General beta random matrix theory

(at MATRIX Institute)

Vadim Gorin

University of Wisconsin - Madison
and
Institute for Information Transmission Problems of Russian Academy of Sciences

Lecture 2
June 2021

Roadmap

- What are general β random matrices?
- Lecture 1: corners of β random matrices.
- Problem set 1.
- Lecture 2: sums of β random matrices.
- Problem set 2.
- Lecture 3: questions and discussion of problem sets.
[EXCLUSIVE OFFER: Submit homework - receive a postcard!]

Lectures 1 and 2 are recorded, but Lecture 3 (office hours) is not!
This is NOT a research talk about brand new results. Instead we explore basic structures and definitions.
(See "Lattice Paths, Combinatorics and Interactions" in 2 weeks).

Recap: β-corners process

Fix $\beta>0$
$N=1,2, \ldots$
$a_{1}, \ldots, a_{N} \in \mathbb{R}$

Definition. Eigenvalues of corners of $N \times N$ random β-matrix with uniformly random eigenvectors and fixed eigenvalues $\left(a_{i}\right)_{i=1}^{N}$ are a triangular array $\left(x_{i}^{k}\right)_{1 \leq i \leq N}$ satisfying

$$
x_{i+1}^{k} \leq x_{i}^{k} \leq x_{i+1}^{k+1}, \quad\left(x_{1}^{N}, \ldots, x_{N}^{N}\right)=\left(a_{1}, \ldots, a_{N}\right)
$$

with distribution of density

$$
\left[\prod_{k=1}^{N} \frac{\Gamma\left(\frac{\beta k}{2}\right)}{\Gamma\left(\frac{\beta}{2}\right)^{k}}\right] \cdot \prod_{k=1}^{N-1} \prod_{1 \leq i<j \leq k}\left(x_{i}^{k}-x_{j}^{k}\right)^{2-\beta} \prod_{a=1}^{k} \prod_{b=1}^{k+1}\left|x_{a}^{k}-x_{b}^{k+1}\right|^{\beta / 2-1}
$$

Next question: What is the sum of random β-matrices?

Toy question: sum of independent random variables
Take independent random variables a and b How do you think about the law of their sum $C=a+b$? Fourier point of view: through characteristic functions Random variable $a \Longleftrightarrow$ Function $\mathbb{E} e^{i t a}$ of $t \in \mathbb{R}$
[The distribution of a is reconstucted by inverse Fouriestr.]
Theorem: The distribution of c is uniquely determined by $\mathbb{E} e^{i t c}=\underbrace{\mathbb{E} e^{i t a}}_{\text {something we know }} \cdot \mathbb{E e}^{i t b}, t \in \mathbb{R}$
Proof: independence implies that the identity is true for $c=a+b$, uniqueness th. for He te c implies that no other law satisfies it.

Toy question: sum of independent random variables

Conclusion: To compute the law of $c=a+b$, you do not need to know, what is "+" or what are independent random variables. All you need to learn is multiplication of characteristic functions.

Sum of matrices at $\beta=1,2,4$.
Theorem. Random $N \times N$ self-adjoint independent matrices A, B. The law of the sum $C=A+B$ is uniquely determined by

$$
\mathbb{E} \exp (i \operatorname{Trace}(C Z))=\mathbb{E} \exp (i \operatorname{Trace}(A Z)) \cdot \mathbb{E} \exp (i \operatorname{Trace}(B Z)),
$$

which should be valid for each self-adjoint Z.
Proof. 1) Identity is true by Trace $C Z=$ Trace $A Z+$ Trace BZ and independence
2) Trace $(C z)=\sum_{i j} C_{i j} z_{j i}$. Hence, these are usual multidimensional characteristic functions in
Euclidean space of all $N_{\times N}$ self adjoint matrices. In particular, there is a uniqueness theorem just like for $N=1$.

