General beta random matrix theory

(at MATRIX Institute)

Vadim Gorin

University of Wisconsin - Madison
and
Institute for Information Transmission Problems of Russian Academy of Sciences

Lecture 1
June 2021

Roadmap

- What are general β random matrices?
- Lecture 1: corners of β random matrices.
- Problem set 1.
- Lecture 2: sums of β random matrices.
- Problem set 2.
- Lecture 3: questions and discussion of problem sets.
[EXCLUSIVE OFFER: Submit homework - receive a postcard!]

Lectures 1 and 2 are recorded, but Lecture 3 (office hours) is not!
This is NOT a research talk about brand new results. Instead we explore basic structures and definitions.
(See "Lattice Paths, Combinatorics and Interactions" in 2 weeks).

Random matrix theory

The study of random large matrices and their eigenvalues.

Origins:

- Representation theory of the classical groups since 1920s. [Groups of matrices come with normalized measures.]
- Multidimensional statistics since 1930s.
[Data is random and is naturally organized in 2-dimensional arrays.]
- Theoretical physics since 1950s.
[Energy levels in heavy nuclei modelled by eigenvalues.]
- Number theory since 1970s.
[Zeros of Riemann zeta-function modelled by eigenvalues.]
- Reemphasized in modern applied and statistical problems. ["Big data" revolution.]

The central and the most basic random matrix object is the Gaussian Orthogonal/Unitary/Symplectic Ensemble.

Gaussian β ensembles

$N \times N$ matrix X with i.i.d. real/complex/quaternion Gaussian random variables normalized so that their real parts are $\mathcal{N}\left(0, \frac{2}{\beta}\right)$.
variance

$$
M=\frac{X+X^{*}}{2}=\left(\begin{array}{ccc}
M_{11} & M_{12} & \ldots \\
M_{21} & M_{22} & \\
\vdots & & \ddots
\end{array}\right)
$$

The density of eigenvalues $x_{1}<x_{2}<\cdots<x_{N}$:

$$
\sim \prod_{1 \leq i<j \leq N}\left(x_{j}-x_{i}\right)^{\beta} \prod_{i=1}^{N} \exp \left(-\frac{\beta}{4}\left(x_{i}\right)^{2}\right) .
$$

$\beta=1,2,4$ is the dimension of the base (skew-) field.
After today's lecture and pset you should be able to prove it!

Gaussian β ensembles

$$
\prod_{1 \leq i<j \leq N}\left(x_{j}-x_{i}\right)^{\beta} \prod_{i=1}^{N} \exp \left(-\frac{\beta}{4}\left(x_{i}\right)^{2}\right) . \quad \begin{aligned}
& \text { average of densities } \\
& \\
& \text { of } 3 \text { eigenvalues }
\end{aligned}
$$

First correlation function for $N=3: \quad \frac{1}{3} \mathbb{E}\left[\delta_{x_{1}}+\delta_{x_{2}}+\delta_{x_{3}}\right] \not{ }^{\natural}$

i.i.d. Gaussian

random matrices

Five meaningul values ask for a unified treatment of $\beta \in[0,+\infty]$
This is the topic of general β random matrix theory.

Tasks of β random matrix theory

- Asymptotic questions: E.g., $N \rightarrow \infty$ behavior of density

$$
\begin{aligned}
& \prod_{1 \leq i<j \leq N}\left(x_{j}-x_{i}\right)^{\beta} \prod_{i=1}^{N} V\left(x_{i}\right) \\
& \text { with fixed } \beta>0, \quad \text { or } \beta \rightarrow 0, \quad \text { or } \beta \rightarrow \infty
\end{aligned}
$$

- Algebraic questions:

How do we add and multiply general β random matrices?

Disclaimer: There is no field of dimension β.

