
General beta random matrix theory

(at MATRIX Institute)

Vadim Gorin

University of Wisconsin — Madison
and

Institute for Information Transmission Problems of Russian Academy of Sciences

Lecture 1

June 2021



Roadmap
• What are general � random matrices?

• Lecture 1: corners of � random matrices.

• Problem set 1.

• Lecture 2: sums of � random matrices.

• Problem set 2.

• Lecture 3: questions and discussion of
problem sets.

[EXCLUSIVE OFFER: Submit homework - receive a postcard!]

Lectures 1 and 2 are recorded, but Lecture 3 (o�ce hours) is not!

This is NOT a research talk about brand new results.

Instead we explore basic structures and definitions.

(See “Lattice Paths, Combinatorics and Interactions” in 2 weeks).



Random matrix theory

The study of random large matrices and their eigenvalues.

Origins:

• Representation theory of the classical groups since 1920s.
[Groups of matrices come with normalized measures.]

• Multidimensional statistics since 1930s.
[Data is random and is naturally organized in 2-dimensional arrays.]

• Theoretical physics since 1950s.
[Energy levels in heavy nuclei modelled by eigenvalues.]

• Number theory since 1970s.
[Zeros of Riemann zeta-function modelled by eigenvalues.]

• Reemphasized in modern applied and statistical problems.
[“Big data” revolution.]

The central and the most basic random matrix object is
the Gaussian Orthogonal/Unitary/Symplectic Ensemble.



Gaussian � ensembles

N ⇥ N matrix X with i.i.d. real/complex/quaternion Gaussian
random variables normalized so that their real parts are N (0, 2

� ).
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The density of eigenvalues x1 < x2 < · · · < xN :
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� = 1, 2, 4 is the dimension of the base (skew-) field.

After today’s lecture and pset you should be able to prove it!



Gaussian � ensembles
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First correlation function for N = 3: 1
3E [�x1 + �x2 + �x3 ]
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i.i.d. Gaussian random matrices Hermite roots

Five meaningul values ask for a unified treatment of � 2 [0,+1]

This is the topic of general � random matrix theory.



Tasks of � random matrix theory

• Asymptotic questions: E.g., N ! 1 behavior of density

Y
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V (xi ).

with fixed � > 0, or � ! 0, or � ! 1.

• Algebraic questions:

How do we add and multiply general � random matrices?

self-adjoint � random matrices

eigenvectors eigenvalues

OPEN This course

Disclaimer: There is no field of dimension �.



Algebra: Rank 1 operations as a building block.



The key computation

N ⇥ N matrix X with i.i.d. real/complex/quaternion Gaussian
random variables with real parts N (0, 2

� ). M = X+X⇤
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Eigenvalues:

• (�i )Ni=1 — N ⇥ N

• (µi )
N�1
i=1 — (N � 1)⇥ (N � 1)

Theorem. Conditional distributions are:

1. (µi ) given (�i ) solve
NX

i=1

⇠i
z � �i

= 0.

2. (�i ) given (µi ) solve
N�1X
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z � µi

= z +N (0, 2
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Important: This is a basis of extension to all � 2 [0,+1].



Proof that (�i ) given (µi ) solve
N�1X
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⇠0i
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= z +N (0, 2
� ) : I



Proof that (�i ) given (µi ) solve
N�1X

i=1

⇠0i
z � µi

= z +N (0, 2
� ) : II



Proof that (�i ) given (µi ) solve
N�1X

i=1

⇠0i
z � µi

= z +N (0, 2
� ) : III



Interlacement of eigenvalues

Corollary 1. The eigenvalues of a matrix and its corner interlace:

�1  µ1  �2  · · ·  µN�1  �N .

Proof.



Corollary 2:The multilevel densities of G�E

Infinite matrix X with i.i.d. real/complex/quaternion Gaussian
random variables normalized so that their real parts are N (0, 2

� ).

All corners of M = X+X⇤
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Joint density of interlacing eigenvalues.
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Corollary 3: �–corners processes
A self-adjoint matrix M whose law is invariant under M 7! UMU⇤

(U — orthogonal/unitary/symplectic if � = 1, 2, 4)

Eigenvalues of corners
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Conditionally on (xN1 , . . . , xNN ) = (a1, . . . , aN), the joint law is
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• A basis of extension from � = 1, 2, 4 to general � > 0.
• Consistent with Gaussian � Ensembles.



Sketch of the proof for multilevel densities (Corollaries 2 and 3) I
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Sketch of the proof for multilevel densities (Corollaries 2 and 3) II



Sketch of the proof for multilevel densities (Corollaries 2 and 3) III



Conclusion: eigenvalues of corners of � random matrices

Fix � > 0
N = 1, 2, . . .
a1, . . . , aN 2 R
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Definition. Eigenvalues of corners of N ⇥ N random �-matrix

with uniformly random eigenvectors and fixed eigenvalues (ai )Ni=1
are a triangular array (xki )1iN satisfying

xki+1  xki  xk+1
i+1 , (xN1 , . . . , xNN ) = (a1, . . . , aN),

with distribution of density
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What about � = 0 or � = 1?



Theorem. With (xN1 , . . . , xNN ) = (a1, . . . , aN), the eigenvalues with law
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converges as � ! 1 to the roots of derivarives:
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Proof.



One asymptotic result

Theorem. Suppose that as N ! 1
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Same result for each � > 0, but not for � = 0.



End of Lecture 1. Don’t forget about Problem set 1.



End of Lecture 1. Don’t forget about Problem set 1.


