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Lecture 1: Introduction and tileability

1.1 Preface

The goal of the lectures is to understand the mathematics of tilings. The general
setup is to take a lattice domain and tile it with elementary blocks. For the most
part, we study the special case of tiling a polygonal domain on the triangular
grid (of mesh size 1) by three kinds of rhombi that we call “lozenges”.

The left panel of Figure 1.1 shows an example of a polygonal domain on
the triangular grid. The right panel of Figure 1.1 shows the lozenges: each of
them is obtained by gluing two adjacent lattice triangles. A triangle of the grid
is surrounded by three other triangles, attaching one of them we get one of
the three types of lozenges. The lozenges can be also viewed as orthogonal
projections onto the x+y+z = 0 plane of three sides of a unit cube. Figure 1.2
provides an example of a lozenge tiling of the domain of Figure 1.1.

Figure 1.3 shows a lozenge tiling of a large domain, with the three types of
lozenges shown in three different colors. The tiling here is generated uniformly
at random over the space of all possible tilings of this domain. More precisely,
it is generated by a computer that is assumed to have access to perfectly ran-
dom bits. It is certainly not clear at this stage how such “perfect sampling”
may be done computationally, in fact we address this issue in the very last
lecture. Figure 1.3 is meant to capture a “typical tiling”, making sense of what
this means is another topic that will be covered in this book. The simulation re-
veals interesting features: one clearly sees next to the boundaries of the domain
formation of the regions, where only one type of lozenges is observed. These
regions are typically referred to as “frozen regions” and their boundaries are
“artic curves”; their discovery and study has been one of the important driving
forces for investigations of the properties of random tilings.

We often identify a tiling with a so-called “height function”. The idea is
to think of a 2-dimensional stepped surface living in 3-dimensional space and
treat tiling as a projection of such surface onto x+ y+ z = 0 plane along the
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8 Lecture 1: Introduction and tileability

A = 5

B = 5 C = 5

Figure 1.1 Left panel: A 5×5×5 hexagon with 2×2 rhombic hole. Right panel:
three types of lozenges obtained by gluing two adjacent triangles of the grid.

A = 5

B = 5 C = 5

Figure 1.2 A lozenge tiling of a 5×5×5 hexagon with a hole.

(1,1,1) direction. In this way three lozenges become projections of three el-
ementary squares in three-dimensional space parallel to each of the three co-
ordinate planes. We formally define the height function later in this lecture.
We refer to [BorodinBorodinA] for a gallery of height functions in a 3d virtual
reality setting.
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Figure 1.3 A perfect sample of a uniformly random tiling of a large hexagon with
a hole. (I thank Leonid Petrov for this simulation.)

1.2 Motivation

Figure 1.3 is beautiful, and as mathematicians, this suffices for probing more
deeply into it and trying to explain various features that we observe in the
simulation.

There are also some motivations from theoretical physics and statistical me-
chanics. Lozenge tilings serve as a “toy model” that helps in understanding the
3-dimensional Ising model (a standard model for magnetism). Configurations
of the 3-dimensional Ising model are assignments of +⃝ and -⃝ spins to lattice
points of a domain in Z3. A parameter (usually called temperature) controls
how much the adjacent spins are inclined to be oriented in the same direc-
tion. The zero temperature limit leads to spins piling into as large as possible
groups of the same orientation; these groups are separated with stepped sur-
faces whose projections in (1,1,1) direction are lozenge tilings. For instance,
if we start from the Ising model in a cube and fix boundary conditions to be +⃝
along three faces (sharing a single vertex) of this cube and -⃝ along other three
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faces, then we end up with lozenge tilings of a hexagon in zero temperature
limit.1

Another deformation of lozenge tilings is the 6-vertex or square ice model,
whose state space consists of configurations of the molecules H2O on the grid.
There are six weights in this model (corresponding to six ways to match an
oxygen with two out of the neighboring four hydrogens), and for particular
choices of the weights one discovers weighted bijections with tilings.

We refer to [Baxter82] for some information about the Ising and the six-
vertex model, further motivations to study them and approaches to the analysis.
In general, both Ising and six-vertex model are more complicated objects than
lozenge tilings, and they are much less understood. From this point of view,
theory of random tilings that we develop in these lectures can be treated as the
first step towards the understanding of more complicated models of statistical
mechanics.

For yet another motivation we notice that the two dimensional stepped
surfaces of our study have flat faces (these are frozen regions consisting of
lozenges of one type, cf. Figures 1.3, 1.5), and, thus, are relevant for modelling
facets of crystals. One example from the everyday life here is a corner of a
large box of salt. For a particular (non-uniform) random tiling model, leading
to the shapes reminiscent of such a corner we refer to Figure 10.1 in Lecture
10.

1.3 Mathematical questions

We now turn to describing the basic questions that drive the mathematical study
of tilings.

1 Existence of tilings: Given a domain R drawn on the triangular grid (and
thus consisting of a finite family of triangles), does there exist a tiling of it?
For example, a unit sided hexagon is trivially tileable in 2 different ways
and bottom-right panel in Figure 1.1 shows one of these tilings. On the
other hand, if we take the equilateral triangle of sidelength 3 as our domain
R, then it is not tileable. This can be seen directly, as the corner lozenges
are fixed and immediately cause obstruction. Another way to prove non-
tileability is by coloring unit triangles inside R in white and black colors
in an alternating fashion. Each lozenge covers one black and one white tri-
angle, but there are an unequal number of black and white triangles in the

1 See [Shlosman00, CerfKenyon01, BodineauSchonmannShlosman04] for the discussion of the
common features between low-temperature and zero-temperature 3d Ising model, as well as
the interplay between the topics of this book and more classical statistical mechanics.
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No tilings

Figure 1.4 A tileable and a non-tileable domain.

R: equilateral triangle of sidelength 3 has 6 triangles of one color and 3
triangles of another color.

Another example is shown in Figure 1.4: in the left panel we see two
domains. The top one is tileable, while the bottom one is not.

More generally, is there a simple (and efficient from the computational
point of view) criterion for tileability of R? The answer is yes by a theorem
of [Thurston90]. We discuss this theorem in more detail in Section 1.4 later
in this lecture.

2 How many tilings does a given domain R have? The quality of the an-
swer depends on one’s taste and perhaps what one means by a “closed
form”/“explicit answer”. Here is one case where a “good” answer is known
by the following theorem due to MacMahon (who studied this problem in
the context of plane partitions, conjectured a formula in [MacMahon1896],
and proved it in [MacMahon1915, Art. 495]). Let R be a hexagon with
side lengths A,B,C,A,B,C in cyclic order. We denote this henceforth by the
A×B×C hexagon (in particular, the left panel of Figure 1.1 was showing
5×5×5 hexagon with a rhombic hole).

Theorem 1.1 ([MacMahon1896]). The number of lozenge tilings of A×B×
C hexagon equals

A

∏
a=1

B

∏
b=1

C

∏
c=1

a+b+ c−1
a+b+ c−2

. (1.1)

As a sanity check, one can take A = B =C = 1, yielding the answer 2 —
and indeed one readily checks that there are precisely two tilings of 1×1×1
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hexagon. A proof of this theorem is given in Section 2.2. Another situation
where the number of tilings is somewhat explicit is for the torus and we
discuss this in Lectures 3 and 4. For general R, one can not hope for such
nice answers, yet certain determinantal formulas (involving large matrices
whose size is proportional to the area of the domain) exist, as we discuss in
Lecture 2.

3 Law of large numbers. Each lozenge tilings is a projection of a 2d–surface,
and therefore can be represented as a graph of a function of two variables
which we call the height function (its construction is discussed in more detail
in Section 1.4). If we take a uniformly random tiling of a given domain,
then we obtain a random height function h(x,y) encoding a random stepped
surface. What is happening with the random height function of a domain of
linear size L as L → ∞? As we will see in Lectures 5-10 and in Lecture 23,
the rescaled height function has a deterministic limit:

lim
L→∞

1
L

h(Lx,Ly) = ĥ(x,y),

An important question is how to compute and describe the limit shape
ĥ(x,y). One feature of the limit shapes of tilings is the presence of regions
where the limiting height function is linear. In terms of random tilings, these
are “frozen” regions, which contain only one type of lozenges. In particular,
in Figure 1.3 there is a clear outer frozen region near each of the six vertices
of the hexagon; another four frozen regions surround the hole in the middle.

Which regions are “liquid”, i.e. contain all three types of lozenges? What
is the shape of the “Arctic curve”, i.e. the boundary between frozen and
liquid regions? For example, with the aL×bL× cL hexagon setup, one can
visually see from Figure 1.5 that the boundary appears to be an inscribed
ellipse:

Theorem 1.2 ([CohnLarsenPropp98, BaikKriecherbauerMcLaughlinMiller03,
Gorin08, Petrov12a]). For aL × bL × cL hexagon, a uniformly random
tiling is with high probability asymptotically frozen outside the inscribed
ellipse as L → ∞. In more detail, for each (x,y) outside the ellipse, with
probability tending to 1 as L → ∞, all the lozenges that we observe in a
finite neighborhood of (xL,yL) are of the same type.

The inscribed ellipse of Theorem 1.2 is the unique degree 2 curve tangent
to the hexagon’s sides. This characterization in terms of algebraic curves
extends to other polygonal domains, where one picks the degree such that
there is a unique algebraic curve tangent (in the interior) of R. Various ap-
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Figure 1.5 Arctic circle of a lozenge tiling

proaches to Theorem 1.2, its relatives and generalizations are discussed in
Lectures 7, 10, 16, 21, 23.

4 Analogs of the Central Limit Theorem: The next goal is to understand the
random field of fluctuations of the height function around the asymptotic
limit shape, i.e. to identify the limit

lim
L→∞

(h(Lx,Ly)−E[h(Lx,Ly)]) = ξ (x,y). (1.2)

Note the unusual scaling; one may naively expect a need for dividing by
√

L
to account for fluctuations as in the classical central limit theorem for sums
of independent random variables and many similar statements. But there
turns out be some “rigidity” in tilings and the fluctuations are much smaller.
ξ (x,y) denotes the limiting random field, in this case it can be identified
with the so-called “Gaussian free field”. The Gaussian free field is related to
conformal geometry as it turns out to be invariant under conformal transfor-
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Figure 1.6 Fluctuations of the centered height function for lozenge tilings of a
hexagon with a hole. Another drawing of the same system is in Figure 24.2 later
in the text.

mations. This topic will be explored in Lectures 11, 12, 21, and 23. For now
we confine ourselves to yet another picture given in Figure 1.6.

5 Height of a plateau/hole: Consider Figures 1.2, 1.3. The central hole has
an integer valued random height. What is the limiting distribution of this
height? Note, that comparing with (1.2) we expect that no normalization
is necessary as L → ∞, and, therefore, the distribution remains discrete as
L → ∞. Hence, the limit cannot be Gaussian. You can make a guess now or
proceed to Lecture 24 for the detailed discussion.

6 Local limit: Suppose we “zoom in” at a particular location inside a random
tiling of a huge domain. What are the characteristics of the tiling there?
For example, consider a certain finite pattern of lozenges, call it P and
see Figure 1.7 for an example. Asymptotically, what is the probability that
P appears in the vicinity of (Lx,Ly)? Note that if P consists of a single
lozenge, then we are just counting the local proportions for the lozenges of
three types, hence one can expect that they are reconstructed from gradients
of the limit shape h̃. However, for more general P it is not clear what to
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Figure 1.7 An example of a local pattern P of lozenges. The bulk limit question
asks about the probability of observing such (or any other) pattern in a vicinity of
a given point (Lx,Ly) in a random tiling of a domain of linear scale L → ∞.

expect. This is called a “bulk limit” problem and we return to it in Lectures
16 and 17.

7 Edge limit: How does the Arctic curve (border of the frozen region) fluctu-
ate? What is the correct scaling? It turns out to be L

1
3 here, something that is

certainly not obvious at all right now. The asymptotic law of rescaled fluc-
tuations turns out to be given by the celebrated Tracy-Widom distribution
from random matrix theory as we discuss in Lectures 18 and 19.

8 Sampling: How does one sample from the uniform distribution over tilings?
The number of tilings grows extremely fast (see e.g. the MacMahon for-
mula (1.1)), so one can not simply exhaustively enumerate the tilings on a
computer, and a smarter procedure is needed. We discuss several approaches
to sampling in Lecture 25.

9 Open problem: Can we extend the theory to 3 dimensional tiles?

1.4 Thurston’s theorem on tileability

We begin our study from the first question: given a domain R, is there at least
one tiling? The material here is essentially based on [Thurston90].

Without loss of generality we may assume R is a connected domain; the
question of tileability of a domain is equivalent to that of its connected compo-
nents. We start by assuming that R is simply connected, and then remove this
restriction.

We first discuss the notion of a height function in more detail, and how it
relates to the question of tileability of a domain. There are 6 directions on the
triangular grid, the unit vectors in those directions are:

a = (0,1), b =

(
−
√

3
2

,−1
2

)
, c =

(√
3

2
,−1

2

)
, −a, −b, −c.
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a = (0, 1)

b =
(
−

√
3

2
,− 1

2

)
c =

(√
3

2
,− 1

2

)
Figure 1.8 Out of the six lattice directions three are chosen to be positive (in
bold).

We call a,b,c positive directions, and their negations are negative directions,
as in Figure 1.8.

We now define an asymmetric nonnegative distance function d(u,v) for any
two vertices u,v on the triangular grid (which is the lattice spanned by a and
b) and a domain R. d(u,v) is the minimal number of edges in a positively
oriented path from u to v staying within (or on the boundary) of R. This is well
defined as we assumed R to be connected. The asymmetry is clear: consider R

consisting of a single triangle, and let u,v be two vertices of it. Then d(u,v) = 1
and d(v,u) = 2 (or other way round).

We now formally define a height function h(v) for each vertex v ∈ R, given
a tiling of R. This is given by a local rule: if u → v is a positive direction, then

h(v)−h(u) =

{
1, if we follow an edge of a lozenge

−2, if we cross a lozenge diagonally.
(1.3)

It may be easily checked that this height function is defined consistently. This
is because the rules are consistent for a single lozenge (take e.g. the lozenge
{0,a,b,a + b}), and the definition extends consistently across unions. Note
that h is determined up to a constant shift. We may assume without loss of
generality that our favorite vertex v0 has h(v0) = 0.

Let us check that our definition matches the intuitive notion of the height.
For that we treat positive directions a, b, c in Figure 1.8 as projections
of coordinate axes Ox, Oy, Oz, respectively. Take one of the lozenges, say

{0,a,b,a + b}. Up to rescaling by the factor
√

2
3 , it can be treated as a

projection of the square {(0,0,0),(1,0,0),(0,1,0),(1,1,0)} onto the plane
x+ y+ z = 0. Hence, our locally defined height function becomes the value
of x+ y+ z. Similar observation is valid for two other types of lozenges. The
conclusion is that if we identify lozenge tiling with a stepped surface in three-
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0

−1
−2

−3
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−5

−6
−7

−8
0

1

2 3
2

3
2

1

0 0
−1 −1

0

1

2 3
2

3
2

1

0 0
1 1

Figure 1.9 Three domains: the triangle on the left has no tiles, because there is
no way to consistently define the heights along its boundary; the domain in the
middle has no tilings because the inequality (1.4) fails for the encircled pair of
points; the right domain is tileable.

dimensional space, then our height is (signed and rescaled) distance from the
surface point to its projection onto x+y+ z = const plane in (1,1,1) direction.

Note also that even if R is not tileable, but is simply connected, then our
local rules uniquely (up to global shift) define h on the boundary ∂R: no
lozenges are allowed to cross it and therefore the increments in positive di-
rection all equal 1.

Exercise 1.3. Find the values of the height function along the two connected
components of the boundary of the holey hexagon in the left panel of Figure
1.1. Note that there are two arbitrary constants involved: one per connected
component.

With these notions in hand, we state the theorem of [Thurston90] on tileabil-
ity.

Theorem 1.4. Let R be a simply connected domain, with boundary ∂R on
the triangular lattice. Then R is tileable if and only if both conditions hold:

1 One can define h on ∂R, so that h(v)−h(u) = 1 whenever u → v is an edge
of ∂R, such that v−u is a unit vector in one of the positive directions a,b,c.

2 The above h satisfies

∀ u,v ∈ ∂R : h(v)−h(u)≤ d(u,v). (1.4)

Before presenting the proof of Theorem 1.4, let us illustrate its conditions.
For that we consider three domains drawn in Figure 1.9, set h = 0 in the left(-
bottom) corner of each domain and further define h on ∂R by local rules fol-
lowing the boundary ∂R in the clockwise direction. For the triangle domain
there is no way to consistently define the height function along its boundary:
when we circle around, the value does not match what we started from. And
indeed, this domain is not tileable. For the middle domain of Figure 1.9, we can
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define the heights along the boundary, but (1.4) fails for the encircled points
with height function values −1 and 3. On the other hand, this domain clearly
has no tilings. Finally, for the right domain of Figure 1.9, both conditions of
Theorem 1.4 are satisfied; a (unique in this case) possible lozenge tiling is
shown in the picture.

