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These problems cover and extend the material of Lecture 1. You are very welcome to discuss
your solutions, ask questions, or seek for help during the office hours (aka the third lecture).
Also feel free to reach out to me at vadicgor@gmail.com for questions or discussions.

Submit your solutions as a single .pdf via e-mail to me (before the end of the summer school)
with “Solutions to problem set” in the subject.

Those, who submit solutions to at least one half of the problems of the class,
will receive a postcard in the mail. (Please, include your full postal address)

Problem 1. Take a self-adjoint matrix A = [Aij]
N
i,j=1 in N–dimensional space (can be real or

complex) with coordinates (x1, . . . , xN) and a hyperplane L given by the equation

`1x̄1 + `2x̄2 + · · ·+ `N x̄N = 0.

L is a linear subspace and we can restrict A onto it, resulting in AL.1 Show that the eigenvalues
of AL are roots of a degree N − 1 polynomial equation:

det


A11 − z A12 . . . A1N `1
A21 A22 − z . . . A2N `2

...
. . .

...
AN1 . . . ANN − z `N

¯̀
1

¯̀
2 . . . ¯̀

N 0

 = 0.

Problem 2. Let Λ be a diagonal N × N matrix with real eigenvalues Λii = λi (might be
deterministic or random). Also let A be N×N random real symmetric (or complex Hermitian)
matrix with the same eigenvalues as Λ. Assume that the law of A is invariant under conjugations
with orthogonal (or unitary) matrices, i.e. under transformations A 7→ UAU∗ with orthogonal
(or unitary) U . Further, let L′ be an arbitrary deterministic hyperplane, and let L be a
hyperplane orthogonal to a uniformly random unit vector in N–dimensional real (or complex)
space. Assume additionally that L and Λ are independent. Show that the eigenvalues of the
restrictions ΛL and AL′ have the same probability distributions.

Problem 3. Let A be N × N random self-adjoint matrix, whose law is invariant under
conjugations with orthogonal (or unitary in the complex case) matrices. Let B be the top–left

1There are two equivalent ways to define this restriction: you could either identify A with a quadratic form,
and then restrict this form onto the subspace L. Or you can think about A as an operator, take an orthogonal
projector P onto L and consider PAP as a linear operator operator on L.
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(N − 1) × (N − 1) corner of A. Show that given the eigenvalues (λi)
N
i=1 of A, the eigenvalues

(µi)
N−1
i=1 of B can be found as roots of the equation

N∏
i=1

(z − λi)
N∑
i=1

ξi
z − λi

= 0, (1)

where ξi are i.i.d. χ2
β random variables (β = 1, 2 depending on whether we deal with real or

complex random variables), which are particular cases of the Gamma-distribution with density

1

2β/2Γ(β/2)
xβ/2−1e−x/2, x > 0.

Problem 4. Given (λi)
N
i=1 find the probability distribution of the roots of (1).

Hint: Set wi = ξi∑
ξj

. If µj are the roots of (1), then we have

N∏
i=1

(z − λi)
N∑
i=1

wi
z − λi

=
N−1∏
j=1

(z − µj), (2)

Plugging z = λi, we get an expression for wi in terms of µj. It remains to rewrite the joint
density of wi in terms of µj. Don’t forget to multiply by the Jacobian of the transformation!2

Problem 5. Given real numbers (µi)
N−1
i=1 find the probability distribution of the roots of

N−1∑
i=1

ξ′i
z − µi

= z + ζ,

where ξ′i are independent 1
β
χ2
β random variables and ζ is (independent) Gaussian N (0, 2

β
).

Problem 6. Let A be N ×N tridiagonal real symmetric matrix with independent matrix
elements (on and above diagonal) of the form (note χ rather than χ2 random variables!):

N (0, 2
β
) 1√

β
χ(N−1)β 0 . . . 0

1√
β
χ(N−1)β N (0, 2

β
) 1√

β
χ(N−2)β 0

...

0 1√
β
χ(N−2)β

...
. . . 1√

β
χβ

0 . . . 1√
β
χβ N (0, 2

β
)

 ,

and let B be bottom-right (N − 1) × (N − 1) submatrix of A. Prove that the conditional
laws of eigenvalues of B given eigenvalues of A and vice versa are given by Problems 4 and 5,
respectively.3

2If you don’t make mistakes, then this Jacobian should be given by the Cauchy determinant.
3For β = 1, 2 this is not hard: all you need to do is to apply some conjugations to GOE/GUE matrices. But

for general β > 0 the computation is challenging, and you may find lemmas about tridiagonal matrices from
sections 2.2-2.3 of https://arxiv.org/pdf/math-ph/0206043.pdf helpful.
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