N}\right)$ and uniformly random eigenvectors (invariant under $A \mapsto U A U^{*}$). Then law of Trace $(A Z)$ depends only on eigenvalues $\left(z_{i}\right)_{i=1}^{N}$ of Z and we define the multivariate Bessel function through

$$
B_{a_{1}, \ldots, a_{N}}\left(\mathbf{i} z_{1}, \ldots, \mathbf{i} z_{N} ; \beta / 2\right)=\mathbb{E} \exp (\mathbf{i T r a c e}(A Z))
$$

Proof.

Reduction to corners

Fix $\beta>0$
$N=1,2, \ldots$
$a_{1}, \ldots, a_{N} \in \mathbb{R}$

Definition 2. Take β-corners process with top row $\left(a_{i}\right)_{i=1}^{N}$; $\left(x_{i}^{k}\right)_{1 \leq i \leq k \leq N}$. The multivariate Bessel function is:

$$
B_{a_{1}, \ldots, a_{N}}\left(z_{1}, \ldots, z_{N} ; \beta / 2\right)=\mathbb{E} \exp \left[\sum_{k=1}^{N} z_{k}\left(\sum_{i=1}^{k} x_{i}^{k}-\sum_{i=1}^{k-1} x_{i}^{k-1}\right)\right]
$$

Important: This makes sense for each $\beta>0$.

Proposition. Two definitions coincide, i.e., at $\beta=1,2,4$ we have

$$
\mathbb{E} \exp (\mathbf{i} \operatorname{Trace}(A Z))=\mathbb{E} \exp \left[\mathbf{i} \sum_{k=1}^{N} z_{k}\left(\sum_{i=1}^{k} x_{i}^{k}-\sum_{i=1}^{k-1} x_{i}^{k-1}\right)\right]
$$

Proof.

Eigenvalues of the sum of β random matrices

Definition. Given deterministic eigenvalues $\left(a_{i}\right)_{i=1}^{N}$ and $\left(b_{i}\right)_{i=1}^{N}$ we define (random) eigenvalues $\left(c_{i}\right)_{i=1}^{N}$ of the sum of independent β-matrices with uniformly random eigenvectors through

$$
\begin{aligned}
& \mathbb{E} B_{c_{1}, \ldots, c_{N}}\left(z_{1}, \ldots, z_{N} ; \beta / 2\right) \\
& \quad=B_{a_{1}, \ldots, a_{N}}\left(z_{1}, \ldots, z_{N} ; \beta / 2\right) \cdot B_{b_{1}, \ldots, b_{N}}\left(z_{1}, \ldots, z_{N} ; \beta / 2\right)
\end{aligned}
$$

- $c=a \boxplus_{\beta} b$ at $\beta=1,2,4$ is the same old addition.
- At general $\beta>0$ one needs to show the existence of probability measure defining $\left(c_{i}\right)_{i=1}^{N}$.
- It is well-defined as a generalized function (distribution), but being a measure is a known open problem.
[\approx need positivity of structure constants of multiplication for Macdonald polynomials]

Example: β-addition at $N=1$.

What are $B_{a_{1}, \ldots, a_{N}}\left(z_{1}, \ldots, z_{N} ; \frac{\beta}{2}\right)$?

- Symmetric functions in z_{1}, \ldots, z_{N}.
- Limits of Jack or Macdonald polynomials.

$$
N=1: \quad e^{a z}=\lim _{m \rightarrow \infty}(1+z / m)^{\lfloor m a\rfloor}
$$

- Explicit Taylor series expansion in Jack polynomials.

$$
\begin{aligned}
& N=1: \quad e^{a z}=1+a z+\frac{(a z)^{2}}{2!}+\frac{(a z)^{2}}{3!}+\ldots \\
& B_{a_{1}, \ldots, a_{N}}\left(z_{1}, \ldots, z_{N} ; \frac{\beta}{2}\right)=\sum_{\mu} \frac{P_{\mu}\left(z_{1}, \ldots, z_{N} ; \frac{\beta}{2}\right) Q_{\mu}\left(a_{1}, \ldots, a_{N} ; \frac{\beta}{2}\right)}{\left(N \frac{\beta}{2}\right)_{\mu}}
\end{aligned}
$$

- Eigenfunctions of (symmetric) Dunkl operators

$$
\begin{gathered}
D_{i}:=\frac{\partial}{\partial z_{i}}+\frac{\beta}{2} \sum_{j: j \neq i} \frac{1}{z_{i}-z_{j}} \circ\left(1-s_{i, j}\right) \\
\sum_{i=1}^{N}\left(D_{i}\right)^{k} B_{a_{1}, \ldots, a_{N}}\left(z_{1}, \ldots, z_{N} ; \frac{\beta}{2}\right)=\sum_{i=1}^{N}\left(a_{i}\right)^{k} B_{a_{1}, \ldots, a_{N}}\left(z_{1}, \ldots, z_{N} ; \frac{\beta}{2}\right)
\end{gathered}
$$