Proof of Theorem 1.4 Suppose R is tileable and fix any tiling. Then it defines
h on all of R including ∂R by local rules (1.3). Take any positively oriented
path from u to v. Then the increments of d along this path are always 1, while
the increments of h are either 1 or −2. Thus (1.4) holds.

Now suppose that h satisfies (1.4). Define for v ∈ R:

h(v) = min
u∈∂R

[d(u,v)+h(u)] . (1.5)

We call this the maximal height function extending h
∣∣
∂R

and corresponding to
the maximal tiling. As d is nonnegative, the definition (1.5) of h matches on
∂R with the given in the theorem h

∣∣
∂R

. On the other hand, since the inequality
h(v)−h(u)≤ d(u,v) necessarily holds for any height function h and any u,v ∈
R (by the same argument as for the case u,v ∈ ∂R above), no height function
extending h

∣∣
∂R

can have larger value at v than (1.5).

Claim. h defined by (1.5) changes by 1 or −2 along each positive edge.

The claim would allow us to reconstruct the tiling uniquely: each −2 edge
gives a diagonal of a lozenge and hence a unique lozenge; each triangle has
exactly one −2 edge, as the only way to position increments +1, −2 along
three positive edges is +1+ 1− 2 = 0; hence, for each triangle we uniquely
reconstruct the lozenge to which it belongs. As such, we have reduced our task
to establishing the claim.

Let v→w be a positively oriented edge in R \∂R. We begin by establishing
some estimates. For any u ∈ ∂R, d(u,w)≤ d(u,v)+1 by augmenting the u,v
path by a single edge. Thus we have:

h(w)≤ h(v)+1.

Similarly, we may augment the u,w path by two positively oriented edges
(at least one of the left/right pair across v,w is available) to establish
d(u,v)≤ d(u,w)+2, and so:

h(w)≥ h(v)−2.

It remains to rule out the values 0 and −1 for h(v)− h(w). We achieve this
through two observations:
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• For any two positively oriented paths linking the same two vertices, their
number of edges differs by a multiple of three.

• The function u 7→ d(u,v)+ h(u) changes by multiples of three as u varies
over ∂R.

In order to prove the first observation, let n1
a, n1

b, and n1
c denote the numbers of

edges of three types (according to Figure 1.8) for the first path and let n2
a, n2

b,
and n2

c be the numbers for the second path. We have two identities, obtained
by projecting the paths on a and b directions:

2n1
a −n1

b −n1
c = 2n2

a −n2
b −n2

c and −n1
a +2n1

b −n1
c =−n2

a +n2
b −n2

c .

Adding the identities together, we conclude that (n1
a+n1

b+n1
c)−(n2

a+n2
b+n2

c)

equals 3(n1
c −n2

c), i.e. it is a multiple of three.
The second observation is proven by tracing d(u,v)+h(u) as u moves by one

edge along ∂R; note that here we use that R is simply-connected, implying
connectivity of ∂R.

Combining these two observations together with the small augmentations of
the paths above, we conclude that necessarily h(w) ≡ h(v)+1 (mod 3). This
rules out h(v)−h(w) ∈ {0,−1}.

How can we generalize this when R is not simply connected? We note two
key issues above:

1 It is not clear how to define h on ∂R if one is not already given a tiling. On
each closed loop piece of ∂R we see that h is determined up to a constant
shift, but these constants may differ across loops.

2 The step of the above proof that shifts the argument of the function u 7→
d(u,v)+h(u), u ∈ ∂R, used the fact that we could simply move along ∂R

edge by edge. This is not in general true for a multiply connected domain.

These issues can be addressed by ensuring that d(u,v)−h(v)+h(u) = 3k(u,v)
for k(u,v) ∈ N, ∀u,v, and simply leaving the ambiguity in h as it is:

Corollary 1.5. Let R be a non-simply connected domain, with boundary ∂R

on the triangular lattice. Define h along ∂R; this is uniquely defined up to
constants c1,c2, . . . ,cl corresponding to constant shifts along the l pieces of
∂R. Then R is tileable if and only if there exist c1, . . . ,cl such that for every u
and v in ∂R:

d(u,v)−h(v)+h(u)≥ 0, (1.6a)

d(u,v)−h(v)+h(u)≡ 0 (mod 3). (1.6b)
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Figure 1.10 Left panel: Aztec diamond domain on the square grid. Middle panel:
two types of dominos. Right panel: one possible domino tiling.

Proof of Corollary 1.5 ⇒: (1.6a) ensures that this part of the proof of The-
orem 1.4 remains valid; (1.6b) is also true when we have a tiling, again by
the above proof. ⇐: The shift from u to u′ is now valid, so the proof carries
through.

We remark that Thurston’s theorem 1.4 and the associated height func-
tion method provide a O(|R| ln(|R|)) time algorithm for tileability. There
are recent improvements, see e.g. [PakShefferTassy16, Thm. 1.2] for an
O(|∂R| ln(|∂R|)) algorithm in the simply-connected case. [Thiant03] pro-
vides an O(|R|l + a(R)) algorithm, where l denotes the number of holes
in R, and a(R) denotes the area of all the holes of R. We also refer to
[PakShefferTassy16, Section 5] for the further discussion of the optimal al-
gorithms for tileability from the computer science literature.

1.5 Other classes of tilings and reviews

Throughout these lectures we are going to concentrate on lozenge tilings. How-
ever, the theory of random tilings is not restricted to only them.

The simplest possible alternative version of the theory deals with domino
tilings on square grid. In this setting we consider a domain drawn on the
square grid Z2 and its tilings with horizontal and vertical 2 rectangles called
dominos. Figure 1.10 shows a domain known as the Aztec diamond and one
of its domino tilings. Most of the results that we discuss in the book have
their counterparts for domino tilings. For instance, their height functions and
the question of tileability are discussed in the same article [Thurston90] as
for lozenges. The definitions become slightly more complicated and we refer
to [BorodinBorodinB] for an appealing 3d visualization of the height func-
tions of domino tilings. Some aspects of random tilings of the Aztec diamond
are reviewed in [BaikDeiftSuidan16, Chapter 12] and in [Johansson17]. Two
other lecture notes on tilings that we are happy to recommend, [Kenyon09]
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and [Toninelli19], deal with dimers (or perfect matchings) which combine both
lozenge and domino tilings.

Some additional classes of tilings and techniques for their enumeration can
be found in [Propp14]. However, as we drift away from lozenges and dominos,
the amount of available information about random tilings starts to decrease.
For instance, square triangle tilings have central importance in representation
theory and algebraic combinatorics, since they appear in the enumeration of
Littlewood-Richardson coefficients, see [Purbhoo07], [Zinn-Justin08]. Yet, at
the time of writing this book, our understanding of the asymptotic behavior of
random square triangle tilings is very limited.

Moving farther away from the topics of this book, an introductory ar-
ticle [ArdilaStanley05] as well as two detailed textbooks [Golomb95] and
[GrunbaumShephard16] show what else can be hiding under the word
“tilings”.



Lecture 2: Counting tilings through de-
terminants

The goal of this lecture is to present two distinct approaches to the counting of
lozenge tilings. Both yield different determinantal formulae for the number of
tilings.

A statistical mechanics tradition defines a partition function as a total num-
ber of configurations in some model or, more generally, sum of the weights of
all configurations in some model. The usual notation is to use capital letter Z in
various fonts for the partition functions. In this language, we are interested in
tools for the evaluation of the partition functions Z for tilings. In Lectures 2 and
3 we present several approaches to computing the partition functions, whereas
Lecture 4 contains the first asymptotic results for the partition functions for
tilings of large domains – we deal with large torus there. In addition to being
interesting on their own, these computations will form a base for establishing
the Law of Large Numbers and the Variational Principle for random tilings in
subsequent Lectures 6, 7, and 8.

2.1 Approach 1: Kasteleyn formula

The first approach relies on what may be called “Kasteleyn theory” (or more
properly “Kasteleyn-Temperley-Fisher (KTF) theory”), originally developed
in [Kasteleyn61, TemperleyFisher61]. We illustrate the basic approach in Fig-
ure 2.1 for lozenge tilings on the triangular grid. One may color the triangles
in two colors in an alternating fashion similar to a checkerboard. Connecting
the centers of adjacent triangles, one obtains a hexagonal dual lattice to the
original triangular lattice, with black and white alternating vertices. The graph
of this hexagonal dual is clearly bipartite by the above coloring. Consider a
simply connected domain R that consists of an equal number of triangles of

22
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Figure 2.1 The hexagonal dual and connection of tilings to perfect matchings

two types (otherwise it can not be tiled), here we simply use a unit hexagon.
Then lozenge tilings of it are in bijection with perfect matchings of the associ-
ated bipartite graph (G ) formed by restriction of the dual lattice to the region
corresponding to R, here a hexagon. As such, our question can be rephrased as
that of counting the number of perfect matchings of a (special) bipartite graph.
The solid lines in Figure 2.1 illustrate one of the two perfect matchings (and
hence tilings) here.

The basic approach of KTF is to relate the number of perfect matchings
of the bipartite G to the determinant of a certain matrix K (Kastelyn matrix)
associated to G . Let there be N black vertices, and N white vertices. Then K is
an N ×N matrix with entries:

Ki j =

{
1, if white i is connected to black j,

0, otherwise.

Then we have the following theorem:

Theorem 2.1 ([Kasteleyn61, TemperleyFisher61]). Let R be a simply con-
nected domain on the triangular grid, and let G be its associated bipartite
graph on the dual hexagonal grid. Then, the number of lozenge tilings of R is
|det(K)|.

Before getting into the proof of this theorem, it is instructive to work out a
simple example. Let R be a unit hexagon, label its vertices in the dual graph
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by 1,1′,2,2′,3,3′ in clockwise order. Then,

K =

1 0 1
1 1 0
0 1 1


Then det(K) = 2, which agrees with the number of tilings. However, also note
that one can swap 1′,2′ and label the graph by 1,2′,2,1′,3,3′ in clockwise
order, resulting in:

K′ =

0 1 1
1 1 0
1 0 1


and det(K′) = −2. Thus, the absolute value is needed. This boils down to the
fact that there is no canonical order for the black vertices relative to the white
ones.

Proof of Theorem 2.1 First, note that although there are N! terms in the de-
terminant, most of them vanish. More precisely, a term in the determinant is
nonzero if and only if it corresponds to a perfect matching: using two edges
adjacent to a single vertex corresponds to using two matrix elements from a
single row/column, and is not a part of the determinant’s expansion.

The essence of the argument is thus understanding the signs of the terms.
We claim that for simply connected R (the hypothesis right now, subsequent
lectures will relax it), all the signs are the same. We remark that this is a crucial
step of the theory; dealing with permanents (which are determinants without
the signs) is far trickier if not infeasible.

Given its importance, we present two proofs of this claim.

1 The first one relies on the height function theory developed in Lecture 1.
Define elementary rotation E that takes the matching of the unit hexagon
(1,1′),(2,2′),(3,3′) to (1,3′),(2,1′),(3,2′), i.e. swaps the solid and dash-
dotted matchings in Figure 2.1. We may also define E−1. Geometrically, E
and E−1 correspond to removing and addding a single cube on the stepped
surface (cf. Lecture 1). We claim that any two tilings of R are connected by
a sequence of elementary moves of form E,E−1. It suffices to show that we
can move from any tiling to the maximal tiling, i.e. the tiling corresponding
to the point-wise maximal height function1. For that, geometrically one can

1 The point-wise maximum of two height functions (that coincide at some point) is again a
height function, since the local rules (1.3) are preserved — for instance, one can show this by
induction in the size of the domain. Hence, the set of height functions with fixed boundary
conditions has a unique maximal element. In fact, we explicitly constructed this maximal
element in our proof of Theorem 1.4.
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simply add one cube at a time until no more additions are possible. This
process terminates on any simply connected domain R, and it can only end
at the the maximal tiling.

It now remains to check that E does not alter the sign of a perfect match-
ing. It is clear that the sign of a perfect matching is just the number of
inversions in the black to white permutation obtained from the matching
(by definition of K and det). In the examples above, these permutations
are π(1,2,3) = (1,2,3) and π ′(1,2,3) = (3,1,2) respectively. (3,1,2) is an
even permutation, so composing with it does not alter the parity of the num-
ber of inversions (i.e. the parity of the permutation itself). Thus, all perfect
matchings have the same sign.

2 The second approach relies upon comparing two perfect matchings M1 and
M2 of the same simply connected domain R directly. We work on the dual
hexagonal graph. Consider the union of these two matchings. Each vertex
has degree 2 now (by perfect matching hypothesis). Thus, the union con-
sists of a bunch of doubled edges as well as loops. The doubled edges may
be ignored (they correspond to common lozenges). M1 and M2 are obtained
from each other by rotation along the loops, in a similar fashion to the opera-
tion E above, except possibly across a larger number of edges. For a loop of
length 2p (p black, p white), the sign of this operation is (−1)p−1 as it cor-
responds to a cycle of length p which has p−1 inversions. Thus it suffices
to prove that p is always odd.

Here we use the specific nature of the hexagonal dual graph. First, note
that each vertex has degree 3. Thus, any loop that does not repeat an edge
can not self intersect at a vertex, and is thus simple. Such a loop encloses
some number of hexagons. We claim that p has opposite parity to the total
(both black and white) number of vertices strictly inside the loop. We prove
this claim by induction on the number of enclosed hexagons. With a single
hexagon, p = 3, the number of vertices inside is 0 and the claim is trivial.
Consider a contiguous domain made of hexagons P with a boundary of
length 2p. One can always remove one boundary hexagon such that it does
not disconnect the domain P . Doing a case analysis on the position of the
surrounding hexagons, we see that the parity of the boundary loop length
(measured in terms of say black vertices) remains opposite to that of the
total number of interior vertices when we remove this hexagon. Hence, the
claim follows by induction.

It remains to note that the number of the vertices inside each loop is even.
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Indeed, otherwise, there would have been no perfect matchings of the inte-
rior vertices2. Thus, p is always odd.

Remark 2.2. In general the permanental formula for counting perfect match-
ings of a graph is always valid. However, to get a determinantal formula
one needs to introduce signs/factors into K. It turns out that one can always
find a consistent set of signs for counting matchings of any planar bipar-
tite graph. This is quite nontrivial, and involves the Kasteleyn orientation of
edges [Kasteleyn63, Kasteleyn67]. The hexagonal case is simple since one can
use the constant signs by the above proof. For non-planar graphs, good choices
of signs are not known. However, for special cases, such as the torus that will
be covered in Lecture 3, small modifications of the determinantal formula still
work. More generaly, on genus g surface, the number of perfect matchings is
given by a sum of 22g signed determinants, cf. [CimasoniReshetikhin06] and
reference therein. For non-bipartite graphs, one needs to replace determinants
with Pfaffians. Further information is available in, for instance, the work of
Kasteleyn [Kasteleyn67], as well as the lecture notes on dimers [Kenyon09].

Exercise 2.3. Consider the domino tilings of the Aztec diamond, as in Figure
1.10. Find out what matrix elements we should take for the Kasteleyn matrix
K, so that its determinant gives the total number of tilings. (Hint: try to use the
4th roots of unity: 1, −1, i, −i).

Remark 2.4. The construction that we used in the second proof of Theo-
rem 2.1 can be turned into an interesting stochastic system. Take two inde-
pendent uniformly random lozenge tilings (equivalently, perfect matchings)
of the same domain and superimpose them. This results in a collection of
random loops which is known as the double-dimer model. What is happen-
ing with this collection as the domain becomes large and the mesh size goes
to 0? It is expected that one observes the Conformal Loop Ensemble CLEκ

with κ = 4 in the limit. For tilings of general domains this was not proven
at the time when this book was written. However, partial results exist in
the literature and there is little doubt in the validity of this conjecture, see
[Kenyon11, Dubedat14, BasokChelkak18].

2.2 Approach 2: Lindström-Gessel-Viennot lemma

Suppose we want to apply the above machinery to derive MacMahon’s formula
for the number of tilings of a R = A×B×C hexagon. In principle, we have
2 The assumption of the domain being simply-connected is used at this point.
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A
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B+C

A

B

Figure 2.2 Bijection with non-intersecting lattice paths

reduced the computation to that of a rather sparse determinant. However, it is
not clear how we can proceed further. The goal of this section is to describe an
alternative approach.