Reduction to eigenvalues
Definition 1. A : deterministic eigenvalues $\left(a_{1}, \ldots, a_{N}\right)$ and uniformly random eigenvectors (invariant under $A \mapsto U A U^{*}$). Then law of Trace $(A Z)$ depends only on eigenvalues $\left(z_{i}\right)_{i=1}^{N}$ of Z and we define the multivariate Bessel function through

$$
B_{a_{1}, \ldots, a_{N}}\left(\mathbf{i} z_{1}, \ldots, \mathbf{i} z_{N} ; \beta / 2\right)=\mathbb{E} \exp (\mathbf{i T r a c e}(A Z))
$$

Proof. Z is assumed here to be self-adjoint or "normal" In both cases it can be diagonalized by orthogonal/ unitary trantorn $z=U \cdot\left(\begin{array}{cc}z_{1} & 0 \\ 0 & z_{N}\end{array}\right) U^{*}$. Hence,

$$
\begin{aligned}
& \operatorname{Trace}(A z)=\operatorname{Trace}\left(A U\left(\begin{array}{cc}
z_{1} & 0 \\
0 & -z_{N}
\end{array}\right) u^{*}\right)=\operatorname{Trace}\left(u^{*} A u\left(\begin{array}{cc}
z_{1} & 0 \\
0 & -z_{N}
\end{array}\right)\right)= \\
& \stackrel{d}{=} \operatorname{Trace}\left(A\left(\begin{array}{cc}
z_{1} & 0 \\
0^{-} & z_{N}
\end{array}\right)\right)=\sum_{i=1}^{N} A_{i i} z_{i} \quad \text { Hence, } E^{i \operatorname{rr}(A z)}
\end{aligned}
$$

indeed depends only on the eigenvalues of Z

Reduction to corners

Fix $\beta>0$
$N=1,2, \ldots$
$a_{1}, \ldots, a_{N} \in \mathbb{R}$

Definition 2. Take β-corners process with top row $\left(a_{i}\right)_{i=1}^{N}$; $\left(x_{i}^{k}\right)_{1 \leq i \leq k \leq N}$. The multivariate Bessel function is:

$$
B_{a_{1}, \ldots, a_{N}}\left(z_{1}, \ldots, z_{N} ; \beta / 2\right)=\mathbb{E} \exp \left[\sum_{k=1}^{N} z_{k}\left(\sum_{i=1}^{k} x_{i}^{k}-\sum_{i=1}^{k-1} x_{i}^{k-1}\right)\right]
$$

Important: This makes sense for each $\beta>0$.

Proposition. Two definitions coincide, i.e., at $\beta=1,2,4$ we have

$$
\mathbb{E} \exp (\mathbf{i T r a c e}(A Z))=\mathbb{E} \exp \left[\mathbf{i} \sum_{k=1}^{N} z_{k}\left(\sum_{i=1}^{k} x_{i}^{k}-\sum_{i=1}^{k-1} x_{i}^{k-1}\right)\right]
$$

Proof. We showed 2 slides ago that

$$
E \exp (i \operatorname{Trace}(A z))=\mathbb{E} \exp \left(i \sum_{k=1}^{N} A_{k k} Z_{k}\right)
$$

$A_{k u}=$ Trace of $k+k$ corner - Trace of $(k-1) \times(k-1)$ corner

$$
=\sum_{i=1}^{k} \hat{x}_{i}^{k}-\sum_{i=1}^{k-1} x_{i}^{\hat{j} e_{i-1}^{k-1}}
$$

Eigenvalues of the sum of β random matrices

Definition. Given deterministic eigenvalues $\left(a_{i}\right)_{i=1}^{N}$ and $\left(b_{i}\right)_{i=1}^{N}$ we define (random) eigenvalues $\left(c_{i}\right)_{i=1}^{N}$ of the sum of independent β-matrices with uniformly random eigenvectors through

```
\(\mathbb{E} B_{c_{1}, \ldots, c_{N}}\left(z_{1}, \ldots, z_{N} ; \beta / 2\right)\)
    \(=B_{a_{1}, \ldots, a_{N}}\left(z_{1}, \ldots, z_{N} ; \beta / 2\right) \cdot B_{b_{1}, \ldots, b_{N}}\left(z_{1}, \ldots, z_{N} ; \beta / 2\right)\)
```

- $c=a \boxplus_{\beta} b$ at $\beta=1,2,4$ is the same old addition.
- At general $\beta>0$ one needs to show the existence of probability measure defining $\left(c_{i}\right)_{i=1}^{N}$.
- It is well-defined as a generalized function (distribution), but being a measure is a known open problem.
[\approx need positivity of structure constants of multiplication for Macdonald polynomials]

Example: β-addition at $N=1$.
$N=1$ bessel function:

$$
B_{a}\left(z ; \frac{\beta}{2}\right)=E e^{z\left(x_{1}^{\prime}\right)}=e^{z a}
$$

$c=a+b$ is defined by

$$
E_{c} e^{z c}=e^{z a} \cdot e^{z b}=e^{z(a+b)}
$$

Hence, $c=a+b$ almost surely and this is the usual addition
1×1 matrix does not hove nontrivial lifenvectors $]$
which complicate aus life for $N>1$

What are $B_{a_{1}, \ldots, a_{N}}\left(z_{1}, \ldots, z_{N} ; \frac{\beta}{2}\right)$?