Algebra: Rank 1 operations as a building block.

$$
C=\int_{\nearrow}^{A+B} \quad \text { (Additive version) }
$$

Weyl's inequalities relate eigenvalues of A and C. The distributions are also the simplest

$$
C=P A P \longleftarrow \operatorname{rank}(N-1) \text { projector (Multiplicative version) }
$$

$$
\text { arbitrary } N \times N
$$

If P projects on the first $(N-1)$ coordinate vectors

$$
A=(c) \text { - we cut corners }
$$

Additive and multiplicative math are similar. We build our theore on the latter

The key computation

$N \times N$ matrix X with i.i.d. real/complex/quaternion Gaussian random variables with real parts $\mathcal{N}\left(0, \frac{2}{\beta}\right) . M=\frac{X+X^{*}}{2}$.

$$
\left(\begin{array}{lll|l}
M_{11} & M_{12} & M_{13} & M_{14} \\
M_{21} & M_{22} & M_{23} & M_{24} \\
M_{31} & M_{32} & M_{33} & M_{34} \\
\hline M_{41} & M_{42} & M_{43} & M_{44}
\end{array}\right)
$$

Eigenvalues:

- $\left(\lambda_{i}\right)_{i=1}^{N}-N \times N$
- $\left(\mu_{i}\right)_{i=1}^{N-1}-(N-1) \times(N-1)$

Theorem. Conditional distributions are:

1. $\left(\mu_{i}\right)$ given $\left(\lambda_{i}\right)$ solve $\sum_{i=1}^{N} \frac{\xi_{i}}{z-\lambda_{i}}=0$.
2. $\left(\lambda_{i}\right)$ given $\left(\mu_{i}\right)$ solve $\sum_{i=1}^{N-1} \frac{\xi_{i}^{\prime}}{z-\mu_{i}}=z+\mathcal{N}\left(0, \frac{2}{\beta}\right)$,
ξ_{i} and ξ_{i}^{\prime} are i.i.d. $\frac{1}{\beta} \chi_{\beta}^{2}$ random variables, that is $\sum_{j=1}^{\beta} \mathcal{N}_{j}^{2}\left(0, \frac{1}{\beta}\right)$.
Important: This is a basis of extension to all $\beta \in[0,+\infty]$.

Proof that $\left(\lambda_{i}\right)$ given $\left(\mu_{i}\right)$ solve $\sum_{i=1}^{N-1} \frac{\xi_{i}^{\prime}}{z-\mu_{i}}=z+\mathcal{N}\left(0, \frac{2}{\beta}\right)$:

$$
M=\left(\begin{array}{cc}
A & \begin{array}{c}
M_{1 N} \\
M_{N 1}
\end{array} \\
M_{N N}
\end{array}\right)
$$

(We deal with $B=2$ case) $\beta=1,4$ is the same
A is self-adjoint $\Rightarrow \exists$ unitary matrix $U \in O(N-1)$ such that $U A U^{*}=\left(\begin{array}{cc}\mu_{1} & 0 \\ 0 & 0 \\ 0 & \mu_{N}\end{array}\right)$
Set $\tilde{u}=\left(\begin{array}{cc}U_{0} \\ 0 \\ 0.01\end{array}\right)$ and replace $M \rightarrow \widetilde{u} M \hat{u}^{*}$ M^{\prime}

Proof that $\left(\lambda_{i}\right)$ given $\left(\mu_{i}\right)$ solve $\sum_{i=1}^{N-1} \frac{\xi_{i}^{\prime}}{z-\mu_{i}}=z+\mathcal{N}\left(0, \frac{2}{\beta}\right)$: //
we get

$$
M^{\prime}=\left(\begin{array}{ccc}
\mu_{1} & 0 & p_{1} \\
0 & \mu_{N-1} & p_{N-1} \\
\bar{p}_{1} & & \overline{p_{N-1}}
\end{array}\right)
$$