We use a bijection of tilings with another combinatorial object, namely non-
intersecting lattice paths as illustrated in Figure 2.2.

We describe the bijection as follows. Enumerate (without loss, consistent
with above orientation of hexagon) the three fundamental lozenges la, lb, lc
with their longer diagonals inclined at angles 0,−π

3 ,
π

3 , respectively. Leave
la as is, and draw stripes at angles −π

6 ,
π

6 connecting the midpoints of op-
posite sides of lozenges lb, lc respectively. There is thus a bijection between
lozenge tilings of the hexagon and non-intersecting lattice paths connecting
the two vertical sides of length A. We may apply an affine transformation to
obtain non-intersecting lattice paths on Z2 connecting (0,0), . . . ,(0,A−1) with
(B+C,B), . . . ,(B+C,B+A−1) by elementary steps v⃗b ≜ (1,0), v⃗c ≜ (1,1),
corresponding to the stripes across lb, lc respectively. For general domains one
can still set up this bijection, the problem is that the starting and ending lo-
cations may no longer be contiguous, something that plays a key role in the
derivation of MacMahon’s formula by this approach.

Various forms of the following statement were used by many authors, see
[KarlinMcGregor59b, KarlinMcGregor59a, GesselViennot85], with the most
general result appearing in [Lindstrom73].

Theorem 2.5. The number of non-intersecting paths which start at x1 < x2 <

· · ·< xN and end at y1 < y2 < · · ·< yN after T steps is:

det
[(

T
yi − x j

)]N

i, j=1
. (2.1)
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Proof of Theorem 2.5 First, notice that for any permutation σ of [N] =

{1,2, . . . ,N}, we see that:

N

∏
j=1

(
T

yσ( j)− x( j)

)
counts the total number of collections of paths linking x j to yσ( j) ∀ j ∈ [N].
The terms come with various signs, depending on the parity of σ . The goal is
to show that the sum over the entangled paths is 0. By entangled, we mean
any set of paths that are not non-intersecting. Let the collection of entan-
gled paths be denoted E . We construct an involution f : E → E such that
sign(σ( f (P))) = −sign(σ(P)) for all P ∈ E , where σ(P) denotes the per-
mutation corresponding to which xi gets connected to which y j, and sign(σ)

denotes the parity of σ . This would complete the task, by the elementary:

2 ∑
P∈E

sign(σ(P)) = ∑
P∈E

sign(σ(P))+ ∑
P∈E

sign(σ( f (P)))

= ∑
P∈E

sign(σ(P))+ ∑
P∈E

−sign(σ(P))

= 0.

The involution is achieved by “tail-swapping”. Care needs to be taken to en-
sure that it is well defined because there can be many intersections. We take the
right-most intersection points of two paths (if there is more than one intersec-
tion point with the same abscissa, then we take one with the largest ordinate)
and swap their tails to the right from the intersection point. Thus, if before
the involution we had these two paths linking xi to y j and xi′ to yi′ , then after
the involution xi is linked to y j′ and xi′ is linked to y j. If paths had no intersec-
tions, then we do nothing. This is an involution because the chosen intersection
point remains the same when we iterate f , and swapping twice gets us back to
where we started. Furthermore, the parity of σ changes when we apply f . We
note that other choices of the involution are possible as long as they are well
defined.

After cancellation, what we have left are non-intersecting paths. In the spe-
cific setting here, they can only arise from σ being the identity, since any other
σ will result in intersections. The identity is an even permutation, so we do not
need to take absolute values here unlike the Kasteleyn formula.

Exercise 2.6. For a collection of paths E , let w(E ) denote the sum of vertical
coordinates of all vertices of all paths. Fix a parameter q, and using the same
method find a q–version of (2.1). You should get a N ×N determinantal for-
mula for the sum of qw(E ) over all collections of non-intersecting paths starting
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at x1 < x2 < · · ·< xN and ending at y1 < y2 < · · ·< yN after T steps. At q = 1
the formula should match (2.1).

We remark that for a general domain, we still do not know how to compute
the determinant (2.1). However, if either xi or y j consist of consecutive integers,
we can evaluate this determinant in “closed form”. This is true in the case of
the A×B×C hexagon, and so we now prove Theorem 1.1.

By Theorem 2.5 and the bijection with tilings we described, we have reduced
our task to the computation of:

det
1≤i, j≤A

(
B+C

B− i+ j

)
(2.2)

Our proof relies upon the following lemma, which can be found in a very
helpful reference for the evaluation of determinants [Krattenthaler99].

Lemma 2.7. Let X1, . . . ,Xn,A2, . . . ,An,B2, . . . ,Bn be indeterminates. Then,

det
1≤i, j≤n

((Xi +An)(Xi +An−1) . . .(Xi +A j+1)(Xi +B j)(Xi +B j−1) . . .(Xi +B2))

= ∏
1≤i< j≤n

(Xi −X j) ∏
2≤i≤ j≤n

(Bi −A j).

Proof The proof is based on reduction to the standard Vandermonde determi-
nant by column operations. First, subtract the n− 1-th column from the n-th,
the n−2-th from the n−1-th, . . . , the first column from the second, to reduce
the LHS to:[

n

∏
i=2

(Bi −Ai)

]
det

1≤i, j≤n
((Xi+An)(Xi+An−1) . . .(Xi+A j+1)(Xi+B j−1) . . .(Xi+B2)).

(2.3)
Next, repeat the same process to the determinant of (2.3), factoring out

n−1

∏
i=2

(Bi −Ai+1).

We can clearly keep repeating the process, until we have reached the simplified
form: [

∏
2≤i≤ j≤n

(Bi −A j)

]
det

1≤i, j≤n
((Xi +An)(Xi +An−1) . . .(Xi +A j+1)).

At this stage we have a slightly generalized Vandermonde determinant which
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evaluates to the desired3:

∏
1≤i< j≤n

(Xi −X j).

Proof of Theorem 1.1 Observe that:

det
1≤i, j≤A

(
B+C

B− i+ j

)
=

[
A

∏
i=1

(B+C)!
(B− i+A)!(C+ i−1)!

]

× det
1≤i, j≤A

(
(B− i+A)!
(B− i+ j)!

(C+ i−1)!
(C+ i− j)!

)
= (−1)(

A
2)

[
A

∏
i=1

(B+C)!
(B− i+A)!(C+ i−1)!

]

× det
1≤i, j≤A

[
(i−B−A)(i−B−A+1) · · ·(i−B− j−1)

× (i+C− j+1)(i+C− j+2) · · ·(i+C−1)
]
.

Now take Xi = i,A j =−B− j,B j =C− j+1 in Lemma 2.7 to simplify further.
We get:

(−1)(
A
2)

[
A

∏
i=1

(B+C)!
(B− i+A)!(C+ i−1)!

][
∏

1≤i< j≤A
(i− j)

][
∏

2≤i≤ j≤A
(C+B+1− i+ j)

]

=

[
A

∏
i=1

(B+C)!
(B− i+A)!(C+ i−1)!

][
∏

1≤i< j≤A
( j− i)

][
∏

2≤i≤ j≤A
(C+B+1− i+ j)

]

=

[
A

∏
i=1

(B+C)!
(B− i+A)!(C+ i−1)!

][
∏

1≤ j<A
j!

][
∏

2≤ j≤A

(C+B+ j−1)!
(B+C)!

]

=

[
A

∏
i=2

1
(B− i+A)!(C+ i−1)!

][
∏

1≤ j<A
j!

][
∏

2≤ j≤A
(C+B+ j−1)!

]
(B+C)!

(B+A−1)!C!
.

(2.4)

Perhaps the easiest way to get MacMahon’s formula out of this is to induct on
A. This is somewhat unsatisfactory as it requires knowledge of MacMahon’s
formula a priori, though we remark that this approach is common.

First, consider the base case A = 1. Then MacMahon’s formula is

B

∏
b=1

C

∏
c=1

b+ c
b+ c−1

=
B

∏
b=1

b+C
b

=

(
B+C

B

)
.

3 Here is a simple way to prove the last determinant evaluation. The determinant is a
polynomial in Xi of degree n(n−1)/2. It vanishes whenever Xi = X j and hence it is divisible
by each factor (Xi −X j). We conclude that the determinant is C ·∏i< j(Xi −X j) and it remains
to compare the leading coefficients to conclude that C = 1.
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This is the same as the expression (2.4), as all the explicit products are empty.
Keeping B,C fixed but changing A → A+ 1, MacMahon’s formula multiplies
by the factor:

B

∏
b=1

C

∏
c=1

A+b+ c
A+b+ c−1

=
B

∏
b=1

A+b+C
A+b

=
(A+B+C)!
(A+C)!

A!
(A+B)!

.

Let us now look at the factor for (2.4). The numerator factors (A+B+C)! and
A! arise from the right and middle explicit products in (2.4). The denominator
factor (A+C)! arises from the denominator term (C+ i−1)! of (2.4). The only
remaining unaccounted part of the denominator of (2.4) that varies with A is
∏

A
i=1

1
(B+A−i)! , which thus inserts the requisite (A+B)! in the denominator on

A → A+1. This finishes the induction and hence the proof.

2.3 Other exact enumeration results

There is a large collection of beautiful results in the literature giving compact
closed formulas for the numbers of lozenge tilings4 of various specific do-
mains. There is no unifying guiding principle to identify the domains for which
such formulas are possible, and there is always lots of intuition and guesswork
involved in finding new domains (as well as numerous computer experiments
with finding the numbers and attempting to factorize them into small factors).

Once a formula for the number of tilings of some domain is guessed, a
popular way for checking it is to proceed by induction, using the Dodgson
condensation approach for recursive computations of determinants. This ap-
proach relies on the Desnanot–Jacobi identity — a quadratic relation between
the determinant of a N ×N matrix and its minors of sizes (N − 1)× (N − 1)
and (N − 2)× (N − 2). The combinatorial version of this approach is known
as Kuo condesation, see e.g. [Ciucu15] and references therein. For instance,
[Krattenthaler99] (following [Zeilberger95]) proves the MacMahon’s formula
of Theorem 1.1 in this way. Numerous generalizations of the MacMahon’s
formula including, in particular, exact counts for tilings with different kinds of
symmetries are reviewed in [Krattenthaler15]. One tool which turns out to be

4 While we only discuss lozenge tilings in this section, there are many other fascinating exact
enumerations in related models. Examples include simple formulas for the number of domino
tilings of rectangle in [TemperleyFisher61, Kasteleyn61] and of the Aztec diamond in
[ElkiesKuperbergLarsenPropp92], or a determinantal formula for the partition function of the
six-vertex model with domain-wall boundary conditions of [Izergin87, Korepin82].
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very useful in enumeration of symmetric tilings is the matching factorization
theorem of [Ciucu97].

Among other results, there is a large scope of literature devoted to ex-
act enumeration of lozenge tilings of hexagons with various defects, see
e.g. [Krattenthaler01, CiucuKrattenthaler01, CiucuFischer15, Lai15, Ciucu18,
Rosengren16] and many more references therein. [Ciucu08] further used the
formulas of this kind to emphasize the asymptotic dependence of tiling counts
on the positions of defects, which resembles the laws of electrostatics.

Some of the enumeration results can be extended to the explicit evaluations
of weighted sums over lozenge tilings and we refer to [BorodinGorinRains09,
Young10, MoralesPakPanova17] for several examples.



Lecture 3: Extensions of the Kasteleyn
theorem

3.1 Weighted counting

In the last lecture we considered tilings of simply connected regions drawn
on the triangular grid by lozenges. If we checkerboard color the resulting tri-
angles black and white, we saw that this corresponds to perfect matchings of
a bipartite graph G = (W ⊔B,E). In this section we would like to extend the
enumeration of matchings to the weighted situation.

The notational setup is as follows. Number the white and black vertices of
G by 1, 2, . . . , n. We regard the region R as being equipped with a weight
function w(•)> 0 assigning to each edge i j ∈ E of G with white i and black j
some positive weight. Then we let the Kasteleyn matrix KR be an n×n matrix
with entries

KR(i, j) =

{
w(i j) i j is an edge of G

0 otherwise.

The difference with the setting of the previous lecture is that w(·) was identical
1 there. When there is no risk of confusion we abbreviate KR to K. This matrix
depends on the labeling of the vertices, but only up to permutation of the rows
and columns, and hence we will not be concerned with this distinction.

By abuse of notation we will then denote to the weight of a tiling T by

w(T ) def
= ∏

ℓ∈T
w(ℓ).

An extension of Theorem 2.1 states that we can compute the weighted sum
of tilings as the determinant of the Kasteleyn matrix.

Theorem 3.1. The weighted number of tilings of a simply-connected domain
R is equal to ∑T w(T ) = |detKR |.

33
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1′

2′

3′

2

1

3

w(2, 1)

w(1, 2)

w(3, 2)

w(3, 1)w(2, 3)

w(1, 3)

Figure 3.1 A unit hexagon with weights of edges for the corresponding graph.

The proof of Theorem 3.1 is the same as the unweighted case of counting
the number of tilings (obtained by setting w(i j) = 1 for each edge i j ∈ E) in
Theorem 2.1. Let us remind the reader that simply-connectedness of R is used
in the proof in order to show that the signs of all the terms in the determinant
expansion are the same.

Example 3.2 (Kasteleyn matrix of a hexagon). The unit hexagon with six tri-
angles can be modelled by a cycle graph G on six vertices as shown in Figure
3.1

Then

detKR = det

 0 w(1,2) w(1,3)
w(2,1) 0 w(2,3)
w(3,1) w(3,2) 0


= w(1,2)w(2,3)w(3,1)+w(2,1)w(3,2)w(1,3)

and as advertised the nonzero terms have the same sign and correspond to
weights of the two obvious tilings. Note that detKR is only defined up to sign,
since if we relabel the vertices in a different way (equivalently, change some
rows and columns) then the determinant’s sign changes.
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3.2 Tileable holes and correlation functions

There are situations in which the result of Theorem 3.1 is still true, even if R

is not simply connected.

Proposition 3.3. Suppose a region R is a difference of a simply connected do-
main and a union of disjoint lozenges inside this domain. Let K be the Kaste-
leyn matrix for R. Then the weighted sum of perfect matchings of R equals
|detK|.

Proof Let R̃ denote the simply connected region obtained by adding in the
removed lozenges. Then every nonzero term in detKR can be mapped into
a corresponding nonzero term in detK

R̃
by adding in the deleted lozenges.

We then quote the result that all terms in detK
R̃

have the same sign, so the
corresponding terms in detKR should all have the same sign, too.

There is an important probabilistic corollary of Proposition 3.3. Let R be
as in the proposition, and fix a weight function w(•) > 0. We can then speak
about random tilings by setting the probability of a tiling T to be

P(tiling T ) =
1
Z

w(T ) =
1
Z ∏

lozenge ℓ∈T
w(ℓ).

The normalizing constant Z = ∑T w(T ) is called the partition function.

Definition 3.4. Define the nth correlation function ρn as follows: given
lozenges ℓ1, . . . , ℓn we set

ρn(ℓ1, . . . , ℓn) = P(ℓ1 ∈ T, ℓ2 ∈ T, . . . , ℓn ∈ T ) .

The following proposition gives a formula for ρn.

Theorem 3.5. Write each lozenge as ℓi = (wi,bi) for i = 1, . . . ,n. Then

ρn(ℓ1, . . . , ℓn) =
n

∏
i=1

w(wi,bi) det
i, j=1,...,n

[
K−1(bi,w j)

]
(3.1)

Remark 3.6. The proposition in this form was stated in [Kenyon97]. How-
ever, the importance of the inverse Kasteleyn matrix was known since 60s, cf.
[MontrollPottsWard63], [McCoyWu73].
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Proof of Theorem 3.5 Using Proposition 3.3, we have

ρn (ℓ1, . . . , ℓn) =
1
Z ∑

tiling T
T∋ℓ1,...,ℓn

∏
ℓ∈T

w(ℓ)

=
1
Z

n

∏
i=1

w(wi,bi)

∣∣∣∣ det
i′, j′∈R\{ℓ1,...,ℓn}

[
K(wi′ ,b j′)

]∣∣∣∣
=

n

∏
i=1

w(wi,bi)

∣∣∣∣∣∣∣
det

i′, j′∈R\{ℓ1,...,ℓn}

[
K(wi′ ,b j′)

]
det

i′, j′∈R

[
K(wi′ ,b j′)

]
∣∣∣∣∣∣∣

=
n

∏
i=1

w(wi,bi) det
i, j=1,...,n

[
K−1(bi,w j)

]
,

where the last equality uses the generalizes Cramer’s rule (see e.g. [Prasolov94,
Section 2.5.2]), which claims that a minor of a matrix is equal (up to sign) to
the product of the complimentary–transpose minor of the inverse matrix and
the determinant of the original matrix. In particular, the n = 1 case of this
statement is the computation of the inverse matrix as the transpose cofactor
matrix divided by the determinant:

K−1(bi,w j) = (−1)i+ j
det

i′, j′∈R\{bi,w j}
[K(wi′ ,b j′)]

det
i′, j′∈R

[K(wi′ ,b j′)]
.

