

Lemma (Couchy determinant)

$$\det \left[\frac{1}{a_1 - b_2}\right]_{i,j=1}^{n} = \frac{\prod_{i = j}^{n} (a_i - a_i)(b_i - b_i)}{\prod_{i = j}^{n} (a_i - b_i)}$$

Corollary 1: $\frac{1}{2}(x_2, ..., x_n; y_2, ..., y_n; -\Delta) = \prod_{i = j}^{n} (2x_i y_i) \cdot \prod_{i = j}^{n} (1 \cdot a_i y_i)}{\prod_{i \neq j}^{n} (1 \cdot a_i y_i)}$

Proof $(1 - x_i y_i)(1 - t x_i y_i) = 1 - x_i^2 y_i^2 = y_i^2(y_i^2 - x_i^2)$

Apply Lemma.

Proof step2 From now on we dead with $1 \le i \le j \le 2$

general case is the same

Proposition: Take $\frac{1}{2}$, $\frac{1}{2}$ of $\frac{1$

Definition: (+ 6 vertices in row;) = 8N+ FN 2;
Carollary 2. (ns. nz) " i.i.d. N(0, 8(1-8))
L U= 57 5 = = = = = = = = = = = = = = = = =
Proof: (4) = Contigurations Weight Weight weight weight weight words positive random variable
Contigurations Contigurations prob. measure random variable
2 2 2 2 4 4 6 - vertices in line;
= 1 (1-e zi/m 1+e zi/m 1) = 1 (1-e zi/m 1) = 1 (1-e zi/m 1) + c-vertices in line; 7
(+x) \(\lambda \) \(\lambda
Chaose &, so that exp(() TN) tactor cancels
Chaose S , so that $\exp(() SN)$ tactor cancely between $(****)$ and $(***)$. In subleading term, you get $\mathbb{E} \exp((n_1 z_1 + n_2 z_2)) \xrightarrow{(-2in)} N^{-92} \exp((\frac{z_1^2}{z} + \frac{z_2^2}{z}) \cdot \frac{1}{4})$
Laplace transform -> Laplace transform of i.i.d. Of (us, Nz) Gaussian random variables
Proof Step4: Identity with GUE
How is # b- vertices related to 3; (60 side)

					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Lon 7		FI			Abvertices in row 1
	#b vertice	us }		₹, ~-	+ b vertices
tho- vertice,		_لرله			
rowz					
	31			32	
(32+32) -	₹1 ≈	# b ve	rtices	in rou	, 2
					1x1 Corner
GUE -side		W ⁵¹ W ⁵⁵			
	(WSI MSS)	7,	λ2	- 2 ligewalur x2 corner
				0 F 2	xe corner
$(\lambda_1^2 + \lambda_2^2)$ -	λ =	W ₂₂	- indep	udent ou	L same various
				W ⁷⁷ =	
5 • C1					
Proof Step 5 the full	T: This	2d u	wrgind	unique	ely determine
the tull	Cow 01	50	random	vecto	
1) On 6, 5	ide -	Gib	hs pro	perty	
Given	2, and	{ }	, we k	now the	law of ?!
As N -> 20	,	, 1	ال ملت ال	la 12.4.	ikatal latam
חז ועק	- 2	1 ()	~)	J 2003 16	(FOUNDAMENT SE WILL

į	2)	Or	\	(÷ L	Ę	_ '	siL	Q	ł	her	ę	ò	s	he	Sa	ul	G	ibb: undi	> pr	opert	2
	1 (pro	of	Ou	itte	a)		COU	nìm	,	tro	h	44	l	Dav	lcuri	Ouc	l	und	24		
	u	hin	۵qy		CO	N, I	υχe	tiou	ر :دا		120	oud	itia	oual	l	Oh		2	, \(\lambda	2		
		λ_{i}^{l}	C	ાંડ	(N	WW	itor	w	po	int		betu	veen	4	her	h			,	,		
		7		<i>(</i>				07	_)	1	lui ins	.†.			(m		ſ o	- 1	. 1		
	nt	, Q	4		100	لاو	(حلك	= '	て		•	=	K (exp	(Ir	rcl	(લ્પ	JE od	14g (7	1, 2 0	
				•				٥.	mai	- AK	110 40 #				ei	seni	Jue	S	of Z			
								U	' '													
											L	ap(lo ce	+	Tan	stor	щ	94	Mas	, w	155	
	Man	(Ye	do	tai	ls		in.		[G .	- (LM (P -	- 20) 14	1				Z		
																J						