Claim: Given $\mu_{11}, \mu_{N-1} ; p_{1, \ldots} p_{N-1}$ are i.i.d. complex Gaussians, and q is a real $N\left(0, \frac{2}{\beta}\right)$
Indeed, $\left(P_{1,-} P_{N-1}\right)$ obtained from last column of M by rotation with independent unitary matrix, which preserves being i.i.d. Gaussians.
g was not changed in $M \rightarrow M M U^{*}$ at all

Proof that $\left(\lambda_{i}\right)$ given $\left(\mu_{i}\right)$ solve $\sum_{i=1}^{N-1} \frac{\xi_{i}^{\prime}}{z-\mu_{i}}=z+\mathcal{N}\left(0, \frac{2}{\beta}\right)$: III
E.V. of $M=E \cdot V$. of M^{\prime}. Those solve
$\operatorname{det}\left(\begin{array}{ccc}\mu_{1}-z & 0 & p_{1} \\ 0 & \ddots & \vdots \\ \mu_{N}-z & p_{N-1} \\ p_{1} & p_{N-1} & q-z\end{array}\right)=0 \quad$ Expanding in lost

$$
-\sum_{i=1}^{N-1} p_{i} \bar{p}_{i} \cdot \prod_{j \neq i}\left(\mu_{j}-z\right)+(q-z) \prod_{j=1}^{N}\left(\mu_{j}-z\right)=0
$$

Dividing by $\prod_{j=1}^{N}\left(\mu_{j}-z\right)$ and noticing that $p_{i} \overline{p_{i}} \sim \frac{1}{\beta} X_{\beta,}^{2}$ we are done

Interlacement of eigenvalues
Corollary 1. The eigenvalues of a matrix and its corner interlace:

$$
\lambda_{1} \leq \mu_{1} \leq \lambda_{2} \leq \cdots \leq \mu_{N-1} \leq \lambda_{N}
$$

Proof. Using and part of theorem (PSET 10) μ_{i} are roots of $\quad f(z)=\sum_{i=1}^{N} \frac{3_{i}}{z-\lambda_{i}}=0$ This is a polynomial equation of degree $N-1$ $3_{i}>0$ almost surely \Rightarrow on the segment $\left[\lambda_{i}, \lambda_{i+1}\right]$ $f(z)$ goes from $+\infty$ to $-\infty$. But f is continuous \Rightarrow I a root in each of the $\left(\lambda_{i}, \lambda_{i+1}\right)$ segment and we located

Corollary 2:The multilevel densities of $\mathrm{G} \beta \mathrm{E}$

Infinite matrix X with i.i.d. real/complex/quaternion Gaussian random variables normalized so that their real parts are $\mathcal{N}\left(0, \frac{2}{\beta}\right)$.

All corners of $M=\frac{X+X^{*}}{2}$

Joint density of interlacing eigenvalues.
$\prod_{k=1}^{N-1} \prod_{1 \leq i<j \leq k}\left(x_{i}^{k}-x_{j}^{k}\right)^{2-\beta} \prod_{a=1}^{k} \prod_{b=1}^{k+1}\left|x_{a}^{k}-x_{b}^{k+1}\right|^{\beta / 2-1} \prod_{i=1}^{N} \exp \left(-\frac{\beta}{4}\left(x_{i}^{N}\right)^{2}\right)$

Corollary 3: β-corners processes

A self-adjoint matrix M whose law is invariant under $M \mapsto U M U^{*}$

$$
\text { (} U \text { - orthogonal/unitary/symplectic if } \beta=1,2,4 \text {) }
$$

Eigenvalues of corners

$$
\left(\begin{array}{lll|l}
M_{11} & M_{12} & M_{13} & M_{14} \\
\hline M_{21} & M_{22} & M_{23} & M_{24} \\
\hline M_{31} & M_{32} & M_{33} & M_{34} \\
\hline M_{41} & M_{42} & M_{43} & M_{44}
\end{array}\right)
$$

Conditionally on $\left(x_{1}^{N}, \ldots, x_{N}^{N}\right)=\left(a_{1}, \ldots, a_{N}\right)$, the joint law is

$$
\prod_{k=1}^{N-1} \prod_{1 \leq i<j \leq k}\left(x_{i}^{k}-x_{j}^{k}\right)^{2-\beta} \prod_{a=1}^{k} \prod_{b=1}^{k+1}\left|x_{a}^{k}-x_{b}^{k+1}\right|^{\beta / 2-1}
$$

- A basis of extension from $\beta=1,2,4$ to general $\beta>0$.
- Consistent with Gaussian β Ensembles.