Note that Proposition 3.3 involved the absolute value of the determinant. We
leave it to the reader to check that the signs in the above computation match
and (3.1) has no absolute value.

3.3 Tilings on a torus

Our next stop is to count tilings on the torus. The main motivation comes from
the fact that translation-invariance of the torus allows as to use the Fourier
analysis to compute the determinants, which Kasteleyn theory outputs — this
will be important for the subsequent asymptotic analysis. Yet, for non-planar
domains (as torus), the Kasteleyn theorem needs a modification.

3.3.1 Setup

We consider a hexagonal grid on a torus T = S1 × S1, again with the corre-
sponding bipartite graph G = (W ⊔B,E). The torus has a fundamental domain
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n1 = 3

n2 = 3

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(2, 0)

(2, 1)

(2, 2)

(1, 2)

(1, 1)

eβ eα

1

eβ(−1)a

eβ(−1)a

eβ(−1)a

eα(−1)b

eα(−1)b

eα(−1)b

Figure 3.2 An n1 × n2 = 3× 3 torus and its coordinate system. Three types of
edges have weights eα , eβ , and 1. When we loop around the torus, the weights get
additional factors (−1)a or (−1)b.

F drawn as a rhombus with n1 and n2 side lengths, as shown in Figure 3.2.
We impose coordinates so that the black points are of the form (x,y) where
0 ≤ x < n1 and 0 ≤ y < n2; see Figure 3.2. The white points have similar co-
ordinates, so that black and white points with the same coordinate are linked
by a diagonal edge with white vertex being below. Our goal is to compute the
weighted number of tilings, with a general weight function w(•).

As with the original Kasteleyn theorem, permK gives the number of perfect
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matchings, and our aim is to compute the signs of the terms when permanent
is replaced by determinant.

To this end, we fix M0 the matching using only diagonal edges between
vertices of the same coordinates — its edges are adjacent to coordinate labels
((0,0), (0,1), etc) in Figure 3.2, and choose the numbering of the white and
black vertices so that the ith black vertex is directly above the ith white vertex.
We let M be a second arbitrary matching of the graph. We would like to under-
stand the difference between signs of M and M0 in detK. As before, overlaying
M and M0 gives a 2-regular graph, i.e. a collection of cycles.

3.3.2 Winding numbers

The topological properties of the cycles (or loops) in M ∪M0 play a role in
finding the signs of M and M0 in detM.

We recall that the fundamental group of the torus is Z×Z, which can be
seen through the concept of the winding number of an oriented loop, which is
a pair (u,v) ∈ Z×Z associated to a loop and counting the number of times the
loop traverses the torus in two coordinate directions. In order to speak about
the winding numbers of the loops in M ∪M0, we need to orient them in some
way. This orientation is not of particular importance, as eventually only the
oddity of u and v will matter for our sign computations.

For the nontrivial loops, we need the following two topological facts:

Proposition 3.7. [Facts from topology] On the torus,

• a loop which is not self-intersecting and not nullhomotopic has winding
number (u,v) ∈ Z×Z with greatest common divisor gcd(u,v) = 1;

• any two such loops which do not intersect have the same winding number.

Both facts can be proven by lifting the loops to R2 — the universal cover of
the torus — and analyzing the resulting curves there, and we will not provide
more details here.

Proposition 3.8. Take all loops from M ∪M0, which are not double edges.
Then each such loop intersects the vertical border of the fundamental domain
(of Figure 3.2) u times and horizontal (diagonal) border of the fundamental
domain v times for some (u,v) independent of the choice of the loop and with
gcd(u,v) = 1. Further, the length of the loop, i.e. the number of black vertices
on it, is n1u+n2v.

Proof Let γ denote one of the loops in question, and let us lift it to a path in
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R2 via the universal cover

R2 ↠ S1 ×S1.

We thus get a path γ ′ in R2 linking a point (x,y) to (x+ n1u′,y+ n2v′) for
some integers u′ and v′. By Proposition 3.7, gcd(u′,v′) = 1 (unless u′ = v′ = 0)
and u′, v′ are the same for all loops. Let us orient γ ′ by requiring that all the
edges coming from M0 are oriented from black to white vertex. Then, since
every second edge of γ ′ comes from M0, we conclude that the x–coordinate is
increasing and the y–coordinate is decreasing along the path γ ′, i.e. the steps of
this path of one oddity are (x′,y′)→ (x′,y′) and the steps of this path of another
oddity are

(x′,y′)→ (x+1,y) or (x′,y′)→ (x,y−1), (3.2)

in the coordinate system of Figure 3.2. The monotonicity of path γ ′ implies
that u′ = v′ = 0 is impossible, i.e. non-trivial loop obtained in this way can not
be null-homotopic. The same monotonicity implies u = |u′|, v = |v′| and that
the length of the path is |n1u′|+ |n2v′|. The claim follows.

3.3.3 Kasteleyn theorem on the torus

In order to handle the wrap-around caused by the winding numbers u and v,
we have to modify our Kasteleyn matrix slightly.

Fix the fundamental domain F as in Figure 3.2. We make the following
definition.

Definition 3.9. Let (a,b) ∈ {0,1}2. The Kasteleyn matrix Ka,b is the same as
the original K, except that

• For any edge crossing the vertical side of F with n1 vertices, we multiply
its entry by (−1)a.

• For any edge crossing the horizontal/diagonal side of F with n2 vertices,
we multiply its entry by (−1)b.

Theorem 3.10. For perfect matchings on the n1 ×n2 torus we have

∑
T

w(T ) =
ε00 detK00 + ε01 detK01 + ε10 detK10 + ε11 detK11

2
(3.3)

for some εab ∈ {−1,1} which depend only on the parity of n1 and n2.
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Proof The correct choice of εab is given by the following table.

(n1 mod 2,n2 mod 2) (0,0) (0,1) (1,0) (1,1)
ε00 −1 +1 +1 +1
ε01 +1 −1 +1 +1
ε10 +1 +1 −1 +1
ε11 +1 +1 +1 −1

(3.4)

For the proof we note that each detKab is expanded as a signed sum of weights
of tilings and we would like to control the signs in this sum. For the matching
M0, the sign in all four Kab is +1. Since the sum over each column in (3.4) is 2,
this implies that the weight of M0 enters into the right-hand side of (3.3) with
the desired coefficient 1.

Any other matching M differs from M0 by rotations along k loops of class
(u,v), as described in Proposition 3.8. Note that at least one of the numbers
u, v, should be odd, since gcd(u,v) = 1. The loop has the length n1u+ n2v
and rotation along this loop contributes in the expansion of detKab the sign
(−1)n1u+n2v+1+au+bv. Thus we want to show that the choice of εab obeys

1

∑
a=0

1

∑
b=0

εab · (−1)k(n1u+n2v+au+bv+1) = 2.

If k is even, then all the signs are +1 and the check is the same as for M0. For
the odd k case, we can assume without loss of generality that k = 1 and we
need to show

1

∑
a=0

1

∑
b=0

εab · (−1)n1u+n2v+au+bv =−2.

We use the fact that u,v are not both even to verify that the choice (3.4) works.
For example, if n1 and n2 are both even, then we get the sum

−1+(−1)u +(−1)v +(−1)u+v.

Checking the choices (u,v) = (0,1),(1,0),(1,1) we see that the sum is −2 in
all the cases. For other oddities of n1 and n2 the proof is the same.

Remark 3.11. For the perfect matchings on a genus g surface, one would need
to consider a signed sum of 22g determinants for counting, as first noticed in
[Kasteleyn67]. For the detailed information on the correct choice of signs, see
[CimasoniReshetikhin06] and references therein.

Exercise 3.12. Find an analogue of Theorem 3.10 for perfect matchings on
n1 ×n2 cylinder.



Lecture 4: Counting tilings on large
torus

This lecture is devoted to the asymptotic analysis of the result of Theorem 3.10.
Throughout this section we use the eα , eβ weight for tilings as in Figure 3.2
with a = b = 0.

4.1 Free energy

From the previous class we know that on the torus with side lengths n1 and n2,
the partition function is

Z(n1,n2) = ∑
Tilings

∏w(Lozenges)

=
±detK0,0 ±detK1,0 ±detK0,1 ±detK1,1

2
where Ka,b are the appropriate Kasteleyn matrices. Note that we can view Ka,b

as linear maps from CB to CW where B and W are the set of black and white
vertices on the torus.

Our first task is to compute the determinants detKab. The answer is explicit
in the case of a translation-invariant weight function w. Choose any real num-
bers α and β , and write

w(i j) ∈
{

1,eα ,eβ

}
according to the orientation of edge i j as in Figure 3.2. We evaluate

detKab = ∏eigenvalues Kab.

We start with K00 and note that it commutes with shifts in both directions.
Because the eigenvectors of shifts are exponents, we conclude that so should

41
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be the eigenvectors of K00 (commuting family of operators can be diagonalized
simultaneously). The eigenvalues are then computed explicitly, as summarized
below.

Claim 4.1. The eigenvectors are given as follows: given input (x,y) ∈
{0, . . . ,n1 −1}×{0, . . . ,n2 −1} the eigenvector is

(x,y) 7→ exp
(

i · 2πk
n1

x+ i · 2πℓ

n2
y
)

for each 0 ≤ k < n1, 0 ≤ ℓ < n2. The corresponding eigenvalue is

1+ eβ exp
(
−i

2πk
n1

)
+ eα exp

(
i
2πℓ

n2

)
.

Therefore the determinant of K0,0 is

n1

∏
k=1

n2

∏
ℓ=1

(
1+ eβ exp

(
− i

2πk
n1

)
+ eα exp

(
i
2πℓ

n2

))
.

For Ka,b we can prove the analogous facts essentially by perturbing the
eigenvalues we obtained in the K0,0 case. The proof is straightforward and
we omit it.

Claim 4.2. Eigenvectors of Ka,b are

(x,y) 7→ exp
(

i ·π 2k+a
n1

x+ i ·π 2ℓ+b
n2

y
)

and the determinant of Ka,b is

n1

∏
k=1

n2

∏
ℓ=1

(
1+ eβ exp

(
− iπ

2k+a
n1

)
+ eα exp

(
iπ

2ℓ+b
n2

))
. (4.1)

Using this claim we find the asymptotic behavior of the (weighted) number
of possible matchings in the large scale limit.

Theorem 4.3. For the weights of edges
{

1,eα ,eβ
}

, as in Figure 3.2, we have

lim
n1,n2→∞

ln(Z(n1,n2))

n1n2
=

"
|z|=|w|=1

ln(|1+ eα z+ eβ w|) dw
2πiw

dz
2πiz

. (4.2)

Remark 4.4. The quantity ln(Z(n1,n2))
n1n2

is known as the free energy per site.

Exercise 4.5. Show that the value of the double integral remains unchanged if
we remove the | · | in (4.2).
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Proof of Theorem 4.3 We first consider the case when eα + eβ < 1. In this
case the integral has no singularities and we conclude that

lim
n1,n2→∞

ln(|detKa,b|)
n1n2

=

"
|z|=|w|=1

ln(|1+ eα z+ eβ w|) dw
2πiw

dz
2πiz

,

since the left-hand side is essentially a Riemann sum for the quantity on the
right. When using this limit for the asymptotics of Z(n1,n2), the only possible
issue is that upon taking the ± for each of a,b there may be a magic cancella-
tion in Z(n1,n2) resulting in it being lower order. To see no such cancelation
occurs note that

max
a,b

|detKa,b| ≤ Z(n1,n2)≤ 2max
a,b

|detKa,b|.

The second inequality is immediate and follows from the formula for Z(n1,n2).
The first one follows from noting that |detKa,b| counts the sets of weighted
matchings with ± values while Z(n1,n2) counts the weighted matchings un-
signed. The result then follows in this case.

In the case when eα +eβ ≥ 1 we may have singularities; we argue that these
singularities do not contribute enough to the integral to matter. The easiest way
to see this is to consider a triangle with side lengths 1,eα ,eβ . This gives two
angles θ ,φ which are the critical arguments (angles) of z and w for singularity
to occurs. However note that πi( 2k+a

n1
) cannot simultaneously be close for some

k to the critical angle φ for both a = 0 and a = 1. Doing similarly for θ it
follows that there exists a choice of a,b for which one can bound the impact of
the singularity on the convergence of the Riemann sum to the corresponding
integral and the result follows. (In particular one notices that roughly a constant
number of partitions in the Riemann sum have |1+ eα z+ eβ w| close to zero
and the above guarantees that you are at least ≥ 1

max(n1,n2)
away from zero so

the convergence still holds.)

4.2 Densities of three types of lozenges

We can use the free energy computation of the previous section to derive prob-
abilistic information on the properties of the directions of the tiles in a random
tiling (or perfect matching). Recall that the probability distribution in question
assigns to each tiling (or perfect matching) T the probability

P(T ) =
1

Z(n1,n2)
∏

Lozenges in T
w(lozenge).
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Theorem 4.6. For lozenges of weight eα , we have

lim
n1,n2→∞

P(given lozenge is in tiling) =
"

|z|=|w|=1

eα z
1+ eα z+ eβ w

dw
2πiw

dz
2πiz

.

(4.3)

Proof Using the shorthand # to denote the number of objects of a particular
type in a tiling, we have

Z(n1,n2) = ∑
Tilings

exp(α ·# +β ·# )

and therefore

∂

∂α
ln(Z(n1,n2)) =

∑Tilings # · exp(α ·# +β ·# )

∑Tilings exp(α ·# +β ·# )

= E[# ]

= n1n2P(given lozenge is in tiling).

Therefore, using Theorem 3.10, we have

P(given lozenge is in tiling) = lim
n1,n2→∞

1
n1n2

∂

∂α
ln(Z(n1,n2))

= lim
n1,n2→∞

1
n1n2

∂

∂α
∑a,b=0,1±detKa,b

∑a,b=0,1±detKa,b

= lim
n1,n2→∞

∑
a,b=0,1

∂

∂α
detKa,b

n1n2 detKa,b
·

±detKa,b

∑a,b=0,1±detKa,b
(4.4)

Ignoring the possible issues arising from the singularities of the integral, we
can repeat the argument of Theorem 4.3, differentiating with respect to α at
each step, to conclude that

lim
n1,n2→∞

∂

∂α
detKa,b

n1n2 detKa,b
=

"
|z|=|w|=1

eα z
1+ eα z+ eβ w

dw
2πiw

dz
2πiz

, (4.5)

where the last expression can be obtained by differentiating the right-hand side
of (4.2). On the other hand, the four numbers

±detKa,b

∑a,b=0,1±detKa,b

have absolute values bounded by 1 and these numbers sum up to 1. Hence,
(4.4) implies the validity of (4.3).
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As in previous theorem, we have to address cases of singularities in the in-
tegral in order to complete the proof of the statement. To simplify our analysis
we only deal with a sub-sequence of n1,n2 tending to infinity, along which
(4.5) is easy to prove. The ultimate statement certainly holds for the full limit
as well.

We use the angles θ and φ from the proof of Theorem 4.3. Define Wθ ⊆ N
as

Wθ =

{
n : min

1≤ j≤n

∣∣∣∣θ − π j
n

∣∣∣∣> 1

n
3
2

}
.

Define Wφ similiarly Note here that θ and φ are the critical angles coming from
triangle formed by 1,eα ,eβ .

Lemma 4.7. For large enough n, either n or n+2 is in Wθ .

Proof Suppose that |θ − π j
n | ≤ 1

n
3
2

and |θ − π j′
n+2 | ≤

1

(n+2)
3
2

. Note that for n

sufficiently large this implies that j′ ∈ { j, j+1, j+2}. However note that for
such j and j′ it follows that∣∣∣∣π j

n
− π j′

n+2

∣∣∣∣= O
(

1
n

)
and thus for n sufficiently large we have a contradiction.

Now take n1 ∈ Wφ and n2 ∈ Wθ . Then note that the denominator in (4.5)
(which we get when differentiating in α the logarithm of (4.1)) satisfies∣∣∣∣1+ eβ exp

(
−i ·π 2k+a

n1

)
+ eα exp

(
i ·π 2ℓ+b

n2

)∣∣∣∣≥C ·
(

1
min(n1,n2)

)
for all but a set of at most 4 critical (k, ℓ) pairs. For these four critical pairs we
have that∣∣∣∣1+ eβ exp

(
−i ·π 2k+a

n1

)
+ eα exp

(
i ·π 2ℓ+b

n2

)∣∣∣∣≥C ·

(
1

min(n1,n2)
3
2

)
as we have taken n1 ∈Wφ and n2 ∈Wθ . This bound guarantees that the appro-
priate Riemann sum converges to the integral expression shown in (4.5).

