General beta random matrix theory: Problem set 2

Vadim Gorin

June 2021

These problems cover and extend the material of Lecture 2. You are very welcome to discuss your solutions, ask questions, or seek for help during the office hours (aka the third lecture). Also feel free to reach out to me at vadicgor@gmail.com for questions or discussions.

Submit your solutions as a single .pdf via e-mail to me (before the end of the summer school) with "Solutions to problem set" in the subject.

Those, who submit solutions to at least one half of the problems of the class, will receive a postcard in the mail. (Please, include your full postal address)

Problem 1. Our aim is to prove the Harish-Chandra/Itzykson-Zuber formula, which evaluates the multivariate Bessel function at $\beta=2$:

$$
\begin{equation*}
B_{a_{1}, \ldots, a_{N}}\left(z_{1}, \ldots, z_{N} ; 1\right)=\prod_{k=1}^{N-1} k!\cdot \frac{\operatorname{det}\left[e^{a_{i} z_{j}}\right]_{i, j=1}^{N}}{\prod_{i<j}\left(z_{i}-z_{j}\right)\left(a_{i}-a_{j}\right)} \tag{1}
\end{equation*}
$$

1. "Branching rule": Using the definition of Lecture 2, prove that for each $\beta>0$, we have

$$
\begin{aligned}
& B_{a_{1}, \ldots, a_{N}}\left(z_{1}, \ldots, z_{N} ; \frac{\beta}{2}\right) \\
& =\int_{b_{1}, \ldots, b_{N-1}} e^{z_{N}\left(\sum_{i=1}^{N} a_{i}-\sum_{i=1}^{N-1} b_{i}\right)} B_{b_{1}, \ldots, b_{N-1}}\left(z_{1}, \ldots, z_{N-1} ; \frac{\beta}{2}\right) P_{a_{1}, \ldots, a_{N} ; \beta}^{N \rightarrow N-1}\left(d b_{1}, \ldots, d b_{N-1}\right),
\end{aligned}
$$

where the integration goes over all b_{1}, \ldots, b_{N-1} interlacing with a_{1}, \ldots, a_{N} and $P_{a_{1}, \ldots, a_{N} ; \beta}^{N \rightarrow N-1}$ is the conditional probability of Set 1 , Problem 4 with $\left(\lambda_{i}\right)=\left(a_{i}\right)$ and $\left(\mu_{i}\right)=\left(b_{i}\right)$.
2. Specializing to $\beta=2$ and assuming that a_{1}, \ldots, a_{N} are all distinct, show that

$$
\begin{align*}
& B_{a_{1}, \ldots, a_{N}}\left(z_{1}, \ldots, z_{N} ; 1\right)=(N-1)!\int_{a_{1}<b_{1}<a_{2}<\cdots<b_{N-1}<a_{N}} e^{z_{N}\left(\sum_{i=1}^{N} a_{i}-\sum_{i=1}^{N-1} b_{i}\right)} \\
& \times B_{b_{1}, \ldots, b_{N-1}}\left(z_{1}, \ldots, z_{N-1} ; 1\right) \frac{\prod_{1 \leq i<j \leq N-1}\left(b_{j}-b_{i}\right)}{\prod_{1 \leq i<j \leq N}\left(a_{j}-a_{i}\right)} d b_{1} \cdots d b_{N-1} . \tag{2}
\end{align*}
$$

3. Show that the right-hand side of (1) satisfies the same recurrence over N as $B_{a_{1}, \ldots, a_{N}}\left(z_{1}, \ldots, z_{N} ; 1\right)$ in (2).
Hint: Integrate over b_{1}, \ldots, b_{N-1} under the determinant sign and then manipulate the matrix under the determinant to the desired $B_{a_{1}, \ldots, a_{N}}\left(z_{1}, \ldots, z_{N} ; 1\right)$.
4. Prove (1) for the case when all a_{i} are distinct.
5. Show that both sides of (1) are continuous in a_{1}, \ldots, a_{N} and deduce that (11) also holds when some of a_{i} 's coincide.

Problem 2. Recall the definition of the Dunkl operator at $\beta=2$:

$$
D_{i}:=\frac{\partial}{\partial z_{i}}+\sum_{j: j \neq i} \frac{1}{z_{i}-z_{j}} \circ\left(1-s_{i, j}\right)
$$

where the operator $s_{i, j}$ interchanges the variables z_{i} and z_{j} (for instance $s_{1,3}\left[z_{1}+\left(z_{2}\right)^{2}+\left(z_{3}\right)^{3}\right]=$ $\left.\left(z_{1}\right)^{3}+\left(z_{2}\right)^{2}+z_{3}\right)$.

- Using (1) show that

$$
\left(D_{1}+\cdots+D_{N}\right) B_{a_{1}, \ldots, a_{N}}\left(z_{1}, \ldots, z_{N} ; 1\right)=\left(a_{1}+\cdots+a_{N}\right) B_{a_{1}, \ldots, a_{N}}\left(z_{1}, \ldots, z_{N} ; 1\right)
$$

- Show that

$$
\left(D_{1}^{2}+\cdots+D_{N}^{2}\right) B_{a_{1}, \ldots, a_{N}}\left(z_{1}, \ldots, z_{N} ; 1\right)=\left(a_{1}^{2}+\cdots+a_{N}^{2}\right) B_{a_{1}, \ldots, a_{N}}\left(z_{1}, \ldots, z_{N} ; 1\right)
$$

- Show that 1

$$
\left(D_{1}^{3}+\cdots+D_{N}^{3}\right) B_{a_{1}, \ldots, a_{N}}\left(z_{1}, \ldots, z_{N} ; 1\right)=\left(a_{1}^{3}+\cdots+a_{N}^{3}\right) B_{a_{1}, \ldots, a_{N}}\left(z_{1}, \ldots, z_{N} ; 1\right)
$$

[^0]
[^0]: ${ }^{1}$ This one is harder than the previous two.

