Topic: connection
Side 1 : Random configurations of (square ice) 6 v model. in planar domains.
A) 6 molecules
B) Finite piece of $H-O$ infinite grid
C) Matdings of H and O into molecules
D) Probability distribution

$$
\text { Prob(contigreation) ~ } \prod_{\text {mobouless }} \prod_{a_{1}, u_{2}, b_{1}, h_{2}, c_{1}, c_{2}}
$$

Residual entropy of square ice
EH Lied - Physical Review, 1967 - AP
then $Z-=8^{\prime} \sim=2^{\prime} \sim$ (because there are $2 \$$ entropy, presumably... If we ignore the ice condition,
is Save 5 Cite Cited by 878 Related articles All 3 versions
[HTML] Square ice in graphene nanocapillaries
... FC Wang, RR Nair, U Kaiser, HA WU, AK Geim.... - Nature, 2015 - nature.com
... The disagreement is perhaps not surprising when we consider that as P increases to reach the crystallization transition, hydrogen bonds switch to the in-plane configuration (Extended \& Save 5 Cite Cited by 642 Related articles All 13 versions

Central mathematical question: For a very large domain now does a random contiguration boll lille?

Side 2: Eigenvalues of self-adjoint random matrices

Side 2: Eigenvalues of self-adjoint random matrices

Setup: Take $N \times N$ sebf-adigoint random matrix, specity in some way the low of its matrix elements

$$
\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 N} \\
\vdots & & \\
a_{N 1} & \ldots & a_{N N}
\end{array}\right)
$$

$$
a_{i j}=\overline{a_{j l}}
$$

Look at eigenvalues $\lambda_{1} \leqslant \lambda_{2} \leq \ldots \leq \lambda_{N}$
Central question: It N is very longe, how do eigenvalues look like?
mon Random nations 1967
Random Matrices gives a coherent and detailed description of analytical methods devised to
study random matrices. These methods are critical to the understand
\star Save 90 Cite Cited by 8852 Related articles All 3 versions 20
[Book] Spectral analysis of large dimensional random matrices
Z Bail, $\langle W$ Silverstein - 2010 - Springer
Z Bali, JW S Silverstein - 2010 - Springer
their dimensions tend to infinity. All classical limiting theorems in statistics a
is Save 59 Cite Cited by 1773 Related articles All 8 versions ∞
[Book] Eigenvalue distribution of large random matrices
LA Pastur. M Shcherbina - 2011 - books.google.com
Random matrix theory is a wide and growing field with a variety of concepts, results, and
techniques and a vast range of applications in mathematics and the related sciences. The book,
is Save 99 Cite Cited by 408 Related articles All 3 versions 20
[Book] An introduction to random matrices
GW Anderson, A Guionnet, O Zeitouni - 2010 - books.google.com
laught in the University of Minnesota in the fall of 2003 , and nos (GA and $0 . Z$.)

* Save 5 Cite Cited by 1961 Related articles All 3 versions 0
[Book] Log-gases and random matrices (LMS-34)
... account of these developments, emphasizing log-gases as a physical picture and heuristic,
\& Save 92 Cite Cited by 1667 Related articles All 9 versions $\$ 0$

Main message: these two topics are related

Example 1: Domain wall boundary condition
$N \times N$ square

Exercise: In level R from the bottom there are m molecules $H-O-H$ and $s \leqslant m \leqslant K$
$u=1:$
Trace 1 st row: starts tron $H-0$ molecules on the lett ends by ${\underset{0}{H}-n}_{H}^{0}$ molecules on the right
single $\mathrm{H}-\mathrm{O}^{-H}$ molecule where one corner changes to another one

