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Roadmap

® \What are general 5 random matrices?

® | ecture 1: corners of 5 random matrices.
Tl ) ® Problem set 1.

| ® | ecture 2: sums of 8 random matrices.
® Problem set 2.

® | ecture 3: questions and discussion of
problem sets.

[EXCLUSIVE OFFER: Submit homework - receive a postcard!]

Lectures 1 and 2 are recorded, but Lecture 3 (office hours) is not!

This is NOT a research talk about brand new results.
Instead we explore basic structures and definitions.

(See “Lattice Paths, Combinatorics and Interactions” in 2 weeks).
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Definition. Eigenvalues of corners of N x N random [S-matrix
with uniformly random eigenvectors and fixed eigenvalues (a;).

=1
are a triangular array (x*)1<;<n satisfying
1<X <xk++11, (xN, ... xN) = (a1,...,an),
with distribution of density
ky2— 18/2—1
HF;k H H (X _X) BHH|X _Xb+|ﬁ/ .
| k=1 (5) 1 k=1 1<i<j<k a=1 b=1

Next question: What is the sum of random [3-matrices?



Toy question: sum of independent random variables |
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Sum of matricesat 5 =1, 2. 4.

Theorem. Random N x N self-adjoint independent matrices A, B.
The law of the sum C = A+ B is uniquely determined by

£ exp (iTrace(CZ)) = Eexp (iTrace(AZ)) - Eexp (iTrace(BZ)) |,

which should be valid for each self-adjoint Z.
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Reduction to eigenvalues

Definition 1. A: deterministic eigenvalues (as, ..., ay) and
uniformly random eigenvectors (invariant under A — UAU*)
Then law of Trace(AZ) depends only on eigenvalues (z)N., of Z
and we define the multivariate Bessel function through

B, ay(izi, ... izy; 8/2) = Eexp (iTrace(AZ))
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Fix 3 >0
N=12,...
a,...,an € R

Definition 2. |

Reduction to corners
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"ake B—corners process with top row (a; ,’-V:1;

(xF)1<i<k<n.

he multivariate Bessel function is:
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Important: This makes sense for each 5 > 0.




Proposition. Two definitions coincide, i.e., at 5 =1, 2,4 we have

Eexp (iTrace(AZ)) = Eexp |sz (ZX —Zxk 1)
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Eigenvalues of the sum of 5 random matrices

Definition. Given deterministic eigenvalues (a;)_, and (b;)".; we

define (random) eigenvalues (c;)"_; of the sum of independent
B-matrices with uniformly random eigenvectors through

B, ez, zn; B/2)
— Bal,...,a/\/(217 ooy ZN, 5/2) ' Bbl,...,b/\/(217 ooy ZN, 6/2)

® c=atgbat B8 =1,2,4is the same old addition.

® At general 5 > 0 one needs to show the existence of

probability measure defining (¢;)Y, .

® |t is well-defined as a generalized function (distribution), but
being a measure is a known open problem.

[% need positivity of structure constants of multiplication for Macdonald polynomials]



Example: S5—addition at N = 1.
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What are B, ..(z1,- -, ZNn; ﬁ)?

Symmetric functions in z1, .. ZNO Uk@g odc B=l,2 A/Tr JEQ[MU.\%
A
Limits of Jack or Macdonald polynomials.
N=1: e = lim (1+ z/m)Lma]
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Explicit Taylor series expansion in Jack polynomials.
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Theorem: At 8 = 0 the operation (a, b) — ¢ = aHy b has the form:
Choose a permutation o € S(N) uniformly at random and set

(c1,.. s en) = (a1 + boays - - -y an + by(y)-
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Theorem: At 8 = 0 the operation (a, b) — ¢ = aHy b has the form:
Choose a permutation o € S(N) uniformly at random and set

(c1,.. s en) = (a1 + bo(1ys - -+ an + by(y)-
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Expected characteristic polynomial
Theorem. At 8 = 0 the operation (a, b) — ¢ = aHHy b is:
Choose a permutation o € S(N) uniformly at random and set
(C17 Ce C/\/) — (31 + ba(l)a ..., aN T ba(N))-

Corollary. At 5 = 0, we have

N 1 N
2] [(z ) = i > 1z ai = by
=1 oceS(N) i=1

Theorem. The last expectation identity holds for all 5 € [0, +o0].
[At 8 = oo, expectation sign can be removed.]



Expected characteristic polynomial
Theorem. At 8 = 0 the operation (a, b) — ¢ = aHHy b is:
Choose a permutation o € S(N) uniformly at random and set
(C17 Ce C/\/) — (31 + ba(l)v ..., aN T ba(N))-

Corollary. At 5 = 0, we have

N 1 N
4}]:[(2 — C,') — m Z H(Z — aj — ba(,-)).

" oeS(N) i=1

Theorem. The last expectation identity holds for all 5 € [0, +o0].
[At 8 = oo, expectation sign can be removed.]

Hint on the proof.
® Expectations of Jack polynomials in eigenvalues (cy, ..., cn).
® One-column Jacks do not depend on 3:
P(lk)(Cl, c ooy CN, g) — ek(cl, Ceey C/\/).
® There are coefficients of expected characteristic polynomial.



Another asymptotic result: free convolution
Theorem. Suppose that as N — oo

pa(dx)

)
Z — X

N

1 .

N E Oa;/N — Ha with G, (z) :/
=1

pp(dx)

Z — X

N

1 .

N g Op; /N — b with G, (z) :/
=1

Then for c = atHg b

N
%Zéc;/N — L, with G, (z) = / 'uZC(_d);),
=1
Ru(2) = (Gu(2)) ™V — . Ruc(2) = Rua(2) + Ryul2)]

Holds for each 5 > 0, but not for 3 = 0.

[Come back to my talk in two weeks for the critical BN — v regime.]



End of Lecture 2. Don't forget about Problem set 2.



End of Lecture 2. Don't forget about Problem set 2.