Remark 4.8. Using the same proof as for formula (4.3), we can show that

lim
n1,n2→∞

P(given lozenge is in tiling) =
"

|z|=|w|=1

1
1+ eα z+ eβ w

dw
2πiw

dz
2πiz

and

lim
n1,n2→∞

P(given lozenge is in tiling) =
"

|z|=|w|=1

eβ w
1+ eα z+ eβ w

dw
2πiw

dz
2πiz

.
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We introduce the notation for these probabilities as p , p , and the one in
the theorem statement as p .

Definition 4.9. The (asymptotic) slope of tilings on the torus is (p , p , p ).

4.3 Asymptotics of correlation functions

The computation of Theorem 4.6 can be extended to arbitrary correlation func-
tions. The extension relies on the following version of Theorem 3.5.

Theorem 4.10. Take a random lozenge tiling on the torus with arbitrary
weights. Write n lozenges as ℓi = (wi,bi) for i = 1, . . . ,n. Then

P(ℓ1, . . . , ℓN ∈ tiling)=
∑a,b=0,1±detKab ∏

n
i=1 Kab(wi,bi)det1≤i, j≤n K−1

ab (bi,w j)

∑a,b=0,1±detKab
.

The proof here is nearly identical to the simply connected case, and we omit
it. Then, using Theorem 4.10 as an input we can calculate the asymptotic nth

correlation function.

Theorem 4.11. The nth correlation function in the n1,n2 → ∞ limit is

lim
n1,n2→∞

P((x1,y1, x̃1, ỹ1), . . . ,(xn,yn, x̃n, ỹn) ∈ tiling)

=
n

∏
i=1

K00(xi,yi, x̃i, ỹi) det
1≤i, j,≤n

(K̃α,β [x̃i − x j, ỹi − y j]) (4.6)

where

K̃α,β (x,y) =
"

|z|=|w|=1

wxz−y

1+ eα z+ eβ w
dw

2πiw
dz

2πiz
. (4.7)

Note that in the above theorem (xi,yi) correspond to the coordinates of the
white vertices while (x̃i, ỹi) correspond to the coordinates of the black vertices.
The coordinate system here is as in Figure 3.2. Therefore (xi,yi, x̃i, ỹi) is simply
referring to a particular lozenge.

Sketch of the proof of Theorem 4.11 Here is the plan of the proof:

• We know both the eigenvalues and eigenvectors for the matrix K and this
immediately gives the same for the inverse matrix K−1.

• The key step in analyzing the asymptotic of the expression in Theorem 4.10
is to write down the elements of matrix inverse as a sum of the coordinates
of eigenvectors multiplied by the inverses of the eigenvalues of K. As before
this gives a Riemann sum approximation to the asymptotic formula shown
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in (4.7). Note that one can handle singularities in a manner similar to that of
Theorem 4.6 in order to get convergence along a sub-sequence.

• In more details, the normalized eigenvectors of Kab are

(x,y) 7→ 1
√

n1n2
exp
(

i ·π 2k+a
n1

x+ i ·π 2ℓ+b
n2

y
)

and the corresponding eigenvalues are

1+ eβ exp
(
−i 2πk+a

n1

)
+ eα exp

(
i 2πℓ+b

n2

)
Now note that K−1

ab can be written as Q−1Λ−1Q where the columns of Q are
simply the eigenvectors of Kab and Λ the corresponding diagonal matrix of
eigenvalues. Note here Q−1 = Q∗ as Q corresponds to a discrete 2-D Fourier
transform. Substituting, it follows that

K−1
ab (x,y;0,0) =

1
n1n2

n1

∑
k=1

n2

∑
ℓ=1

exp
(
i ·π 2k+a

n1
x+ i ·π 2ℓ+b

n2
y
)

1+ eβ exp
(
−i 2πk+a

n1

)
+ eα exp

(
i 2πℓ+b

n2

)
(4.8)

and the expressions in (4.7) appears as a limit of the Riemann sum of the
appropriate integral. (Note K−1

ab (x,y;0,0) = K−1
ab ((x+ x̂,y+ ŷ; x̂, ŷ)) as the

torus is shift invariant.)

Remark 4.12. The asymptotic of the free energy per site on n1 × n2 torus
was investigated for numerous models of statistical mechanics going well be-
yond weighted tilings (which were investigated in the largest generality in
[KenyonOkounkovSheffield03]). A widely used approach is to treat the torus
as a sequence of n2 strips of size n1 ×1. One then introduces the transfer ma-
trix T encoding the transition from a strip to the adjacent one and computes
the free energy as Trace(T n2). Hence, the computation reduces to the study
of eigenvalues of T and systematic ways for evaluations of these eigenvalues
are discussed in [Baxter82]. The answer is typically presented in terms of so-
lutions to a system of algebraic equations known as Bethe equations. Finding
analytic expressions for the solutions of these equations (in the limit of large
torus) is a hard task, which is still mathematically unresolved in many situa-
tions. From this perspective, tilings represent a specific “nice” case, in which
relatively simple formulas of Theorems 4.3 and 4.11 are available.



Lecture 5: Monotonicity and concentra-
tion for tilings

In the last lecture we studied tilings on the torus, and now we go back to pla-
nar domains. The setup for this lecture is slightly different from before. We
fix a boundary of our domain and values of a height function on the boundary,
and consider all height functions extending the given one. This is equivalent
to studying random tilings because we have a correspondence between height
functions (up to shifting by a constant) and tilings. The advantage of this setup
is that we can compare height functions much easier than comparing tilings
directly. The material of this lecture is based on [CohnElkiesPropp96] and
[CohnKenyonPropp00]. Our aim here is to establish monotonicity and con-
centration properties for random tilings, which will eventually lead to the Law
of Large Numbers for tilings of large domains.

5.1 Monotonicity

We start with a domain R with boundary ∂R on the triangular grid. Recall
the three positive directions we defined in Lecture 1: (0,1), (−

√
3

2 ,− 1
2 ), and

(
√

3
2 ,− 1

2 ). Also recall that along an edge in the positive direction, the height
function changes by +1 if the edge is an edge of a lozenge; and the height
function changes by −2 if the edge crosses a lozenge. Fix a height function
h on ∂R. Note that if h changes by −2 on the boundary, then a lozenge is
half outside R. Let us emphasize that this is a slightly different situation com-
pared to the previous lectures, as the lozenges are allowed to stick out of R; in
other words, we are now considering tilings not of R, but of another domain
obtained by adding to R some triangles along the boundary ∂R.

Let us consider a height function H on R chosen uniformly randomly from
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all height functions extending h. In the following, ∂R ⊆ R can be any set of
vertices such that every vertex in R\∂R is adjacent only to vertices of R.

Proposition 5.1. Let R and ∂R be as above. Let h and g be two height func-
tions on ∂R. Assume that h ≡ g (mod 3), h ≥ g and that h and g can be
extended to height functions on R. Let H (resp. G) be a height function on
R chosen uniformly randomly from all height functions extending h (resp. g).
Then we can couple (that is, define on the same probability space) H and G in
such a way that H ≥ G almost surely.

Remark 5.2. We require that h ≡ g (mod 3) because all height functions are
the same modulo 3 up to shifting by a global constant.

Proof of Proposition 5.1 We fix R and perform induction on |R\∂R|. Base
case is R = ∂R, where there is nothing to prove.

Suppose ∂R ⊊ R. Choose a vertex v ∈ ∂R adjacent to w ∈ R\∂R, such
that h(v) > g(v). (If no such v can be chosen, then we can couple H and G
in such a way that H|R\∂R = G|R\∂R , and there is nothing to prove.) Let us
sample H and G on R\∂R in two steps: First we sample H(w) and G(w), and
then we sample the rest.

Because h(v)> g(v) and h(v)≡ g(v) (mod 3), we have h(v)≥ g(v)+3. Set
x= h(v)−2 and y= g(v)−2. The definition of the height function then implies
H(w) ∈ {x,x+3} and G(w) ∈ {y,y+3}. Since x ≥ y+3, we can couple H(w)
and G(w) so that H(w)≥ G(w).

It remains to couple the values of H and G on R\(∂R ∪{w}) by induction
hypothesis.

Corollary 5.3. In the setting of Proposition 5.1, for any w ∈ R, we have
EH(w)≥ EG(w).

Remark 5.4. The proof of Proposition 5.1 extends from the uniform distribu-
tion on height functions to more general ones. The only feature of the distri-
bution that we used is the possibility of sequential (Markovian) sampling of
the values of the height function, and the fact that the set of admissible values
for the height function at a point can be reconstructed by the value at a single
neighbor. Here is one possible generalization1.

Exercise 5.5. Prove an analogue of Proposition 5.1 for the measure on lozenge

1 Another generalization of tilings is the six-vertex model. The monotonicity property extends
only to some particular cases of the latter, but not to the model with arbitrary parameters. On
the level of the proofs, the difficulty arises because the weights of the six-vertex model are
determined by the local configurations in squares (x,y), (x,y+1), (x+1,y), (x+1,y+1) and
hence it is not enough to know h(x,y+1) and h(x+1,y) in order to sample h(x+1,y+1) —
we also need h(x,y).
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tilings with weights 1
Z ∏w(lozenges), where w(·) is a positive function of type

of lozenge and its position; the product goes over all lozenges in a tilings and
Z is a normalizing constant making the total mass of measure equal to 1.

Similar generalizations to non-uniform distributions are possible for the fur-
ther results in this lecture.

Proposition 5.6. Let R1 and R2 be two domains with boundaries ∂R1 and
∂R2 resp. Let h be a height function on ∂R1 and let g be a height function on
∂R2 such that h|∂R1∩∂R2 ≡ g|∂R1∩∂R2 (mod 3). Suppose that each vertex v
of ∂R1 is within distance ∆1 from a vertex w in ∂R2, and vice versa, and for
each such pair of vertices, we have |h(v)− g(w)| ≤ ∆2. Then there exists an
absolute constant C > 0 such that

|EH(x)−EG(x)| ≤C(∆1 +∆2) for all x ∈ R1 ∩R2,

where H (resp. G) is chosen uniformly randomly from height functions on R1

(resp. R2) extending h (resp. g).

Proof Let h̃ be a minimal extension of h to R1, and g̃ be a maximal ex-
tension of g to R2. (They exist and are unique because pointwise maxi-
mum or minimum of two height functions is again a height function.) For
any vertex v ∈ ∂ (R1 ∩R2) ⊆ ∂R1 ∪ ∂R2, the conditions imply that h̃(v) ≥
g̃(v)−C(∆1 +∆2) for some absolute constant C > 0. Hence the same inequal-
ity is true for any extension of h to R1 and g to R2. By Corollary 5.3, we get
EH(x)≥ EG(x)−C(∆1 +∆2) for all x ∈ R1 ∩R2. By swapping R1 and R2,
we get EG(x)≥ EH(x)−C(∆1 +∆2).

Remark 5.7. In the proofs of this section we silently assumed that the exten-
sions of the height functions from the boundaries exist. As long as this is true,
we do not need to assume that the domains are simply connected.

5.2 Concentration

We proceed to the next question: how close is a random height function to its
expectation?

Theorem 5.8. Let R be a connected domain with boundary ∂R. Let h be a
height function on ∂R. Let H be a uniformly random extension of h to R.
Suppose that w,v ∈ R are linked by a path of length m. Then

E(H(w)−E[H(w)|H(v)])2 ≤ 9m
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and for each c > 0,

P
(
|H(w)−E[H(w)|H(v)]|> c

√
m
)
≤ 2exp

(
− c2

18

)
. (5.1)

Remark 5.9. If we choose as v a point for which the value of H(v) is determin-
istically known (e.g., it can be a point on the boundary ∂R, then expectations
become unconditional and we get:

E(H(w)−E[H(w)])2 ≤ 9m

and for each c > 0,

P
(
|H(w)−E[H(w)]|> c

√
m
)
≤ 2exp

(
− c2

18

)
. (5.2)

Remark 5.10. If the linear size of the domain is proportional to L, then so is
the maximum (over w) possible value of m. Hence, (5.2) implies that as L → ∞

the normalized height function H(Lx,Ly)
L concentrates around its expectation.

We will soon prove that it converges to a limit, thus showing the existence of a
limit shape for tilings.

Remark 5.11. It is conjectured that the variance should be of order O(lnm),
rather than O(m) which we prove. As of 2021, the tight bound was proved
only for some specific classes of domains.

Remark 5.12. Similarly to Exercise 5.5, the result extends to the measures on
tilings with weight 1

Z ∏w(lozenges). The proof remains the same.

Proof of Theorem 5.8 Let x0 = v,x1, . . . ,xm = w be a path connecting v and
w. Let Mk be the conditional expectation of H(w) given the values of H(x0),
. . . , H(xk):

Mk = E
[
H(w) | H(x0),H(x1), . . . ,H(xk)

]
In particular, M0 =E[H(w)|H(v)] and Mm =H(w). The tower property of con-
ditional expectations implies that M0, . . . ,Mm is a martingale.

For fixed values of H(x0), . . . , H(xk), the random variable H(xk+1) takes
at most two distinct values. Also, if H(xk+1) takes two values a < b, then we
must have b−a = 3. By Proposition 5.1, we have

E
[
H(w) | H(x0),H(x1), . . . ,H(xk); H(xk+1) = a

]
≤ E

[
H(w) | H(x0),H(x1), . . . ,H(xk); H(xk+1) = b

]
≤ E

[
H(w)+3 | H(x0),H(x1), . . . ,H(xk); H(xk+1) = a

]
.

(We get the second inequality by looking at the height function shifted
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up by 3 everywhere.) Therefore E[H(w)|H(x0),H(x1), . . . ,H(xk)] and
E[H(w)|H(x0),H(x1), . . . ,H(xk+1)] differ by at most 3. Hence

E[(Mm −M0)
2] = E

( ∑
1≤k≤m

(Mk −Mk−1)

)2


= ∑
1≤k,l≤m

E[(Mk −Mk−1)(Ml −Ml−1)]

= ∑
1≤k≤m

E[(Mk −Mk−1)
2]≤ 9m.

The third step is because E[(Mk − Mk−1)(Ml − Ml−1)] = 0 for k ̸= l, by
martingale property (taking first the conditional expectation with respect to
H(x0),H(x1), . . . ,H(xmin(k,l))).

The concentration inequality (5.1) follows from Azuma’s inequality applied
to the martingale Mk, see Lemma 5.13 below.

Lemma 5.13 (Azuma’s inequality [Azuma67]). Let X0, . . . ,XN be a martin-
gale with |Xk −Xk−1| ≤ bk for all 1 ≤ k ≤ N. Then for each t > 0,

P(|XN −X0| ≥ t)≤ 2exp

(
− t2

2∑
N
k=1 b2

k

)
.

5.3 Limit shape

The results of the previous two sections say that random height functions con-
centrates around their expectations, and the expectations continuously depends
on the boundary conditions. The limiting profile, which we thus observe as the
size of the domain L tends to infinity, is called the limit shape. So far, we do not
have any description for it, and our next aim is to develop such a description.
Let us give a preview of the statement that we will be proving. The details are
presented in the several following lectures.

We can encode the gradient to (asymptotic) height function via proportions
of three types of lozenges , , . We then define (minus) surface tension to be

S(∇h) = S(p , p , p ) =
1
π
(L(π p )+L(π p )+L(π p ))

where

L(θ) =−
ˆ

θ

0
ln(2sin t)dt

is the Lobachevsky function.
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Exercise 5.14. Assume that p , p , p are non-negative and satisfy p +

p + p = 1. Show that S(p , p , p ) vanishes whenever one of the arguments
vanishes and S(p , p , p )> 0 otherwise.

Theorem 5.15 (Variational principle, [CohnKenyonPropp00]). Consider a do-
main R∗ with piecewise-smooth boundary ∂R∗. Let hb be a real function on
∂R∗. Take a sequence of tileable, lattice domains RL with boundaries ∂RL

with scale depending linearly on L → ∞. Fix a height function hL on ∂RL.
Suppose that ∂RL

L → ∂R∗ and hL
L converges to hb in sup norm.2 Then the

height function HL of a uniformly random tiling of RL converges in probabil-
ity, in sup norm. That is, H(Lx,Ly)

L → hmax(x,y). Furthermore, hmax is the unique
maximizer of the integral functional¨

R∗
S(∇h)dxdy, h|∂R∗ = hb.

