General beta random matrix theory

(at MATRIX Institute)

Vadim Gorin

University of Wisconsin — Madison and Institute for Information Transmission Problems of Russian Academy of Sciences

Lecture 2 June 2021

Roadmap

- What are general β random matrices?
- Lecture 1: corners of β random matrices.
- Problem set 1.
- Lecture 2: sums of β random matrices.
- Problem set 2.
- Lecture 3: questions and discussion of problem sets.

[EXCLUSIVE OFFER: Submit homework - receive a postcard!]

Lectures 1 and 2 are recorded, but Lecture 3 (office hours) is not!

This is NOT a research talk about brand new results.

Instead we explore basic structures and definitions.

(See "Lattice Paths, Combinatorics and Interactions" in 2 weeks).

Recap: β -corners process

$$\mathsf{Fix}\ eta>0 \ N=1,2,\ldots \ a_1,\ldots,a_N\in\mathbb{R}$$

Definition. Eigenvalues of corners of $N \times N$ random β -matrix with uniformly random eigenvectors and fixed eigenvalues $(a_i)_{i=1}^N$ are a triangular array $(x_i^k)_{1 \le i \le N}$ satisfying

$$x_{i+1}^k \le x_i^k \le x_{i+1}^{k+1},$$
 $(x_1^N, \dots, x_N^N) = (a_1, \dots, a_N),$

with distribution of density

$$\left[\prod_{k=1}^{N} \frac{\Gamma(\frac{\beta k}{2})}{\Gamma(\frac{\beta}{2})^{k}}\right] \cdot \prod_{k=1}^{N-1} \prod_{1 \leq i < j \leq k} (x_{i}^{k} - x_{j}^{k})^{2-\beta} \prod_{a=1}^{k} \prod_{b=1}^{k+1} |x_{a}^{k} - x_{b}^{k+1}|^{\beta/2-1}.$$

Next question: What is the sum of random β -matrices?

Take independent	random	variables	s a and	<u>b</u>
How do you think				
Fourier point 05	view:	through	characteri:	stic functions
Random variable o	<=>	Function	E e ita of	teR
I The distribution	of dis	reconstructed	l by inverse	Fourier dr.]
Theorem: The	distribution	on 05 c	is unique	ly deternined
by Ecite =	E eita	· Feith	$, t \in \mathbb{R}$	
	Somethin	y we know		
Proof: independence impli uniqueness th. for Ee	es that the	e identity	is true Sor	c=a+b,
uniqueness the for Ee	ite implies fl	ut no other	law satisfies	it.

Conclu	sion:	To	oupute	the	lan	90	C= a-	tb, you
				'				er what
								you nee
tole	aru	îs 1	unlti	plicat	ion	of	charae	terist ic

Sum of matrices at $\beta = 1, 2, 4$.

Theorem. Random $N \times N$ self-adjoint independent matrices A, B. The law of the sum C = A + B is uniquely determined by

$$\mathbb{E} \exp (i\operatorname{Trace}(CZ)) = \mathbb{E} \exp (i\operatorname{Trace}(AZ)) \cdot \mathbb{E} \exp (i\operatorname{Trace}(BZ))$$
,

which should be valid for each self-adjoint Z.

Proof. 1) Identity is true by Trace C== Trace A=+TraceB=
and independence

are usual multidimensional characteristic functions in

Endidean space of all NxN self adjoint matrices.

In particular, there is a uniqueness theorem just like for N=1.

Reduction to eigenvalues

Definition 1. A: deterministic eigenvalues (a_1, \ldots, a_N) and uniformly random eigenvectors (invariant under $A \mapsto UAU^*$). Then law of $\operatorname{Trace}(AZ)$ depends only on eigenvalues $(z_i)_{i=1}^N$ of Z and we define the **multivariate Bessel function** through

$$B_{a_1,\ldots,a_N}(\mathbf{i}z_1,\ldots,\mathbf{i}z_N;\ \beta/2)=\mathbb{E}\exp\left(\mathbf{i}\mathrm{Trace}(AZ)\right)$$

Proof. $\frac{1}{2}$ is assumed here to be self-adjoint or "normal". In both cases it can be diagonalized by orthogonal/unitary transform $\frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2}$

Reduction to corners

Fix
$$eta>0$$
 $N=1,2,\ldots$
 $a_1,\ldots,a_N\in\mathbb{R}$

Definition 2. Take β -corners process with top row $(a_i)_{i=1}^N$; $(x_i^k)_{1 \le i \le k \le N}$. The multivariate Bessel function is:

$$B_{a_1,...,a_N}(z_1,...,z_N; \beta/2) = \mathbb{E} \exp \left[\sum_{k=1}^N z_k \left(\sum_{i=1}^k x_i^k - \sum_{i=1}^{k-1} x_i^{k-1} \right) \right]$$

Important: This makes sense for each $\beta > 0$.