Theorem 1: (Sohausson-Nordenstam - 06) Suppose $a_{1}=a_{2}=b_{1}=b_{2}=1$

$$
c_{1} \cdot c_{2}=2
$$

Then as $N \rightarrow \infty$ there are c_{2} exactly $\mathrm{K} \quad \mathrm{H}-\mathrm{O}-\mathrm{H}$ in row k with probability tending to 1 , let $x_{1}^{k}<x_{2}^{k} \ldots<x_{k}^{k}$ be their coordinates, then

$$
\lim _{11 \rightarrow \infty}\left\{\frac{x_{i}^{k}-\gamma_{1} N}{x-\sqrt{11}}\right\}^{k}=\left\{\lambda_{1}^{k}\right\}_{1, \ldots}
$$

$$
\lim _{N \rightarrow 2}\left\{\frac{n_{i}-v^{\prime}}{\gamma_{2} \sqrt{N}} \int_{1 \leq i \leq k}=\left\{\lambda_{i} p_{1 \leq i \leq k}\right.\right.
$$

with $\gamma_{1}=\frac{1}{2}=\gamma_{2}$ and $\left\{\begin{array}{l}\lambda_{i}\end{array}\right\}-{ }^{\text {w }}$ "GUE-corvers process"
$X=N \times N$ matrix of $N(0,1)+i N(0,1)$ independent matrix elements
$M=\frac{1}{2}\left(X+X^{*}\right)$ - Gaussian Unitary Ensemble"
λ_{i}^{k} - i th eigenvalue of principe $K \times k$ corner of M

$$
\lambda^{\prime}=N(0,1)
$$

Theorem 2 (G.-14, G.-Panova -15) Same is true for $a_{2}=a_{2}=b_{1}=b_{2}=c_{1}=c_{2}=1$ (unitorm measure) with

$$
\gamma_{1}=\frac{1}{2}, \gamma_{2}=\sqrt{\frac{3}{8}} \quad K \text { was finite }
$$

Th 3 . (Jolunsson -00, 05)

$$
a_{1}=\ldots=b_{2}=1 \quad c_{1} \cdot c_{2}=2
$$

Draw an inscribed circle:
Hs $\mathrm{N} \rightarrow \infty \quad \mathrm{H}-\mathrm{O}-\mathrm{H}$ stay inside the inscribed circle with prob tending to 1

2) For $K=L^{k} \alpha N J^{\psi}$, $0<d<1$, rightmost, $H-O H$ sutisties
satisfies
$\left[\begin{array}{l}\text { one-dim } \\ \text { convergence }\end{array}\right]$$\underset{\gamma_{4}(d) N^{1 / 3}}{\substack{k \\ \text { right edge of the circle }}}$
$T W_{2}=$ Tracy-Widom distrituction at $\beta=2$

$$
=\lim _{N \rightarrow>} \frac{\lambda_{N}^{N}-2 \sqrt{N}}{N^{-1 / 6}}
$$

"2" stays for
the tact that we deal with complex matrices

3 - maximal L such that there are no horizontal molecules in top-right $L \times L$ triangle

Theorem 4:
(Johnson -05) $: \lim _{N \rightarrow \infty} \frac{3-\gamma_{5} N}{\gamma_{6} N^{1 / 3}}=T W_{1}$

$$
a_{1}=a_{2}=b_{1}=b_{2}=1 \quad c_{1} c_{2}=2
$$

$T W_{1}$ is like $T W_{2}$, but dealing with real symmetric (instead of complex Hermitian) matrices.
Theorem 5) (Ayyer-Chhita-Sokansson -22) Same is true tor the unitorm measure $\left(a_{1}=a_{2}=b_{1}=b_{2}=c_{1}=c_{2}=1\right)$ with ditterend values of constants.

Conjecture: Theorems 1-5 extend (perhaps

Conjecture: Theorems 1-5 extend (perhaps with different values of constants) to all $a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2} \quad$ satiffyying $\quad \Delta=\frac{a_{1} a_{2}+b_{1} b_{2}-c_{1} c_{2}}{2 \sqrt{a_{1} a_{2} b_{1} b_{2}}}<1$
and much more general boundary conditions.
(domains)
$\Delta>1$ will be discussed as well later
Next 4 lectures: Tue + Wednesday - fully self-catained proof of some cases of the above five theorems hosed on Izergin-Korepin determinant

Th + Fri: treatment of "Stochastic sin-vertex model" ($\Delta>1$) by a generalization of $I K$-determinant.