Sketch of the proof for multilevel densities (Corollaries 2 and 3) I
The multilevel process is a Markov chain and its law is computed through initial condition + transitions

Either starting from level 0 and growing the level (works nicely for Gaussiman β-carvers) or startring from level N and decreasing the level.

Sketch of the proof for multilevel densities (Corollaries 2 and 3) II

If $a_{1}<a_{2}<a_{3}$ is fixed,

then we compute the law

$$
\text { as } \begin{aligned}
& P_{3 \rightarrow 2}\left(\left(a_{1}, a_{2}, a_{3}\right) \rightarrow\left(b_{1}, b_{2}\right)\right) \\
& \cdot P_{2 \rightarrow 1}\left(\left(b_{1}, b_{2}\right) \rightarrow C_{1}\right)
\end{aligned}
$$

The transitions are given by the theorem. Egg. $\left(b_{1}, b_{2}\right)$ solve $\frac{z_{1}}{z-a_{1}}+\frac{z_{2}}{z-a_{2}}+\frac{z_{3}}{z-a_{3}}=0$. **
We can rewormalize $w_{i}=\frac{z_{i}}{\sum_{j} z_{j}}$, so that $\sum w_{i}=$,
(*) is unchanged

Sketch of the proof for multilevel densities (Corollaries 2 and 3)

Then what remains is to make the change of variables to compute the density:

$$
\begin{aligned}
\left(w_{1}, w_{2}, w_{3} \mid w_{1}+w_{2}+w_{3}=1\right) & \longleftrightarrow\left(b_{1}, b_{2}\right) \\
\frac{w_{1}}{z-a_{1}}+\frac{w_{2}}{z-a_{2}}+\frac{w_{3}}{z-a_{3}} & =\frac{\left(z-b_{1}\right)\left(z-b_{2}\right)}{\left(z-a_{1}\right)\left(z-a_{2}\right)\left(z-a_{3}\right)}
\end{aligned}
$$

The density of $\left(w_{1}, w_{2}, w_{3}\right)$ is explicit:

$$
W_{1}^{B / 2-1} \cdot w_{2}^{B / 2^{-1}} \cdot w_{3}^{B / 2-1}
$$

"Dirichlet distribution"
("Beta" on high-dimensional simplex)
because $x_{\beta}^{2} \sim$ density $x^{\beta / 2-1} e^{-x / 2}, x>0$.
Hence, need to change variables in density (PSET1)

Conclusion: eigenvalues of corners of β random matrices
Fix $\beta>0$

$$
N=1,2, \ldots
$$

$$
a_{1}, \ldots, a_{N} \in \mathbb{R}
$$

Definition. Eigenvalues of corners of $N \times N$ random β-matrix with uniformly random eigenvectors and fixed eigenvalues $\left(a_{i}\right)_{i=1}^{N}$ are a triangular array $\left(x_{i}^{k}\right)_{1 \leq i \leq N}$ satisfying

$$
x_{i+1}^{k} \leq x_{i}^{k} \leq x_{i+1}^{k+1}, \quad\left(x_{1}^{N}, \ldots, x_{N}^{N}\right)=\left(a_{1}, \ldots, a_{N}\right)
$$

with distribution of density

$$
\left[\prod_{k=1}^{N} \frac{\Gamma\left(\frac{\beta k}{2}\right)}{\Gamma\left(\frac{\beta}{2}\right)^{k}}\right] \cdot \prod_{k=1}^{N-1} \prod_{1 \leq i<j \leq k}\left(x_{i}^{k}-x_{j}^{k}\right)^{2-\beta} \prod_{a=1}^{k} \prod_{b=1}^{k+1}\left|x_{a}^{k}-x_{b}^{k+1}\right|^{\beta / 2-1}
$$

What about $\beta=0$ or $\beta=\infty$?