Proposition. Two definitions coincide, i.e., at $\beta = 1, 2, 4$ we have

E exp (iTrace(AZ)) =
$$\mathbb{E} \exp \left[i \sum_{k=1}^{N} z_k \left(\sum_{i=1}^{k} x_i^k - \sum_{i=1}^{k-1} x_i^{k-1} \right) \right]$$

Proof. We showed 2 slides ago that

$$\mathbb{E} \exp \left(i \operatorname{Trace} \left(A \pm \right) \right) = \mathbb{E} \exp \left(i \sum_{k=1}^{N} A_{NN} \pm X_k \right)$$

$$A_{NN} = \operatorname{Trace} \text{ of } A_{+N} \text{ corner } - \operatorname{Trace} \text{ of } (N-1) \times (N-1) \text{ corner }$$

$$= \sum_{i=1}^{N} X_i - \sum$$

Eigenvalues of the sum of β random matrices

Definition. Given deterministic eigenvalues $(a_i)_{i=1}^N$ and $(b_i)_{i=1}^N$ we define (random) eigenvalues $(c_i)_{i=1}^N$ of the sum of independent β -matrices with uniformly random eigenvectors through

$$\mathbb{E}B_{c_1,...,c_N}(z_1,...,z_N; \beta/2)$$

$$= B_{a_1,...,a_N}(z_1,...,z_N; \beta/2) \cdot B_{b_1,...,b_N}(z_1,...,z_N; \beta/2)$$

- $c = a \boxplus_{\beta} b$ at $\beta = 1, 2, 4$ is the same old addition.
- At general $\beta > 0$ one needs to show the existence of **probability measure** defining $(c_i)_{i=1}^N$.
- It is well-defined as a generalized function (distribution), but being a measure is a known open problem.

pprox need positivity of structure constants of multiplication for Macdonald polynomials

Example: β -addition at N = 1.

What are
$$B_{a_1,...,a_N}(z_1,...,z_N; \frac{\beta}{2})$$
?

- Symmetric functions in z_1, \ldots, z_N lasy at B=1,2,4 through
- Limits of Jack or Macdonald polynomials.

$$N = 1$$
:

$$e^{az} = \lim_{m \to \infty} (1 + z/m)^{\lfloor ma \rfloor}$$

Explicit Taylor series expansion in Jack polynomials.

$$N = 1$$
:

$$e^{az} = 1 + az + \frac{(az)^2}{2!} + \frac{(az)^2}{3!} + \dots$$

$$B_{a_1,\ldots,a_N}(z_1,\ldots,z_N;\,\tfrac{\beta}{2}) = \sum_{\mu} \frac{P_{\mu}(z_1,\ldots,z_N;\,\tfrac{\beta}{2})Q_{\mu}(a_1,\ldots,a_N;\,\tfrac{\beta}{2})}{(N\tfrac{\beta}{2})_{\mu}} \, \text{fack polynomials}$$
• **Eigenfunctions** of (symmetric) Dunkl operators (like in Cauchy identity)

$$D_i := rac{\partial}{\partial z} + rac{eta}{2} \sum_i rac{1}{z_i} \circ (1 - s_{i,j})$$

 $D_i := \frac{\partial}{\partial z_i} + \frac{\beta}{2} \sum_{i:i \neq i} \frac{1}{z_i - z_j} \circ (1 - s_{i,j})$

$$\sum_{i=1}^{N} (D_i)^k B_{a_1,...,a_N}(z_1,\ldots,z_N; \frac{\beta}{2}) = \sum_{i=1}^{N} (a_i)^k B_{a_1,...,a_N}(z_1,\ldots,z_N; \frac{\beta}{2})$$

Theorem: At $\beta = 0$ the operation $(a, b) \mapsto c = a \boxplus_0 b$ has the form: Choose a permutation $\sigma \in S(N)$ uniformly at random and set $(c_1,\ldots,c_N)=(a_1+b_{\sigma(1)},\ldots,a_N+b_{\sigma(N)}).$ Proof 1. Let us try to find B=0 Bessel functions through the properties of the last slide. They should be symmetric and satisfy $\left(\sum_{i=1}^{N} \left(\frac{\partial}{\partial z_{i}}\right)\right) B_{\alpha_{1} \dots \alpha_{N}}\left(z_{1}, z_{N}, o\right) = \sum_{i=1}^{N} a_{i} B_{\alpha_{1}, \dots, \alpha_{N}}\left(z_{1}, z_{N}, o\right)$ What are eigentunctions of differentiations? Exponents? Hence, here we need symmetric exponents: $B_{\alpha_1...\alpha_N}(z_1, z_N, o) = const \cdot \sum_{\sigma \in S(N)} \prod_{i=1}^{N} e^{z_i \alpha_{\sigma(i)}}$ What is const? $B(0,-0)=1 \Rightarrow const=\overline{N!}$