- Symmetric functions in $z_{1}, \ldots, z_{N} \mid$ easy at $\beta=1,2,4$ tracongh
- Limits of Jack or Macdonald polynomials.

$$
N=1: \quad e^{a z}=\lim _{m \rightarrow \infty}(1+z / m)^{\lfloor m a\rfloor}
$$

- Explicit Taylor series expansion in Jack polynomials.

$$
\begin{aligned}
& N=1: \quad e^{a z}=1+a z+\frac{(a z)^{2}}{2!}+\frac{(a z)^{2}}{3!}+\ldots \\
& B_{a_{1}, \ldots, a_{N}}\left(z_{1}, \ldots, z_{N} ; \frac{\beta}{2}\right)=\sum_{\mu} \frac{P_{\mu}\left(z_{1}, \ldots, z_{N} ; \frac{\beta}{2}\right) Q_{\mu}\left(a_{1}, \ldots, a_{N} ; \frac{\beta}{2}\right)}{\left(N \frac{\beta}{2}\right)_{\mu}} \text { Jack polywomines }
\end{aligned}
$$

- Eigenfunction of (symmetric) Dunkl operators

$$
D_{i}:=\frac{\partial}{\partial z_{i}}+\frac{\beta}{2} \sum_{j: j \neq i} \frac{1}{z_{i}-z_{j}} \circ\left(1-s_{i, j}\right)
$$

swaps isth and j-th variable
$\sum_{i=1}^{N}\left(D_{i}\right)^{k} B_{a_{1}, \ldots, a_{N}}\left(z_{1}, \ldots, z_{N} ; \frac{\beta}{2}\right)=\sum_{i=1}^{N}\left(a_{i}\right)^{k} B_{a_{1}, \ldots, a_{N}}\left(z_{1}, \ldots, z_{N} ; \frac{\beta}{2}\right)$
See PSET 2 for checks at $\beta=2]$

Theorem: At $\beta=0$ the operation $(a, b) \mapsto c=a \boxplus_{0} b$ has the form: Choose a permutation $\sigma \in S(N)$ uniformly at random and set $\left(c_{1}, \ldots, c_{N}\right)=\left(a_{1}+b_{\sigma(1)}, \ldots, a_{N}+b_{\sigma(N)}\right)$.
Proof I. Let us try to find $\beta=0$ bessel functions through the properties of the last slide:
They should be symmetric and satisty

$$
\left(\sum_{i=1}^{N}\left(\frac{\partial}{\partial z_{i}}\right)^{k}\right) B_{a_{1} \ldots a_{N}}\left(z_{1}, \ldots z_{N}^{\prime}, 0\right)=\sum a_{i}^{k} B_{a_{1}, \ldots a_{N}}\left(z_{1}, z_{i}, 0\right)
$$

What are eigentunctions of difterentintions?
Exponents: Hence, here we need symmetric exponents:

$$
\bar{b}_{a_{1} \ldots a_{N}}\left(z_{1}, \ldots z_{N}, 0\right)=\text { cost } \cdot \sum_{\sigma \in S(N)} \prod_{i=1}^{N} l^{z_{i} a_{\sigma}(i)}
$$

What is cost?, $\quad B(0, \ldots 0)=1 \Rightarrow$ const $=\frac{1}{N!}$

Theorem: At $\beta=0$ the operation $(a, b) \mapsto c=a \boxplus_{0} b$ has the form: Choose a permutation $\sigma \in S(N)$ uniformly at random and set $\left(c_{1}, \ldots, c_{N}\right)=\left(a_{1}+b_{\sigma(1)}, \ldots, a_{N}+b_{\sigma(N)}\right)$.