Theorem: At $\beta=0$ the operation $(a, b) \mapsto c=a \boxplus_{0} b$ has the form: Choose a permutation $\sigma \in S(N)$ uniformly at random and set $\left(c_{1}, \ldots, c_{N}\right)=\left(a_{1}+b_{\sigma(1)}, \ldots, a_{N}+b_{\sigma(N)}\right)$.

Proof 1.

Theorem: At $\beta=0$ the operation $(a, b) \mapsto c=a \boxplus_{0} b$ has the form: Choose a permutation $\sigma \in S(N)$ uniformly at random and set $\left(c_{1}, \ldots, c_{N}\right)=\left(a_{1}+b_{\sigma(1)}, \ldots, a_{N}+b_{\sigma(N)}\right)$.

Proof II.

Expected characteristic polynomial

Theorem. At $\beta=0$ the operation $(a, b) \mapsto c=a \boxplus_{0} b$ is: Choose a permutation $\sigma \in S(N)$ uniformly at random and set $\left(c_{1}, \ldots, c_{N}\right)=\left(a_{1}+b_{\sigma(1)}, \ldots, a_{N}+b_{\sigma(N)}\right)$.

Corollary. At $\beta=0$, we have

$$
\mathbb{E} \prod_{i=1}^{N}\left(z-c_{i}\right)=\frac{1}{N!} \sum_{\sigma \in S(N)} \prod_{i=1}^{N}\left(z-a_{i}-b_{\sigma(i)}\right)
$$

Theorem. The last expectation identity holds for all $\beta \in[0,+\infty]$.
[At $\beta=\infty$, expectation sign can be removed.]

Expected characteristic polynomial

Theorem. At $\beta=0$ the operation $(a, b) \mapsto c=a \boxplus_{0} b$ is:
Choose a permutation $\sigma \in S(N)$ uniformly at random and set $\left(c_{1}, \ldots, c_{N}\right)=\left(a_{1}+b_{\sigma(1)}, \ldots, a_{N}+b_{\sigma(N)}\right)$.

Corollary. At $\beta=0$, we have

$$
\mathbb{E} \prod_{i=1}^{N}\left(z-c_{i}\right)=\frac{1}{N!} \sum_{\sigma \in S(N)} \prod_{i=1}^{N}\left(z-a_{i}-b_{\sigma(i)}\right)
$$

Theorem. The last expectation identity holds for all $\beta \in[0,+\infty]$. [At $\beta=\infty$, expectation sign can be removed.]

Hint on the proof.

- Expectations of Jack polynomials in eigenvalues $\left(c_{1}, \ldots, c_{N}\right)$.
- One-column Jacks do not depend on β :

$$
P_{\left(1^{k}\right)}\left(c_{1}, \ldots, c_{N} ; \frac{\beta}{2}\right)=e_{k}\left(c_{1}, \ldots, c_{N}\right) .
$$

- There are coefficients of expected characteristic polynomial.

Another asymptotic result: free convolution

Theorem. Suppose that as $N \rightarrow \infty$

$$
\begin{aligned}
& \frac{1}{N} \sum_{i=1}^{N} \delta_{a_{i} / N} \rightarrow \mu_{a}, \quad \text { with } \quad G_{\mu_{a}}(z)=\int \frac{\mu_{a}(d x)}{z-x}, \\
& \frac{1}{N} \sum_{i=1}^{N} \delta_{b_{i} / N} \rightarrow \mu_{b}, \quad \text { with } \quad G_{\mu_{b}}(z)=\int \frac{\mu_{b}(d x)}{z-x}, \\
& \text { Then for } c=a \boxplus_{\beta} b \\
& \frac{1}{N} \sum_{i=1}^{N} \delta_{c_{i} / N} \rightarrow \mu_{c}, \quad \text { with } \quad G_{\mu_{c}}(z)=\int \frac{\mu_{c}(d x)}{z-x}, \\
& R_{\mu}(z)=\left(G_{\mu}(z)\right)^{(-1)}-\frac{1}{z}, \quad R_{\mu_{c}(z)=R_{\mu_{a}}(z)+R_{\mu_{b}}(z) .} .
\end{aligned}
$$

Holds for each $\beta>0$, but not for $\beta=0$.
[Come back to my talk in two weeks for the critical $\beta N \rightarrow \gamma$ regime.]