Theorem: At $\beta = 0$ the operation $(a, b) \mapsto c = a \boxplus_0 b$ has the form: Choose a permutation $\sigma \in S(N)$ uniformly at random and set

$$(c_1,\ldots,c_N)=(a_1+b_{\sigma(1)},\ldots,a_N+b_{\sigma(N)}).$$

Proof II. Hence, (C1,-Cn) is found from

 $F_{c} = \frac{1}{N!} \sum_{i=1}^{N} \frac{2_{i} c_{\sigma_{i}(i)}}{2_{i} c_{\sigma_{i}(i)}} = \frac{1}{(N!)^{2}} \sum_{i=1}^{N} \frac{2_{i} (a_{\sigma_{2}(i)} + b_{\sigma_{3}(i)})}{(N!)^{2}}$

Renaming the permutations, we get the statement

Expected characteristic polynomial

Theorem. At $\beta = 0$ the operation $(a, b) \mapsto c = a \boxplus_0 b$ is: Choose a permutation $\sigma \in S(N)$ uniformly at random and set $(c_1,\ldots,c_N)=(a_1+b_{\sigma(1)},\ldots,a_N+b_{\sigma(N)}).$

Corollary. At $\beta = 0$, we have

Corollary. At
$$\beta = 0$$
, we have
$$\mathbb{E} \prod_{i=1}^{N} (z - c_i) = \frac{1}{N!} \sum_{\sigma \in S(N)} \prod_{i=1}^{N} (z - a_i - b_{\sigma(i)}).$$

$$\approx \mathbb{E} \underbrace{\det(z - c_i)}_{i=1}$$
The last expectation identity holds for all $\beta \in S(N)$

Theorem. The last expectation identity holds for all $\beta \in [0, +\infty]$. [At $\beta = \infty$, expectation sign can be removed.]

as for corners we had convergence to a deterministic operation as B-> >>. Similarly here Ci are non-random as B->>>

Expected characteristic polynomial

Theorem. At $\beta = 0$ the operation $(a, b) \mapsto c = a \boxplus_0 b$ is: Choose a permutation $\sigma \in S(N)$ uniformly at random and set $(c_1,\ldots,c_N)=(a_1+b_{\sigma(1)},\ldots,a_N+b_{\sigma(N)}).$

Corollary. At $\beta = 0$, we have

$$\mathbb{E}\prod_{i=1}^{N}(z-c_i)=\frac{1}{N!}\sum_{\sigma\in S(N)}\prod_{i=1}^{N}(z-a_i-b_{\sigma(i)}).$$

Theorem. The last expectation identity holds for all $\beta \in [0, +\infty]$. [At $\beta = \infty$, expectation sign can be removed.]

Hint on the proof.

- Lusing Taylor expansion in Jacks] • Expectations of Jack polynomials in eigenvalues (c_1, \ldots, c_N) .
- One-column Jacks do not depend on β : $P_{(1^k)}(c_1,\ldots,c_N;\frac{\beta}{2})=e_k(c_1,\ldots,c_N)$.
- There are coefficients of expected characteristic polynomial.

Another asymptotic result: free convolution

Theorem. Suppose that as $N \to \infty$

$$rac{1}{N}\sum_{i=1}^N \delta_{a_i/N} o \mu_a, \qquad ext{with} \qquad G_{\mu_a}(z) = \int rac{\mu_a(dx)}{z-x},$$

$$rac{1}{N}\sum_{i=1}^N \delta_{b_i/N} o \mu_b, \qquad ext{with} \qquad G_{\mu_b}(z) = \int rac{\mu_b(dx)}{z-x}.$$

Then for $c = a \boxplus_{\beta} b$

Then for
$$c=a\boxplus_{\beta}b$$

free convolution of μ_{α} and μ_{b}
 $\frac{1}{N}\sum_{i=1}^{N}\delta_{c_{i}/N}\to\mu_{c},$ with $G_{\mu_{c}}(z)=\int\frac{\mu_{c}(dx)}{z-x},$

$$R_{\mu}(z) = (G_{\mu}(z))^{(-1)} - \frac{1}{z},$$

$$R_{\mu_c}(z) = R_{\mu_a}(z) + R_{\mu_b}(z)$$

 $R_{\mu}(z) = (G_{\mu}(z))^{(-1)} - \frac{1}{z}, \qquad \qquad R_{\mu_c}(z) = R_{\mu_a}(z) + R_{\mu_b}(z).$ Written down at Holds for each $\beta > 0$, but **not** for $\beta = 0$. Come back to mustally at $\beta = 0$. [Come back to my talk in two weeks for the critical $\beta N o \gamma$ regime.]

Don't forget about Problem set 2. End of Lecture 2.

Don't forget about Problem set 2. End of Lecture 2.