Simultaneously, we have

1
L2 ln(number of tilings of RL)→

¨
R∗

S(∇hmax)dxdy. (5.3)

The proof of Theorem 5.15 is given at the end of Lecture 8 after we make
some preparatory work in the next two lectures.

Historically, Theorem 5.15 first appeared with a full proof in mathemat-
ical literature in [CohnKenyonPropp00]. Yet, some of its ingredients were
implicitly known in theoretical physics earlier, see [NienhuisHilhorstBlote84,
DestainvilleMosseruBailly97, Hoffe97].

2 Since the domain of definition of the function ∂hL
L depends on L, one should be careful in

formalizing the sup-norm convergence. One way is to demand that for each ε > 0 there exists
δ and L0, such that for all L > L0 and all pairs (x,y) ∈ ∂RL

L , (x∗,y∗) ∈ ∂R∗ satisfying
|x− x∗|+ |y− y∗|< δ , we have

∣∣ 1
L hL(Lx,Ly)−hb(x∗,y∗)

∣∣< ε .



Lecture 6: Slope and free energy

In order to prove Theorem 5.15, we would like to asymptotically count the
number of tilings for generic domains. The answer depends on the slope of the
limit shape for random tilings, so we start with the fixed slope situation, where
our computations for torus are helpful.

6.1 Slope in a random weighted tiling

We work in the (α,β )-weighted setting, as in Lecture 4. Lozenges of type
has weight eβ , type has weight eα , and type has weight 1, where α,β ∈ R.
In Theorem 4.6 and Remark 4.8 we computed the asymptotic slope of random
tilings on the torus:

p =

‹
|z|=|w|=1

eβ w
1+ eα z+ eβ w

dz
2πiz

dw
2πiw

,

p =

‹
|z|=|w|=1

eα z
1+ eα z+ eβ w

dz
2πiz

dw
2πiw

,

p =

‹
|z|=|w|=1

1
1+ eα z+ eβ w

dz
2πiz

dw
2πiw

.

Let us evaluate one of these integrals, say, the second one, p . Fix z and com-
pute the w-integral ˛

|w|=1

eα z
1+ eα z+ eβ w

dw
2πiw

.

The integrand has two poles, one at w = 0 and one at w = − 1+eα z
eβ

. If both
poles are in the contour, then the w-integral has value 0 because we can let
the contour go to ∞, and the residue at ∞ is 0 because of O( 1

w2 ) decay. If
w = − 1+eα z

eβ
is outside the contour, then the w-integral evaluates to eα z

1+eα z by
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1

eαeβ

θα
θβ

θ1

Figure 6.1 Triangle with sides eα , eβ , 1.

Cauchy’s integral formula. So we get

p =

˛
|1+eα z|>eβ ,|z|=1

eα z
1+ eα z

dz
2πiz

. (6.1)

Suppose there exists a triangle with side lengths eα , eβ , 1, as in Figure 6.1. Let
θα and θβ be the angles opposite to the eα and eβ edges, respectively. Take
θ = π −θβ , so that |1+ eα exp(iθ)|= eβ . The integral (6.1) evaluates to

p =
1

2πi
ln(1+ eα z)

∣∣∣∣z=exp(iθ)

z=exp(−iθ)
=

θα

π
.

We can compute p and p similarly, and get the following theorem.

Theorem 6.1. Suppose there exists a triangle with side lengths eα , eβ , 1 and
let its angles be θα , θβ , θ1, as in Figure 6.1. Then

p =
θβ

π
, p =

θα

π
, p =

θ1

π
.

In words, the density of a lozenge is encoded by the angle opposite to the side
of its weight.

The case when a triangle does not exist is left as exercise.

Exercise 6.2. 1 If eα ≥ eβ +1, then p = 1.
2 If eβ ≥ eα +1, then p = 1.
3 If 1 ≥ eα + eβ , then p = 1.

Corollary 6.3. Any slope (p , p , p ) with p + p + p = 1, p , p , p > 0
can be achieved from (α,β )-weighted tilings by choosing α and β appropri-
ately.

The observation of Corollary 6.3 is the key idea for the Cohn-Kenyon-Propp
variational principle.
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6.2 Number of tilings of a fixed slope

Now we compute the number of tilings of a torus of a fixed slope. Theorem
4.3 computes the asymptotic of the number of tilings as a function of α and
β , while Theorem 6.1 relates α and β to the slope. So essentially all we need
to do is to combine these two theorems together. We present a way to do it
through the Legendre duality. We start from the setting of the finite torus in
order to see how this duality arises. (In principle, this is not strictly necessary,
as one can analyze the formulas of Theorems 4.3, 6.1 directly.)

Say the torus has dimensions n1 × n2. Somewhat abusing the notations, we
define the slope of a fixed tiling as

slope =
1

n1n2
(#lozenges of types( , , )).

(Previously, we thought of the slope only as a limit of this quantity as n1 and
n2 tend to infinity.)

We have already computed the asymptotics of the partition function Z as a
function of α and β in Theorem 4.3. Z is related to the slope by

1
n1n2

lnZ =
1

n1n2
ln ∑

slope
exp(α# +β# ) ·#tilings of this slope. (6.2)

Claim 6.4. 1 Under the (α,β )-measure, the distribution of slope as a random
variable is concentrated as n1,n2 → ∞ around (p , p , p ), which we have
computed. This is proved later in this lecture.

2 Asymptotics of the number of tilings depends continuously on the slope. This
is proved in Lecture 8.

Using the claim, we have

1
n1n2

lnZ ≈ α p +β p +
1

n1n2
ln#tilings of slope(p , p , p ). (6.3)

We define the surface tension as

σ(slope) = lim
n1,n2→∞

− 1
n1n2

ln#tilings of such slope.

(This will soon be shown to be the same as (−1) ·S, with S defined at the end
of the last lecture.)

Let R(α,β ) be the limit of 1
n1n2

lnZ as n1,n2 → ∞. Then (6.3) gives

R(α,β ) = αs+β t −σ(s, t), (6.4)

where (s, t) are asymptotic values for the first two coordinates of the slope:
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Figure 6.2 The concave function S(s, t) = −σ(s, t) appearing in Theorems 5.15
and 6.5.

s = p , t = p . Comparing Theorem 4.3 and 4.6, we also have

s = p =
∂R
∂α

, t = p =
∂R
∂β

. (6.5)

Here is another point of view on (6.4), (6.5):

R(α,β ) = max
s,t

(αs+β t −σ(s, t)). (6.6)

The last formula can be also obtained directly: indeed (s, t) = (p , p ) is (ap-
proximately) the slope with the largest probability under the (α,β )-measure
and R(α,β ) is the asymptotic of the logarithm of this probability.

The formulas (6.4), (6.5), (6.6) mean that R(α,β ) and σ(s, t) are Legendre
duals of each other. Legendre duality is best defined for the convex functions,
and in our situation R(α,β ) is indeed convex in α and β . (This can be checked
by directly by computing the second derivatives in the formula for R(α,β ) of
Theorem 4.3 and using the Cauchy-Schwarz inequality.)

Since Legendre duality of R and σ is a symmetric relation, we also have

∂σ

∂ s
= α,

∂σ

∂ t
= β .

This gives a formula for σ(s, t).
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Theorem 6.5. Under the identification s = p and t = p , we have

σ(s, t) =− 1
π
(L(πs)+L(πt)+L(π(1− s− t))) (6.7)

where L(θ) =−
´

θ

0 ln(2sin t)dt is the Lobachevsky function.

Proof When s = t = 0, both sides are equal to 0. σ(0,0) = 0 because there
is exactly one tiling with slope (0,0,1). right-hand side is 0 is because L(0) =
L(π) = 0.

Exercise 6.6. Prove that L(0) = L(π) = 0.

Let us compare the derivatives.

∂RHS
∂ s

= ln
(
2sin(πs)

)
− ln

(
2sin(π(1− t − s))

)
= α =

∂σ

∂ s
.

The second step is by the law of sines applied to the triangle with side lengths
eα , eβ , 1. Similarly, we can show that

∂RHS
∂ t

= β =
∂σ

∂ t
.

For the graph of the σ(s, t) function, see Figure 6.2.

Proposition 6.7. σ(s, t) is a convex function of (s, t) with s≥ 0, t ≥ 0, s+t ≤ 1.

Proof We can check this directly from formula 6.7. This also follows from
the fact that σ(s, t) is the Legendre dual of R(α,β ).

6.3 Concentration of the slope

Now let us prove that the slope concentrates as n1,n2 → ∞.

Theorem 6.8. For the (α,β )–weighted random tilings of n1 × n2 torus,

lim
n1,n2→∞

|# −E# |
n1n2

= 0 in probability.

Proof Let us compute the variance.

Var(# ) = Var

(
∑

(x,y)∈torus
I( at (x,y))

)
= ∑

(x,y)∈torus
∑

(x′,y′)∈torus
Cov(I( at (x,y)), I( at (x′,y′))).

(I(·) denotes the indicator function of an event.) If we show that Cov → 0 as
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|x− x′|, |y− y′| → ∞, then Var = o(n2
1n2

2) and concentration holds by Cheby-
shev’s inequality. We have

Cov = P( at (x,y) and at (x′,y′))−P( at (x,y))P( at (x′,y′)).

By Theorem 4.11 of Lecture 4, as n1,n2 → ∞, the covariance goes to

e2β det
(

K̃α,β (1,0) K̃α,β (x− x′+1,y− y′)
K̃α,β (x′− x+1,y′− y) K̃α,β (1,0)

)
− e2β K̃α,β (1,0)2

(6.8)
where

K̃α,β (x,y) =
‹

|z|=|w|=1

wxz−y

1+ eα z+ eβ w
dz

2πiz
dw

2πiw
.

The double contour integral is a Fourier coefficient of a reasonably nice func-
tion, so it goes to 0 as |x|, |y|→∞. Therefore, (6.8) also goes to zero, as desired.
(Note that we use here slightly more than what is proved in Lecture 4. In Lec-
ture 4, x−y′ and y−y′ are kept constant as n1,n2 → ∞. Here they should grow
with n1,n2, so formally we have to deal directly with discrete Fourier coeffi-
cients of (4.8) — but those still go to 0.)

6.4 Limit shape of a torus

We end this lecture by discussing how a random tiling of the torus looks like
on the macroscopic scale.

Take a fundamental domain of the torus. Let H = 0 at the bottom-left corner,
and use paths only inside the fundamental domain to define height function
H(x,y) for the torus. By translation invariance, we have EH(x,y)−EH(x−
1,y) = a and EH(x,y)−EH(x,y−1) = b, for all (x,y). Here (a,b) is a vector
which can be treated as a version of the slope. We conclude that EH(x,y) =
ax+by.

Hence, using concentration inequality (5.2) from Lecture 5 (see Remark
5.12), as L → ∞ we have

sup
x,y

∣∣∣∣H(Lx,Ly)
L

− (ax+by)
∣∣∣∣→ 0

in probability. In other words, the limit shape for tilings is a plane.



Lecture 7: Maximizers in the variational
principle

7.1 Review

Recall the definitions of the Lobachevsky function, given by:

L(θ) =−
ˆ

θ

0
ln(2sin t) dt.

and of the (minus) surface tension associated to a triple (p , p , p ) of densi-
ties given by

S(p , p , p ) =
1
π

(
L(π p )+L(π p )+L(π p )

)
.

The setup for the identification of the limit shape in the variational principle
of Theorem 5.15 is as follows:

• For L → ∞ we consider a sequence of finite domains RL, whose scale de-
pends linearly in L, and fix a height function hL on each boundary ∂RL. We
silently assume that hL is such that it has extensions to height functions on
the whole RL.

• As our target, we take a continuous region R∗ ⊆ R2 with piecewise smooth
boundary ∂R∗, and let hb be a real function on this boundary.

We require the boundaries of RL to converge to those of the limiting region
R∗

1
L

∂RL → ∂R∗.

We do not need to specify the precise notion of convergence here, since the
limit shapes do not depend on the small perturbations of the boundaries (see
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Lecture 5 and the following Lecture 8). Moreover, we require that

hL(Lx,Ly)
L

→ hb(x,y) on ∂R∗,

which means that for each ε > 0 there exists δ > 0 and L0, such that for all L >

L0 and all pairs (x,y) ∈ ∂RL
L , (x∗,y∗) ∈ ∂R∗ satisfying |x− x∗|+ |y− y∗|< δ ,

we have
∣∣ 1

L hL(Lx,Ly)−hb(x∗,y∗)
∣∣< ε .

The variational principle asserts (among other things) that a uniformly ran-
dom height function HL of RL extending hL on ∂RL (=height function of a
uniformly random tiling) converges in probability to a function h∗ given by

h∗ = argmaxh∈H

¨
R∗

S(∇h) dx dy (7.1)

In other words, the limit shape should be one that maximizes a certain surface
tension integral.

The goal of this lecture is merely to make (7.1) precise (and subsequent
lectures will actually prove the theorem). This means we need to make the
following steps:

• We define and motivate the class of functions H mentioned in maximiza-
tion problem (7.1).

• We define S(∇h) for h ∈ H by associating a triple (p , p , p ) of local
densities to it.

• We prove that there exists a maximizing function h∗ across the choice of
h ∈ H .

• We prove that the maximizing function is unique.

Throughout this lecture we retain R∗ as our target region with piecewise
smooth boundary ∂R∗. We fix the boundary function hb on ∂R∗ as well.

7.2 The definition of surface tension and class of functions

7.2.1 Identifying the gradient with the probability values

Let’s consider once again an h on a finite region. We can imagine walking
in the three directions indicated in Figure 7.1. Recall that the way our height
function h is defined, as we move in the +y direction we either get an increment
of +1 or −2 according to whether we cross a lozenge or not. Accordingly, in
the standard coordinate system with x-axis pointing to the right and y–axis
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∂h
∂y

√
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∂h
∂x −

1
2

∂h
∂y−

√
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2
∂h
∂x −

1
2

∂h
∂y

Figure 7.1 Three coordinate directions correspond to three linear combinations
of partial derivatives.

pointing up, we might colloquially write

∂h
∂y

=−2p + p + p = 1−3p .

Similarly, moving in the other directions gives:

+

√
3

2
∂h
∂x

− 1
2

∂h
∂y

= p + p −2p = 1−3p

−
√

3
2

∂h
∂x

− 1
2

∂h
∂y

= p −2p + p = 1−3p .

In this way, we can now give a definition which gives a local density triple
(p , p , p ) at a point for a differentiable function h : R∗ → R.

Definition 7.1. Let h : R∗ → R be differentiable. For a point w in the interior
of R∗, we identify the gradient (∇h)w with the three local densities

p =
1− ∂h

∂y

3

p =
1−
(
−

√
3

2
∂h
∂x −

1
2

∂h
∂y

)
3

p =
1−
(√

3
2

∂h
∂x −

1
2

∂h
∂y

)
3

.
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Naturally, we have p + p + p = 1. Thus, moving forward, we will just
write S(∇h) for height functions h, with the above convention.

7.2.2 The desired set of functions

Next, we define the set of functions H we wish to consider: they are the func-
tions h : R∗ → R which satisfy a Lipschitz condition so that p , p , p are in
the interval [0,1].

Definition 7.2. Let δ1,δ2,δ3 be unit vectors in the coordinate directions of
Figure 7.1. We denote by H the set of all functions

h : R∗ → R

such that:

(i) h agrees with hb (on ∂R∗)
(ii) h satisfies the Lipschitz condition: for each i = 1,2,3 and ℓ > 0

−2 ≤ h((x,y)+ ℓδi)−h(x,y)
ℓ

≤ 1, (7.2)

where (x,y) and ℓ > 0 can be taken arbitrary as long as both (x,y) and
(x,y)+ ℓδi belong to R∗.

Let us recall a general result about differentiability of Lipshitz functions
known as the Rademacher theorem.

Theorem 7.3. A Lipschitz function is differentiable almost everywhere.

Whenever a function h ∈ H is differentiable at (x,y), the inequality
(7.2) implies that the gradient encoded via Definition 7.1 by local densities
(p , p , p ), satisfies 0 ≤ p , p , p ≤ 1.

We henceforth take as a standing assumption that H ̸= ∅; this essentially
means that the boundary function hb should satisfy a similar Lipschitz condi-
tion. (Which is automatically true if hb is obtained as a limit of height functions
of tileable regions.)

7.2.3 Goal

We have made all necessary definitions and the rest of this lecture is devoted
to proving that there is a unique function h∗ ∈ H which maximizes the value
of ¨

R∗
S(∇h) dx dy.
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7.3 Upper semicontinuity

Definition 7.4. Let M be a metric space. A real-valued function f : M → R is
upper semicontinuous if for every point p ∈ M, limsupx→p f (x)≤ f (p).