Proof II. Hence, $\left(C_{1, \ldots} C_{N}\right)$ is found from

$$
\mathbb{E}_{c} \frac{1}{N!} \sum_{\sigma_{1}} \prod_{i=1}^{N} e^{z_{i} c_{\sigma_{1}(i)}}=\frac{1}{(N!)^{2}} \sum_{\sigma_{2}, \sigma_{3}} \prod_{i=1}^{N} e^{z_{i}\left(a_{\sigma_{2}(i)}+b_{\sigma_{3}(i)}\right)}
$$

Renaming the permutations, we get the statement of the theorem

Expected characteristic polynomial

Theorem. At $\beta=0$ the operation $(a, b) \mapsto c=a \boxplus_{0} b$ is:
Choose a permutation $\sigma \in S(N)$ uniformly at random and set $\left(c_{1}, \ldots, c_{N}\right)=\left(a_{1}+b_{\sigma(1)}, \ldots, a_{N}+b_{\sigma(N)}\right)$.

Corollary. At $\beta=0$, we have
$\mathbb{E} \prod_{i=1}^{N}\left(z-c_{i}\right)=\frac{1}{N!} \sum_{\sigma \in S(N)} \prod_{i=1}^{N}\left(z-a_{i}-b_{\sigma(i)}\right)$.
Theorem. The last expectation identity holds for all $\beta \in[0,+\infty]$.
[At $\beta=\infty$, expectation sign can be removed.]
as for corners we had convergence to a deterministic operation as $B \rightarrow \infty$. Similarly here c_{i} are non-random as $B \rightarrow \infty$

Expected characteristic polynomial

Theorem. At $\beta=0$ the operation $(a, b) \mapsto c=a \boxplus_{0} b$ is:
Choose a permutation $\sigma \in S(N)$ uniformly at random and set $\left(c_{1}, \ldots, c_{N}\right)=\left(a_{1}+b_{\sigma(1)}, \ldots, a_{N}+b_{\sigma(N)}\right)$.

Corollary. At $\beta=0$, we have

$$
\mathbb{E} \prod_{i=1}^{N}\left(z-c_{i}\right)=\frac{1}{N!} \sum_{\sigma \in S(N)} \prod_{i=1}^{N}\left(z-a_{i}-b_{\sigma(i)}\right)
$$

Theorem. The last expectation identity holds for all $\beta \in[0,+\infty]$.

$$
\text { [At } \beta=\infty \text {, expectation sign can be removed.] }
$$

Hint on the proof. [using Taylor expansion in Jacls]

- Expectations of Jack polynomials in eigenvalues $\left(c_{1}, \ldots, c_{N}\right)$.
- One-column Jacks do not depend on β : $P_{\left(1^{k}\right)}\left(c_{1}, \ldots, c_{N} ; \frac{\beta}{2}\right)=e_{k}\left(c_{1}, \ldots, c_{N}\right)$.

- There are coefficients of expected characteristic polynomial.

Another asymptotic result: free convolution

Theorem. Suppose that as $N \rightarrow \infty$

$$
\begin{aligned}
& \frac{1}{N} \sum_{i=1}^{N} \delta_{a_{i} / N} \rightarrow \mu_{a}, \quad \text { with } \quad G_{\mu_{a}}(z)=\int \frac{\mu_{a}(d x)}{z-x}, \\
& \frac{1}{N} \sum_{i=1}^{N} \delta_{b_{i} / N} \rightarrow \mu_{b}, \quad \text { with } \quad G_{\mu_{b}}(z)=\int \frac{\mu_{b}(d x)}{z-x} .
\end{aligned}
$$

Then for $c=a \boxplus_{\beta} b$

$$
\frac{1}{N} \sum_{i=1}^{N} \delta_{c_{i} / N} \rightarrow \mu_{c}, \quad \text { "free convolution of } \mu_{a} \text { and } \mu_{b} \text { " with } \quad G_{\mu_{c}}(z)=\int \frac{\mu_{c}(d x)}{z-x},
$$

$$
R_{\mu}(z)=\left(G_{\mu}(z)\right)^{(-1)}-\frac{1}{z}, \quad \quad R_{\mu_{c}}(z)=R_{\mu_{a}}(z)+R_{\mu_{b}}(z)
$$

[Written down at $]$ Holds for each $\beta>0$, but not for $\beta=0$. [Ordinary convolution $\left.\begin{array}{l}\text { instead at } \beta=0\end{array}\right]$ $\beta=1,2,4, \infty$
[Come back to my talk in two weeks for the critical $\beta N \rightarrow \gamma$ regime.]

End of Lecture 2.
Don't forget about Problem set 2 .

End of Lecture 2.
Don't forget about Problem set 2 .

