General beta random matrix theory (at MATRIX Institute)

Vadim Gorin

University of Wisconsin - Madison
and
Institute for Information Transmission Problems of Russian Academy of Sciences

Lecture 1
June 2021

Roadmap

- What are general β random matrices?
- Lecture 1: corners of β random matrices.
- Problem set 1.
- Lecture 2: sums of β random matrices.
- Problem set 2.
- Lecture 3: questions and discussion of problem sets.
[EXCLUSIVE OFFER: Submit homework - receive a postcard!]

Lectures 1 and 2 are recorded, but Lecture 3 (office hours) is not!
This is NOT a research talk about brand new results. Instead we explore basic structures and definitions.
(See "Lattice Paths, Combinatorics and Interactions" in 2 weeks).

Random matrix theory

The study of random large matrices and their eigenvalues.

Origins:

- Representation theory of the classical groups since 1920s. [Groups of matrices come with normalized measures.]
- Multidimensional statistics since 1930s.
[Data is random and is naturally organized in 2-dimensional arrays.]
- Theoretical physics since 1950s.
[Energy levels in heavy nuclei modelled by eigenvalues.]
- Number theory since 1970s.
[Zeros of Riemann zeta-function modelled by eigenvalues.]
- Reemphasized in modern applied and statistical problems. ["Big data" revolution.]

The central and the most basic random matrix object is the Gaussian Orthogonal/Unitary/Symplectic Ensemble.

Gaussian β ensembles

$N \times N$ matrix X with i.i.d. real/complex/quaternion Gaussian random variables normalized so that their real parts are $\mathcal{N}\left(0, \frac{2}{\beta}\right)$.

$$
M=\frac{X+X^{*}}{2}=\left(\begin{array}{ccc}
M_{11} & M_{12} & \ldots \\
M_{21} & M_{22} & \\
\vdots & & \ddots
\end{array}\right)
$$

The density of eigenvalues $x_{1}<x_{2}<\cdots<x_{N}$:

$$
\sim \prod_{1 \leq i<j \leq N}\left(x_{j}-x_{i}\right)^{\beta} \prod_{i=1}^{N} \exp \left(-\frac{\beta}{4}\left(x_{i}\right)^{2}\right) .
$$

$\beta=1,2,4$ is the dimension of the base (skew-) field.
After today's lecture and pset you should be able to prove it!

Gaussian β ensembles

$$
\prod_{1 \leq i<j \leq N}\left(x_{j}-x_{i}\right)^{\beta} \prod_{i=1}^{N} \exp \left(-\frac{\beta}{4}\left(x_{i}\right)^{2}\right)
$$

First correlation function for $N=3: \quad \frac{1}{3} \mathbb{E}\left[\delta_{x_{1}}+\delta_{x_{2}}+\delta_{x_{3}}\right]$

Five meaningul values ask for a unified treatment of $\beta \in[0,+\infty]$
This is the topic of general β random matrix theory.

Tasks of β random matrix theory

- Asymptotic questions: E.g., $N \rightarrow \infty$ behavior of density

$$
\begin{aligned}
& \prod_{1 \leq i<j \leq N}\left(x_{j}-x_{i}\right)^{\beta} \prod_{i=1}^{N} V\left(x_{i}\right) \\
& \text { with fixed } \beta>0, \quad \text { or } \beta \rightarrow 0, \quad \text { or } \quad \beta \rightarrow \infty
\end{aligned}
$$

- Algebraic questions:

How do we add and multiply general β random matrices?

$$
\text { self-adjoint } \beta \text { random matrices }
$$

eigenvectors
OPEN
eigenvalues
This course

Disclaimer: There is no field of dimension β.

Algebra: Rank 1 operations as a building block.