As the first step in proving the existence/uniqueness result, we prove the
following:

Theorem 7.5. Equip H with the uniform topology. Then over functions h ∈
H , the function

h 7→
¨

S(∇h) dx dy

is upper semicontinuous.

The proof relies on several lemmas.

Lemma 7.6. Let h ∈H . Choose a mesh of equilateral triangles of side length
ℓ. Take a function h̃ agreeing with h at vertices of each triangle, and linear on
each triangle (hence piecewise linear).

For each ε > 0, if ℓ > 0 is smaller than ℓ0 = ℓ0(ε), then for at least 1− ε

fraction of the triangles, the following holds:

• |h̃−h| ≤ ℓε at each point inside the triangle,

• for (1−ε) fraction of the points of triangles, ∇h exists and
∥∥∥∇h−∇h̃

∥∥∥< ε .

Outline of proof We mirror the proof of [CohnKenyonPropp00, Lemma 2.2].
We first show that there is a 1− ε/3 fraction of triangles contained strictly
within the region satisfying the first condition, and then proceed to the second
condition. In both parts we implicitly use the Rademacher theorem implying
that h is differentiable almost everywhere.

• First part: For every point of differentiability w, there exists a small real
number r(w)> 0 such that

|h(w+d)−h(w)− (∇h)w ·d|< 1
10

ε · |d|

for small displacements |d| ≤ r(p). If our mesh ℓ is so small that the set

{w | r(w)> ℓ} (7.3)

has measure at least (1− ε/3) · (AreaR∗), then (ignoring the triangles cut
off by the boundary), we can find a point w from the above set in each of
the (1− ε/3) fraction of triangles. Thus, the linear approximation property
holds on these triangles.
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• For the second part we need to use the Lebesgue density theorem: Let A be
any Lebesgue measurable set, define the local density of A at x as

lim
ε→0

mes(Bε(x)∩A)
mes(Bε(x))

,

with Bε(x) being a ball of radius ε around x. Then the theorem (which we
do not prove here) claims that for almost every point x ∈ A the local density
equals 1.

Next, we choose finitely many sets U1, U2, . . . , Un covering all R∗ and
such that whenever p,q ∈Ui, we have

∥∥(∇h)p − (∇h)q
∥∥< ε/2 (this is pos-

sible since the space of possible gradients ∇h is compact). By applying
Lebesgue’s density theorem to each of Ui, if ℓ is small enough, for point
w in all but ε/3 fraction of R∗, the value of ∇h in all but ε/3 fraction of the
ball of radius ℓ centered at w differs from (∇h)w at most by ε/2.

If w additionally belongs to the set (7.3) from the first part, then on the
triangle to which w belongs, ∇h̃ differs from (∇h)w at most by ε/2. Hence,
the second property holds.

Here is an immediate consequence of Lemma 7.6.

Corollary 7.7. Retaining the notation of the lemma,

lim
ε→0

(¨
R∗

S(∇h) dx dy−
¨

R∗
S(∇h̃) dx dy

)
= 0.

The next lemma deals with very specific choices of R∗.

Lemma 7.8. Take as R∗ an equilateral triangle T of side length ℓ. Let h ∈H

and choose a linear function h̃ satisfying
∣∣∣h− h̃

∣∣∣< εℓ on ∂T . Then

˜
T S(∇h) dxdy

AreaT
≤

˜
T S(∇h̃) dxdy

AreaT
+o(1)

as ε → 0.

In other words we can replace h by its linear approximation if they agree
along the border of the domain T . Note that h̃ is linear, rather than piecewise
linear — hence, this lemma is being applied to just one triangle T .

Proof of Lemma 7.8 By concavity of S, we have˜
T S(∇h)dxdy

AreaT
≤ S (Avg(∇h)) , (7.4)

where Avg(∇h) is the average value of ∇h on T . Also, we have∥∥∥Avg(∇h)−Avg(∇h̃)
∥∥∥= O(ε),



66 Lecture 7: Maximizers in the variational principle

which can be proven by reducing the integral over T in the definition of the
average value to the integral over ∂T using the fundamental theorem of the
calculus and then using

∣∣∣h− h̃
∣∣∣< εℓ. Therefore, by continuity of S,

S(Avg(∇h)) = S(Avg(∇h̃))+o(1).

Since h̃ is linear, its gradient is constant on T and we can remove the average
value in the right-hand side of the last identity. Combining with (7.4) we get
the result.

Proof of Theorem 7.5 Let h ∈ H . Then for each γ > 0 we want to show that
there exists δ > 0 such that whenever g and h differ by at most δ everywhere,
we should have ¨

R∗
S(∇g)dxdy ≤

¨
R∗

S(∇h)dxdy+ γ

Take a piecewise linear approximation h̃ for h from Lemma 7.6, and choose
δ < εℓ. Let us call a triangle T of mesh “good”, if two approximation proper-
ties of Lemma 7.6 hold on it. Then as ε → 0 we have by Lemma 7.8

¨
T

S(∇g)≤
¨

T
S(∇h̃)+Area(T ) ·o(1)

and thus by summing over all the good triangles T
¨

good triangles in R∗
S(∇g)≤

¨
good triangles in R∗

S(∇h̃)+Area(R∗) ·o(1).

Because S is bounded, the bad triangles only add another O(ε). Thus, using
also Corollary 7.7, we get

¨
R∗

S(∇g)≤
¨

R∗
S(∇h)+Area(R∗) ·o(1).

7.4 Existence of the maximizer

The development of the previous section leads to the existence of maximizers.

Corollary 7.9. There exists a maximizer h∗ ∈ H :

h∗ = argmaxh∈H

¨
R∗

S(∇h)dxdy.
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Proof We equip the set H with the uniform topology. It is then compact by
the Arzela-Ascoli theorem.

Let hn, n = 1,2 . . . , be a sequence of functions such that the integrals˜
S(∇hn)dxdy approach as n → ∞ the supremum suph∈H

˜
S(∇h)dxdy.

Passing to a convergent subsequence by compactness, we can assume with-
out loss of generality that hn → h∗, for some h∗ ∈ H . Then, by Theorem 7.5

sup
h∈H

¨
S(∇h)dxdy = limsup

n→∞

¨
S(∇hn)dxdy ≤

¨
S(∇h∗)dxdy.

On the technical level, the difficulty in the proof of Corollary 7.9 is to pass
from uniform convergence of the functions to convergence of their gradients,
which is necessary, since S is a function of the gradient. This was the main
reason for the introduction of the mesh of small equilateral triangles T in the
previous section.

7.5 Uniqueness of the maximizer

We end this lecture with a discussion of the uniqueness of maximizers.
Let h1 and h2 be two maximizers (with the same value of the integral of S),

and let h = h1+h2
2 ∈ H . Then using the concavity of S, we have

¨
S(∇h)dxdy ≥ 1

2

(¨
S(∇h1)dxdy+

¨
S(∇h2)dxdy

)
=

¨
S(∇h1)dxdy. (7.5)

If S(•) were strictly concave, the inequality in (7.5) would have been strict and
this would have been a contradiction with h1 ̸= h2 being two maximizers. An-
noyingly, this is not quite true — S is only strictly concave in the region where
p , p , p > 0 (i.e. the interior of the triangle of possible slopes). Nonetheless
we would be done if there are points with ∇h1 ̸= ∇h2 with at least one of them
strictly inside the triangle of slopes.

Hence, the only remaining case is that all gradients ∇h1 and ∇h2 lie on
the boundary of the triangle of the slopes. Let us distinguish two kinds of
boundary slopes: extreme slopes, such that (p , p , p ) is either (1,0,0), or
(0,1,0), or (0,0,1) and non-extreme boundary slopes where proportions of
two types of lozenges are non-zero. Note that if h1 ̸= h2 are two maximizers
with all the slopes on the boundary, then passing to h = h1+h2

2 and using (7.5),
if necessary, we would find a maximizer with non-extreme boundary slopes.
However, we did not see any such slopes in the simulations shown in Figures
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1.3, 1.5 of Lecture 1. In fact, the following statement explains that non-extreme
boundary slopes never appear in the limit shapes of tilings, as long as we tile
non-degenerate domains.

Proposition 7.10. If a domain R∗ with hb on ∂R∗ has at least one height
function h◦ ∈ H extending hb, such that all the slopes ∇h◦ inside R∗ are not
on the boundary of the triangle of possible slopes, then h with non-extreme
boundary slopes (i.e. boundary slopes with non-zero proportions of precisely
two types of lozenges) cannot be a maximizer of

˜
S.

Remark 7.11. For all the domains that we encounter in these lectures, the exis-
tence of h◦ is immediate. For instance, this is the case for tilings of polygonal
domains with sides parallel to the six grid directions of the triangular lattice.
The only possible “bad” situation that we need to exclude is when the bound-
ary conditions make some part of the tiling frozen (i.e. having only one type of
lozenges) for every extension of hb — in this case we should simply remove
this frozen part from the consideration and study the height functions in the
complement.

Outline of the proof of Proposition 7.10 For ε > 0 consider¨
R∗

[S(∇(εh◦+(1− ε)h))−S(∇h)] dxdy. (7.6)

We would like to study the small ε expansion of this difference by expanding
the integrand at each (x,y).

The explicit formula for S implies that the partial derivatives of S are
bounded inside the triangle of slopes, but grow logarithmically at the boundary
(except for the vertices (1,0,0), (0,1,0), (0,0,1)), cf. Figure 6.2.

Hence, the contribution to (7.6) of (x,y) with non-boundary (or extreme
boundary) slopes of ∇h is O(ε). On the other hand, the contribution of (x,y)
with non-extreme boundary slopes is of order ε ln 1

ε
≫ ε , since the definition

of h◦ implies that ∇(εh◦+(1− ε)h) is strictly inside the triangle of slopes for
any ε > 0. Simultaneously, this contribution is positive for all (x,y), since S
has a minimum on the border of the triangle, cf. Figure 6.2. Hence, (7.6) is
positive for small ε contradicting the maximality of the integral for h.

Another proof for the uniqueness of maximizers can be found in
[DeSilvaSavin08, Proposition 4.5].



Lecture 8: Proof of the variational prin-
ciple

In this lecture, using the machinery we have set up, prove the variational prin-
ciple of Theorem 5.15 following [CohnKenyonPropp00].

Proposition 8.1. Let R be a convex region in the plane, and fix positive reals
k and ε . Suppose that R fits within some L×L square, where L > ε−1, and
suppose it has area A ≥ kL2.

Let hb be a height function on ∂R which is within εL of the height function
of a fixed plane Π. Then, the quantity:

1
A

ln(# of extensions of hb to R) (8.1)

is independent of the choice of hb (but depends on Π) up to an additive error
of O(ε1/2 ln 1

ε
), which might depend on k.

Proof The proof splits into two cases depending on the slope of Π.
Case 1: The slope of Π is at least ε1/2 away from any boundary slope; in

other words, the proportion of each lozenge corresponding to the slope of Π is
at least ε1/2 and at most 1− ε1/2.

Take a height function gb (on ∂R) also agreeing with the plane Π; we will
show that the values of (8.1) for gb and hb are within O(ε1/2 ln 1

ε
) of each other.

Assume gb ≥ hb; if not, then we can compare both gb and hb with min(gb,hb)

instead. Let g∗ and h∗ denote the minimal extension of gb and the maximal
extension of hb to R, respectively (since maximum/minimum of two height
functions is again a height function, such extensions are uniquely defined). We
define two maps that operate on height functions on R. If f is an extension
of gb to R, then we define H( f ) to be the extension of hb to R given by the
pointwise minimum:

H( f ) = min( f ,h∗)

69
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Similarly, if f is an extension of hb to R, then G( f ) is the extension of gb to
R given by:

G( f ) = max( f ,g∗)

Note that H(G( f )) = f at all points in R at which the value of f is between
g∗ and h∗ (in that order).

Recall the formula for h∗ in terms of hb from Leacture 1 (for g∗ the formula
is similar):

h∗(x) = min
u∈∂R

(d(x,u)+hb(u)),

where d is the distance function within R. Note that since R is convex, d is dif-
fers (up to a small error) by a constant factor from the Euclidean distance in the
plane. Thus, g∗ and h∗ differ from the height of Π by at least Ω(ε1/2d(x,∂R)),
since the slope of Π is at least ε1/2 away from any boundary slope.

On the other hand, we claim that a typical random extension of hb to R is
close to Π. Indeed, to see that we embed R into a torus and consider a random
(α,β )–weighted tiling of the torus, where α and β are chosen so that the limit
shape of such a random tiling has slope Π, cf. Lecture 6. The concentration
of the height function of Lecture 5 applied to the torus means that hb is close
on ∂R to the height function of random tiling of the torus. We can then com-
pare random extension of hb to a random tiling of the torus conditional on the
values of its height function on ∂R. Note that the conditioning removes non-
uniformity, i.e. the conditional law of (α,β )–weighted tilings on the torus is
the same as for the uniformly random tilings1 Hence, we can use the arguments
of Lecture 5. In particular, Proposition 5.1 (see also Proposition 5.6) implies
that with probability tending to 1 (as the size of the domain grows), the height
function of random extension of hb is close to that of a random tiling of the
torus, which is close to Π.

We conclude that with high probability, a random extension of hb to R is
a distance at most εL from Π. Thus, we have that for random extension f of
hb, with probability approaching 1, H(G( f )) = f at all points at a distance at
least ε1/2(ln 1

ε
)L from the boundary ∂R. This gives a partial bijection between

extensions of hb and extensions of gb.
It remains to deal with the points at a distance less than ε1/2(ln 1

ε
)L from

the boundary ∂R. The possible values of the height function at these points

1 In order to see the conditional uniformity, notice that as soon as we know the values of the
height function on ∂R, we know the total number of lozenges of each of the three types inside
R. Indeed, all the tilings with fixed boundary condition can be obtained from each other by
adding/removing unit cubes, as in the first proof of Theorem 2.1, and each such operation
keeps the number of lozenges of each type unchanged. Hence, the each lozenge tiling of R
with fixed values of the heights on ∂R has the same (α,β )-weight.
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can be constructed sequentially: when we move from a point to its neighbor
there are two possible choices for the value of the height function. Thus, noting
that there are O(ε1/2(ln 1

ε
)L2) points close to the boundary ∂R, the number of

extensions of g and h differ by a multiplicative factor of at most 2O(ε1/2(ln 1
ε
)L2),

as desired.
Case 2: The slope of Π is within ε1/2 of some boundary slope; in other

words, the proportion of some type of lozenges, p , p , or p , is at most ε1/2.
Without loss of generality, assume that the probability of a horizontal lozenge
is p < ε1/2. Let us show that in this case, (8.1) is close to 0.

Consider some extension of hb, and consider all the vertical sections of R

by straight lines. Note that we know the number of horizontal lozenges on
these lines exactly, by calculating the change in the value of hb on each of these
lines. This number is O(ε1/2L) due to hb being close to Π on ∂R. Thus, the
total number of lozenges inside R is at most O(ε1/2L2). Note that the posi-
tions of lozenges uniquely determine the rest of the tiling, i.e. the lozenges
of the other two types. Thus the number of tilings is at most the number of
arrangements of lozenges, which is at most (where c is the constant in the
big O):

(
A

cε1/2L2

)
≤ Acε1/2L2(

cε1/2L2

e

)cε1/2L2 ≤

(
L2

cε1/2L2

e

)cε1/2L2

=

(
e

cε1/2

)cε1/2L2

= exp
(
L2O(ε2 ln 1

ε
)
)
.

Corollary 8.2. In the setting of Proposition 8.1, if R is an L by L square, then:

1
A

ln(# of extensions of h to R) = S(slope of Π)+O(ε2 ln 1
ε
) (8.2)

Proof Let us embed L×L square into L×L torus. If we deal with random
tilings of this torus, then the height function on the boundary of our square
is now random. However, in Section 6.4 we have shown this height function
is asymptotically planar. Hence, using Proposition 8.1 we conclude that the
number of tilings of the square is approximately the same as the number of the
fixed slope tilings of the torus2 The asymptotic of the latter was computed in
Theorem 6.5.3

2 We also need to sum over all possible choices of the approximately planar heights on the
boundary of the square. However, the number of such choices is exp(O(L)) and we can ignore
this factor in computation, since we only care about the leading O(L2) asymptotics of the
logarithm of number of extensions.

3 Theorem 6.5 relies on Theorem 4.3, which was proven only for tori of specific sizes. However,
the sizes form a positive-density subset and thus it suffices to use only those sizes.
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Proposition 8.3. The statement (8.2) still holds when R is an equilateral tri-
angle.

