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Roadmap
• What are general � random matrices?

• Lecture 1: corners of � random matrices.

• Problem set 1.

• Lecture 2: sums of � random matrices.

• Problem set 2.

• Lecture 3: questions and discussion of
problem sets.

[EXCLUSIVE OFFER: Submit homework - receive a postcard!]

Lectures 1 and 2 are recorded, but Lecture 3 (o�ce hours) is not!

This is NOT a research talk about brand new results.
Instead we explore basic structures and definitions.

(See “Lattice Paths, Combinatorics and Interactions” in 2 weeks).



Recap: �–corners process

Fix � > 0
N = 1, 2, . . .
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Definition. Eigenvalues of corners of N ⇥ N random �-matrix
with uniformly random eigenvectors and fixed eigenvalues (ai )Ni=1
are a triangular array (xki )1iN satisfying
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Next question: What is the sum of random �-matrices?



Toy question: sum of independent random variables I



Toy question: sum of independent random variables II



Sum of matrices at � = 1, 2, 4.

Theorem. Random N ⇥N self-adjoint independent matrices A, B .
The law of the sum C = A+ B is uniquely determined by

E exp (iTrace(CZ )) = E exp (iTrace(AZ )) · E exp (iTrace(BZ )) ,

which should be valid for each self-adjoint Z .

Proof.



Reduction to eigenvalues

Definition 1. A: deterministic eigenvalues (a1, . . . , aN) and
uniformly random eigenvectors (invariant under A 7! UAU⇤).
Then law of Trace(AZ ) depends only on eigenvalues (zi )Ni=1 of Z
and we define the multivariate Bessel function through

Ba1,...,aN (iz1, . . . , izN ; �/2) = E exp (iTrace(AZ ))

Proof.



Reduction to corners

Fix � > 0
N = 1, 2, . . .
a1, . . . , aN 2 R
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Definition 2. Take �–corners process with top row (ai )Ni=1;
(xki )1ikN . The multivariate Bessel function is:

Ba1,...,aN (z1, . . . , zN ; �/2) = E exp
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Important: This makes sense for each � > 0.



Proposition. Two definitions coincide, i.e., at � = 1, 2, 4 we have

E exp (iTrace(AZ )) = E exp
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Proof.



Eigenvalues of the sum of � random matrices

Definition. Given deterministic eigenvalues (ai )Ni=1 and (bi )Ni=1 we
define (random) eigenvalues (ci )Ni=1 of the sum of independent
�-matrices with uniformly random eigenvectors through

EBc1,...,cN (z1, . . . , zN ; �/2)

= Ba1,...,aN (z1, . . . , zN ; �/2) · Bb1,...,bN (z1, . . . , zN ; �/2)

• c = a�� b at � = 1, 2, 4 is the same old addition.

• At general � > 0 one needs to show the existence of
probability measure defining (ci )Ni=1.

• It is well-defined as a generalized function (distribution), but
being a measure is a known open problem.

[⇡ need positivity of structure constants of multiplication for Macdonald polynomials]



Example: �–addition at N = 1.



What are Ba1,...,aN(z1, . . . , zN ;
�
2 )?

• Symmetric functions in z1, . . . , zN .
• Limits of Jack or Macdonald polynomials.

N = 1 : eaz = lim
m!1

(1 + z/m)bmac

• Explicit Taylor series expansion in Jack polynomials.

N = 1 : eaz = 1 + az + (az)2
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Theorem: At � = 0 the operation (a, b) 7! c = a�0 b has the form:
Choose a permutation � 2 S(N) uniformly at random and set
(c1, . . . , cN) = (a1 + b�(1), . . . , aN + b�(N)).

Proof I.



Theorem: At � = 0 the operation (a, b) 7! c = a�0 b has the form:
Choose a permutation � 2 S(N) uniformly at random and set
(c1, . . . , cN) = (a1 + b�(1), . . . , aN + b�(N)).

Proof II.



Expected characteristic polynomial
Theorem. At � = 0 the operation (a, b) 7! c = a�0 b is:
Choose a permutation � 2 S(N) uniformly at random and set
(c1, . . . , cN) = (a1 + b�(1), . . . , aN + b�(N)).

Corollary. At � = 0, we have
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(z � ai � b�(i)).

Theorem. The last expectation identity holds for all � 2 [0,+1].
[At � = 1, expectation sign can be removed.]

Hint on the proof.
• Expectations of Jack polynomials in eigenvalues (c1, . . . , cN).
• One-column Jacks do not depend on �:
P(1k )(c1, . . . , cN ;

�
2 ) = ek(c1, . . . , cN).

• There are coe�cients of expected characteristic polynomial.
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Another asymptotic result: free convolution
Theorem. Suppose that as N ! 1
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Rµ(z) = (Gµ(z))
(�1) � 1

z
, Rµc (z) = Rµa(z) + Rµb(z) .

Holds for each � > 0, but not for � = 0.
[Come back to my talk in two weeks for the critical �N ! � regime.]



End of Lecture 2. Don’t forget about Problem set 2.



End of Lecture 2. Don’t forget about Problem set 2.