The key computation

$N \times N$ matrix X with i.i.d. real/complex/quaternion Gaussian random variables with real parts $\mathcal{N}\left(0, \frac{2}{\beta}\right) . M=\frac{X+X^{*}}{2}$.

$$
\left(\begin{array}{lll|l}
M_{11} & M_{12} & M_{13} & M_{14} \\
M_{21} & M_{22} & M_{23} & M_{24} \\
M_{31} & M_{32} & M_{33} & M_{34} \\
\hline M_{41} & M_{42} & M_{43} & M_{44}
\end{array}\right)
$$

Eigenvalues:

- $\left(\lambda_{i}\right)_{i=1}^{N}-N \times N$
- $\left(\mu_{i}\right)_{i=1}^{N-1}-(N-1) \times(N-1)$

Theorem. Conditional distributions are:

1. $\left(\mu_{i}\right)$ given $\left(\lambda_{i}\right)$ solve $\sum_{i=1}^{N} \frac{\xi_{i}}{z-\lambda_{i}}=0$.
2. $\left(\lambda_{i}\right)$ given $\left(\mu_{i}\right)$ solve $\sum_{i=1}^{N-1} \frac{\xi_{i}^{\prime}}{z-\mu_{i}}=z+\mathcal{N}\left(0, \frac{2}{\beta}\right)$,
ξ_{i} and ξ_{i}^{\prime} are i.i.d. $\frac{1}{\beta} \chi_{\beta}^{2}$ random variables, that is $\sum_{j=1}^{\beta} \mathcal{N}_{j}^{2}\left(0, \frac{1}{\beta}\right)$.
Important: This is a basis of extension to all $\beta \in[0,+\infty]$.

Proof that $\left(\lambda_{i}\right)$ given $\left(\mu_{i}\right)$ solve $\sum_{i=1}^{N-1} \frac{\xi_{i}^{\prime}}{z-\mu_{i}}=z+\mathcal{N}\left(0, \frac{2}{\beta}\right): \quad$ I

Proof that $\left(\lambda_{i}\right)$ given $\left(\mu_{i}\right)$ solve $\sum_{i=1}^{N-1} \frac{\xi_{i}^{\prime}}{z-\mu_{i}}=z+\mathcal{N}\left(0, \frac{2}{\beta}\right)$: ॥

Proof that $\left(\lambda_{i}\right)$ given $\left(\mu_{i}\right)$ solve $\sum_{i=1}^{N-1} \frac{\xi_{i}^{\prime}}{z-\mu_{i}}=z+\mathcal{N}\left(0, \frac{2}{\beta}\right)$: III

Interlacement of eigenvalues

Corollary 1. The eigenvalues of a matrix and its corner interlace:

$$
\lambda_{1} \leq \mu_{1} \leq \lambda_{2} \leq \cdots \leq \mu_{N-1} \leq \lambda_{N}
$$

Proof.

Corollary 2:The multilevel densities of $\mathrm{G} \beta \mathrm{E}$

Infinite matrix X with i.i.d. real/complex/quaternion Gaussian random variables normalized so that their real parts are $\mathcal{N}\left(0, \frac{2}{\beta}\right)$.

All corners of $M=\frac{X+X^{*}}{2}$

$$
\left(\begin{array}{cccc}
M_{11} & M_{12} & M_{13} & M_{14} \\
\hline M_{21} & M_{22} & M_{23} & M_{24} \\
\hline M_{31} & M_{32} & M_{33} & M_{34} \\
\hline M_{41} & M_{42} & M_{43} & M_{44}
\end{array}\right)
$$

Joint density of interlacing eigenvalues.
$\prod_{k=1}^{N-1} \prod_{1 \leq i<j \leq k}\left(x_{i}^{k}-x_{j}^{k}\right)^{2-\beta} \prod_{a=1}^{k} \prod_{b=1}^{k+1}\left|x_{a}^{k}-x_{b}^{k+1}\right|^{\beta / 2-1} \prod_{i=1}^{N} \exp \left(-\frac{\beta}{4}\left(x_{i}^{N}\right)^{2}\right)$
Gaussian β corners process

Corollary 3: β-corners processes

A self-adjoint matrix M whose law is invariant under $M \mapsto U M U^{*}$ (U - orthogonal/unitary/symplectic if $\beta=1,2,4$)
Eigenvalues of corners

$$
\left(\begin{array}{ccc|c}
M_{11} & M_{12} & M_{13} & M_{14} \\
\hline M_{21} & M_{22} & M_{23} & M_{24} \\
\hline M_{31} & M_{32} & M_{33} & M_{34} \\
\hline M_{41} & M_{42} & M_{43} & M_{44}
\end{array}\right)
$$

Conditionally on $\left(x_{1}^{N}, \ldots, x_{N}^{N}\right)=\left(a_{1}, \ldots, a_{N}\right)$, the joint law is

$$
\prod_{k=1}^{N-1} \prod_{1 \leq i<j \leq k}\left(x_{i}^{k}-x_{j}^{k}\right)^{2-\beta} \prod_{a=1}^{k} \prod_{b=1}^{k+1}\left|x_{a}^{k}-x_{b}^{k+1}\right|^{\beta / 2-1}
$$

- A basis of extension from $\beta=1,2,4$ to general $\beta>0$.
- Consistent with Gaussian β Ensembles.