Theorem. With $\left(x_{1}^{N}, \ldots, x_{N}^{N}\right)=\left(a_{1}, \ldots, a_{N}\right)$, the eigenvalues with law

$$
\prod_{k=1}^{N-1} \prod_{1 \leq i<j \leq k}\left(x_{i}^{k}-x_{j}^{k}\right)^{2-\beta} \prod_{a=1}^{k} \prod_{b=1}^{k+1}\left|x_{a}^{k}-x_{b}^{k+1}\right|^{\beta / 2-1}
$$

converges as $\beta \rightarrow \infty$ to the roots of derivarives:

$$
\prod_{i=1}^{k}\left(z-x_{i}^{k}\right) \sim \frac{\partial^{N-k}}{\partial z^{N-k}} \prod_{j=1}^{N}\left(z-a_{j}\right), \quad k=1,2, \ldots, N
$$

Proof. Given $x_{1}^{N}, \ldots x_{N}^{N}$, e.v. $x_{1}^{N-1}, \ldots x_{N-1}^{N-1}$ solve

$$
\sum_{i=1}^{N} \frac{\xi_{i}}{z-x_{i}^{N}}=0 \quad z_{i} \sim \frac{1}{\beta} x_{\beta}^{2}=\frac{1}{\beta} \sum_{i=1}^{\beta} N(0,1)^{2} \underset{\beta \rightarrow \infty}{ } 1
$$

[By LLN for integer β, by $\mathbb{E} /$ Var compotaction for $B \in \mathbb{R} \rightarrow>]$
Hence, for $\beta=\infty$ we get $\quad \sum_{i=1}^{N} \frac{1}{z-x_{i}^{N}}=0$.
Mutliplying by $\prod_{i=1}^{N}\left(z-x_{i}^{N}\right)$, we see that these are roots of derivative Qu $^{i=1}$

One asymptotic result

Theorem. Suppose that as $N \rightarrow \infty$

$$
\begin{gathered}
\frac{1}{N} \sum_{i=1}^{N} \delta_{a_{i} / N} \rightarrow \mu, \quad \text { with } \quad G_{\mu}(z)=\int \frac{\mu(d x)}{z-x} \\
\prod_{i=1}^{k}\left(z-x_{i}^{k}\right) \sim \frac{\partial^{N-k}}{\partial z^{N-k}} \prod_{j=1}^{N}\left(z-a_{j}\right) \quad \text { and } \quad k / N \rightarrow \alpha .
\end{gathered}
$$

Then

$$
\begin{gathered}
\frac{1}{k} \sum_{i=1}^{k} \delta_{x_{i}^{k} / k} \rightarrow \mu_{\alpha}, \quad \text { with } \quad G_{\mu_{\alpha}}(z)=\int \frac{\mu_{\alpha}(d x)}{z-x} \\
R_{\mu}(z)=\left(G_{\mu}(z)\right)^{(-1)}-\frac{1}{z}, \quad R_{\mu_{\alpha}}(z)=\left(G_{\mu_{\alpha}}(z)\right)^{(-1)}-\frac{1}{z}
\end{gathered}
$$

"Voiculescan R-transform"
"Free projection"

$$
\alpha R_{\mu_{\alpha}}(z)=R_{\mu}(z) .
$$

"Free compression"
Same result for each $\beta>0$, but not for $\beta=0$.

End of Lecture 1.

Don't forget about Problem set 1 .

End of Lecture 1.

Don't forget about Problem set 1 .