Sketch of the proof for multilevel densities (Corollaries 2 and 3) ।

Sketch of the proof for multilevel densities (Corollaries 2 and 3) III

Conclusion: eigenvalues of corners of β random matrices

Fix $\beta>0$
$N=1,2, \ldots$
$a_{1}, \ldots, a_{N} \in \mathbb{R}$

Definition. Eigenvalues of corners of $N \times N$ random β-matrix with uniformly random eigenvectors and fixed eigenvalues $\left(a_{i}\right)_{i=1}^{N}$ are a triangular array $\left(x_{i}^{k}\right)_{1 \leq i \leq N}$ satisfying

$$
x_{i+1}^{k} \leq x_{i}^{k} \leq x_{i+1}^{k+1}, \quad\left(x_{1}^{N}, \ldots, x_{N}^{N}\right)=\left(a_{1}, \ldots, a_{N}\right)
$$

with distribution of density

$$
\left[\prod_{k=1}^{N} \frac{\Gamma\left(\frac{\beta k}{2}\right)}{\Gamma\left(\frac{\beta}{2}\right)^{k}}\right] \cdot \prod_{k=1}^{N-1} \prod_{1 \leq i<j \leq k}\left(x_{i}^{k}-x_{j}^{k}\right)^{2-\beta} \prod_{a=1}^{k} \prod_{b=1}^{k+1}\left|x_{a}^{k}-x_{b}^{k+1}\right|^{\beta / 2-1}
$$

What about $\beta=0$ or $\beta=\infty$?

Theorem. With $\left(x_{1}^{N}, \ldots, x_{N}^{N}\right)=\left(a_{1}, \ldots, a_{N}\right)$, the eigenvalues with law

$$
\prod_{k=1}^{N-1} \prod_{1 \leq i<j \leq k}\left(x_{i}^{k}-x_{j}^{k}\right)^{2-\beta} \prod_{a=1}^{k} \prod_{b=1}^{k+1}\left|x_{a}^{k}-x_{b}^{k+1}\right|^{\beta / 2-1}
$$

converges as $\beta \rightarrow \infty$ to the roots of derivarives:

$$
\prod_{i=1}^{k}\left(z-x_{i}^{k}\right) \sim \frac{\partial^{N-k}}{\partial z^{N-k}} \prod_{j=1}^{N}\left(z-a_{j}\right), \quad k=1,2, \ldots, N
$$

Proof.

One asymptotic result

Theorem. Suppose that as $N \rightarrow \infty$

$$
\begin{gathered}
\frac{1}{N} \sum_{i=1}^{N} \delta_{a_{i} / N} \rightarrow \mu, \quad \text { with } \quad G_{\mu}(z)=\int \frac{\mu(d x)}{z-x} \\
\prod_{i=1}^{k}\left(z-x_{i}^{k}\right) \sim \frac{\partial^{N-k}}{\partial z^{N-k}} \prod_{j=1}^{N}\left(z-a_{j}\right) \quad \text { and } \quad k / N \rightarrow \alpha .
\end{gathered}
$$

Then

$$
\begin{gathered}
\frac{1}{k} \sum_{i=1}^{k} \delta_{x_{i}^{k} / k} \rightarrow \mu_{\alpha}, \quad \text { with } \quad G_{\mu_{\alpha}}(z)=\int \frac{\mu_{\alpha}(d x)}{z-x} \\
R_{\mu}(z)=\left(G_{\mu}(z)\right)^{(-1)}-\frac{1}{z}, \quad R_{\mu_{\alpha}}(z)=\left(G_{\mu_{\alpha}}(z)\right)^{(-1)}-\frac{1}{z} \\
\alpha R_{\mu_{\alpha}}(z)=R_{\mu}(z) .
\end{gathered}
$$

Same result for each $\beta>0$, but not for $\beta=0$.