Proof Tile R with small squares, so that every square is completely contained
within R (a small portion of R will be uncovered, but this is negligible so we
ignore it). Fix a (consistent) height function that is within O(1) of the plane
on the boundaries of the squares. Note that, given this height function on the
boundaries of the squares, a tiling of each of the squares yields a valid tiling of
R. Therefore,

1
A

ln(# of tilings of R)≥ 1
A

ln(# of tilings of all squares)

=
1
A ∑

squares s
ln(# of tilings of s)

≥ 1
A ∑

squares s
Area(s)(S(slope of Π)+O(ε2 ln 1

ε
))

= S(slope of Π)+O(ε2 ln 1
ε
)

Now, for the other direction of the inequality, we will use an identical argu-
ment; tile a large square with (approximately) equal numbers of copies of R

and R ′ (a vertically flipped copy of R). Then, each tiling of the square yields
a tiling of each triangle, so we have:

∑
copies of R,R ′

ln(# of tilings)≤ (total area) ·S(slope of Π)+O(ε2 ln 1
ε
).

Noting that the lower bound applies for both R and R ′ parts of the last sum,
we obtain the desired bound.

The final ingredient of the proof of the variational principle, is contained in
the following theorem:

Theorem 8.4. Let R∗ be a region with a piecewise smooth boundary, and let
h∗b be a continuous height function on ∂R∗. Further, let R = RL be a lattice
region with a height function hb on ∂R, and for some fixed δ , suppose that
1
LR is within δ of R∗ and 1

L hb is within δ of h∗b. Suppose also that there exist
extensions of hb to R.

Then, given a function h∗ ∈ H which agrees with h∗b on ∂R∗, we have:
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1
L2 ln(number of extensions of hb to R within Lδ of Lh∗)

=

¨
S(∇h∗)dxdy+o(1) (8.3)

in the limit regime when we first send L → ∞ and then δ → 0. The remainder
o(1) is uniform over the choice of h∗.

Proof Pick arbitrary (small) ε > 0. Pick ℓ= ℓ(ε) as in Lemma 7.6 in Lecture
7 and create an ℓ-mesh of equilateral triangles on the region 1

LR. We will take
δ < ℓε . Let h̃ be a height function which agrees with h∗ on the vertices of the
mesh and is piecewise linear within each triangle of the mesh. By Lemma 7.6
on all but an ε fraction of the triangles, the function h̃ is within εℓ of h∗ on the
boundaries of the triangle.

Note that we can ignore the ε fraction of “bad” triangles, since the contri-
bution from these to (8.3) is negligible as ε → 0. The negligibility is based on
the observation that for each bad triangle there is at least one discrete height
function extending to the entire triangle the values of Lh∗ on the vertices of
this triangle in such a way that it stays within Lδ of Lh∗. On the other hand,
the total number of such extensions is at most exp(O(area of the triangle)).

Now, in order to lower bound the LHS of (8.3), note that we can obtain
a valid extension of hb to R by first fixing the values at the vertices of the
mesh to agree with h∗, then choosing the values of the height function on the
boundaries of the triangles in an arbitrary way (but keeping them close to the
piecewise-linear approximation h̃), and finally, counting all possible extensions
from the boundary of the triangles of the mesh to the interior. Using Proposi-
tion 8.3 we get an estimate for the total number of tilings constructed in this
way, which matches the right-hand side of (8.3). The overwhelming majority
of the height functions of these tilings is in Lδ–neighborhood of Lh∗, since we
chose them in such a way of the boundaries of the triangles and then can use
the comparison with torus, as in the proof of Proposition 8.1 to conclude that
the height function is close to h̃ inside the triangles. Since h̃ is close to h∗ by
the construction, the desired lower bound is obtained.

For the upper bound of the right-hand side of (8.3), we take an arbitrary
tiling of R with height function h and restrict it to each triangle in the mesh;
note that this must yield a valid tiling of each good triangle. Thus, summing
over all possible boundary conditions on sides of the triangles of the mesh
(whose normalized heights must be within ℓε of h∗, since δ < ℓε) and using
Proposition 8.3 for each triangle, we obtain the desired upper bound. It is cru-
cial at this step that the number of choices of all possible boundary conditions
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on the sides of the triangles grows as exp(o(L2))4 and is therefore negligible
for (8.3).

Remark 8.5. One might want to be slightly more careful near the boundaries
of the domain, since h∗ might be not defined in the needed points. We do
not present these details here and refer to [CohnKenyonPropp00]. We also do
not detail uniformity of the remainder o(1), leaving this as an exercise to the
readers.

Proof of Theorem 5.15 For a function h∗ ∈ H and δ > 0, let Uδ (h∗) denote
the set of all functions h from H , for which sup(x,y)∈R∗ |h(x,y)−h∗(x,y)|< δ .

Let hmax be the maximizer of Corollary 7.9. Choose an arbitrary small ε > 0.
Using uniqueness of maximizer, compactness of H , and Theorem 7.5, we can
find δ0 (depending on ε), such that

¨
R∗

S(∇h)dxdy <
¨

R∗
S(∇hmax)dxdy− ε,

for each h ∈ H outside Uδ0(h
max).

Note that the choice δ0 = δ0(ε) can be made in such a way that δ0 → 0 as
ε → 0. Next, choose another δ > 0, so that o(1) in (8.3) is smaller in magnitude
than ε/2. This δ can be arbitrary small and therefore we can require without
loss of generality that δ < δ0.

Using compactness of the space H , we can now choose finitely many
elements h∗1, . . . ,h

∗
k ∈ Uδ0(h

max) with h∗1 = hmax and finitely many elements
h∗k+1, . . . ,h

∗
m ∈ H \Uδ0(h

max), so that (for large L) each height function HL of
a tiling of RL is in δL–neighborhood from one of the functions Lh∗i , 1 ≤ i ≤ m.
The numbers k, m and functions h∗1, . . . ,h

∗
m depend on ε and δ , but not on L.

Let Ni, 1 ≤ i ≤ m, denote the number computed in (8.3) for h∗ = h∗i . Then
we have a bound

exp(L2N1)≤ number of extensions of hb to RL ≤
m

∑
i=1

exp(L2Ni) (8.4)

Sending L → ∞ using (8.3) and the fact that h∗1 = hmax is the maximizer, we

4 There are O(ℓ−2) triangles in the mesh and each of them has sides of length O(ℓL). Hence, the
total length of all sides of the triangles of the mesh is O(ℓ−1 ·L). If we define heights along the
sides of triangles sequentially, starting from the boundary of the domain (where they are
fixed), then when we move to an adjacent vertex of the grid, we choose from at most 2
possible values of the height function. Hence, the total number of possible values for the
height function on all sides of all triangles can be upper-bounded by 2O(ℓ−1 ·L).
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get
¨

R∗
S(∇hmax)dxdy−ε/2 ≤ lim

L→∞

1
L2 ln(number of extensions of hb to RL)

≤
¨

R∗
S(∇hmax)dxdy+ ε/2 (8.5)

Since ε > 0 is arbitrary, this proves (5.3).
Further, using δ < δ0, we can write

1−P(HL is within 2Lδ0 from hmax)≤ ∑
m
i=k+1 exp(L2Ni)

exp(L2N1)
(8.6)

Using (8.3) and definition of δ0 we conclude that the numerator in (8.6) is
upper-bounded by

(m− k)exp
(

L2
(¨

R∗
S(∇hmax)dxdy− ε/2

)
+o(L2)

)
.

Simultaneously, the denominator is lower-bounded using (8.3) by

exp
(

L2
¨

R∗
S(∇hmax)dxdy+o(L2)

)
.

We conclude that the ratio in (8.6) goes to 0 as L → ∞. Since δ0 can be made
arbitrary small as ε → 0, this implies convergence in probability 1

L H → hmax.



Lecture 9: Euler-Lagrange and Burgers
equations

In the previous lectures we reduced the problem of finding a limit shape of
random tilings to a variational problem. Now we start discussing ways to solve
the latter.

9.1 Euler-Lagrange equations

Recall that the limit shape of a tiling, under certain conditions, is given by:

argmaxh

¨
S(∇h)dxdy.

We will consider the general problem of finding

argmaxh

¨
F(hx,hy,h)dxdy (9.1)

for a general function F of three real arguments (and we are going to plug in hx

as the first argument, hy as the second argument, and h as the third argument).

Proposition 9.1 (Euler-Lagrange equations). For maximal h(x,y) solving
(9.1), at all points (x,y) where h is smooth (as a function of (x,y)) and
F(hx,hy,h) is smooth (as a function of its argument in a neighborhood of
(hx(x,y),hy(x,y),h(x,y))), we have:

∂

∂x

(
F1(hx,hy,h)

)
+

∂

∂y

(
F2(hx,hy,h)

)
−F3(hx,hy,h) = 0 (9.2)

where Fi denotes the derivative of F in its i-th argument.
In the non-coordinate form, the first two terms can be written as div(∇F ◦

∇h), representing the divergence of the vector field ∇F evaluated at ∇h(x,y).
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Proof Note that since h is maximal, we must have, for all smooth g,

∂

∂ε

(¨
F((h+ εg)x,(h+ εg)y,(h+ εg))dxdy

)∣∣∣∣
ε=0

= 0

Using the Taylor series expansions of F , this reduces to:
¨

(F1(hx,hy,h)gx +F2(hx,hy,h)gy +F3(hx,hy,h)g) dxdy = 0

Now pick g to be smooth with compact support strictly inside the domain and
integrate by parts in x in the first term and in y in the second term to get:

¨ (
∂

∂x
(F1(hx,hy,h))+

∂

∂y
(F2(hx,hy,h))− (F3(hx,hy,h))

)
gdxdy = 0.

Since g is arbitrary, the first factor in the integrand has to vanish.

Specializing Euler-Lagrange equations to our functional S(∇h) we see two
different situations:

• If ∇h at a point (x,y) lies strictly inside of the triangle of possible slopes,
then (9.2) is a meaningful equation at this point.

• If ∇h is a boundary slope at (x,y), then (9.2) does not hold at such point,
since S(∇h) fails to be a smooth function of ∇h — in fact it is not even
defined if we deform ∇h outside the triangle of possible slopes.

In the first situation we say that (x,y) belongs to the liquid region, while the
second one corresponds to the frozen region.

9.2 Complex Burgers equation via a change of coordinates

If we try to write down the Euler-Lagrange equations directly for the
functional of Theorem 5.15 we get a heavy and complicated expression.
[KenyonOkounkov05] found a way to simplify it by encoding the slope of
the limit shape by a complex number. We now present their approach.

First, we wish to fix a coordinate system so that the gradient of h repre-
sents the probabilities of encountering each type of lozenge. Rather than using
rectangular coordinate system, we follow the conventions of Figure 3.2: the
y–coordinate axis points up, while the x–coordinate axis points down–right. In
other words, we use up and right vectors from Figure 7.1 as two coordinate
directions.
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<(z)

=(z)

0 1

z

eα = |1− z|

eβ = |z|

Figure 9.1 Triangle defining the complex slope z.

After fixing the x and y directions, we further modify the definition of the
height function to

h̃ =
x+ y−h

3
. (9.3)

Recall that by definition of a height function (see discussion in Section 7.2.1),
we have hx = p + p −2p , and hy = p + p −2p . Thus, since the local
densities of three types of lozenges sum to 1, we have for the modified height
function

∇h̃ = (p , p ). (9.4)

Recall the results of Lecture 6, namely Theorems 6.1 and 6.5 and Legendre
duality used to prove them. An important role is played by a triangle with side-
lengths eα , eβ , 1. Its angles are π(p , p , p ) with correspondence shown in
Figure 9.1. Let us position this triangle in the complex plane is such a way
that two its vertices are 0 and 1, while the third one is a complex number z in
the upper half-plane. Following Kenyon and Okounkov we call z the complex
slope encoding the triplet (p , p , p ).

Using identification of (9.4) and recalling that σ =−S, the Legendre duality
of Lecture 6 can be now restated as

− ∂S
∂ h̃x

= α = ln |1− z|, − ∂S
∂ h̃y

= β = ln |z|. (9.5)

It turns out that z satisfies a first order differential equation.

Theorem 9.2 ([KenyonOkounkov05]). In the liquid region (i.e., where
p , p , p > 0), there exists a function z(x,y) taking values in the complex
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upper half plane such that

(h̃x, h̃y) =
1
π

(
argz,−arg(1− z)

)
(9.6)

and
−zx

1− z
+

zy

z
= 0. (9.7)

Proof It can be shown using general results on variational problems and
PDEs that h̃ is analytic in the liquid region — this is a particular case
of the Hilbert’s nineteenth problem, and we refer to the introduction of
[DeSilvaSavin08] for references and discussion in the context of random sur-
faces.

Then h̃ is differentiable and (9.6) is a restatement of (9.4) and geometric
definition of the complex slope z above.

By the Euler-Lagrange equations for the variational problem of Theorem
5.15, we obtain using (9.5):

0 =
∂

∂y

(
∂S
∂ h̃y

)
+

∂

∂x

(
∂S
∂ h̃x

)
=− ∂

∂y
ln |z|− ∂

∂x
ln |1− z|

Note that this is the real part of (9.7). For the imaginary part, we need to show

∂

∂y
argz+

∂

∂x
arg(1− z) = 0,

which is the identity h̃xy = h̃yx rewritten using (9.6).

We remark that the definition of the complex slope z is not canonical, since
we need to somehow identify three angles of the (0,1,z) triangle with three
proportions (p , p , p ) and there are six ways to do it. In particular, if we
perform the substitution u = z

1−z (this corresponds to a rearrangement of the
vertices of the triangle of Figure 9.1), then the chain rule gives:

ux =
zx

(1− z)2 , uy =
zy

(1− z)2 .

In u–coordinate (9.7) becomes:

ux ·u = uy. (9.8)

This equation is well-known, it is called the complex inviscid Burgers equation.

Exercise 9.3. There are 6 ways to identify three angles of the (0,1,z) triangle
with three proportions (p , p , p ). Two of these ways lead to equations (9.7)
and (9.8). Find the equations corresponding to four other ways.
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9.3 Generalization to qVolume–weighted tilings

We now consider a generalization of the uniformly random tilings by changing
the weight of the measure to a qVolume, where the volume is the number of unit
cubes that must be added to the minimial tiling to obtain a given tiling.1 Addi-
tion of one cube increases the height function h(x,y) of Section 1.4 by 3 at a
single point, hence, volume is given by the double integral 1

3

˜
h(x,y)dxdy up

to a constant shift. In terms of the modified height function h̃ of (9.3) addition
of one cube decreases the height by 1 and, therefore, volume is equal to minus
the double integral: Volume =−

˜
h̃(x,y)dxdy+ const.

Let us investigate the limit shape of the random height function under the
measure qVolume with q changing together with the linear size L of the domain
by q = ec/L.

Proposition 9.4. Consider random tilings under the qVolume measure with q =

exp(c/L) as the linear size of the domain L grows. In the setting of Theorem
5.15, the limit shape for the height function still exists in this case, it is given
by:

h∗ = argmaxh

¨
R∗

(
S(∇h)+

c
3

h
)

dxdy. (9.9)

Proof The proof is identical to the proof of the variational principle of The-
orem 5.15 in the uniform case; we only need to multiply by qVolume when we
count tilings.

Corollary 9.5. The limit shape for qVolume–random lozenge tilings with q =

exp(c/L) satisfies:

div(∇S◦∇h) =
c
3

(9.10)

where ◦ is the evaluation operator; i.e., ∇S is being evaluated at ∇h and then
div is applied to the resulting function of (x,y).

Proof This is the Euler-Lagrange equation for the variational problem (9.9).

Theorem 9.2 extends to the q–weighted case with a similar proof.

Corollary 9.6. For qVolume–weighted tilings with q = exp(c/L) the statement
of Theorem 9.2 remains valid with (9.7) replaced by

−zx

1− z
+

zy

z
= c. (9.11)

1 The qVolume measure will appear again in Lectures 22-23 and then in Lecture 25. In particular,
the effect of adding one cube on the height function is shown in Figure 25.2.
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Proof The imaginary part of (9.11) is the same as that of (9.7) and its validity
follows from h̃xy = h̃yx relation. For the real part, we need to add an additional
term in the Euler–Lagrange equations, which produces the right-hand side of
(9.11). Note that c is being multiplied by (−3) when we pass from h to h̃ by
(9.3), hence, the final form of (9.11).

9.4 Complex characteristics method

Since (9.11) is a first order partial differential equation, it can be solved using
the method of characteristics. The only tricky point is that the coordinate z is
complex, while the textbooks usually present the method in the real case. Yet,
as we will see in this and the next lecture, all the principles continue to work
in the complex case.

For simplicity, imagine first that z were real. Consider any curve
x(t),y(t),z(t) satisfying the following differential equations:

dx
dt

(z−1) =
dy
dt

z =
dz
dt

· 1
c

We call such a curve a characteristic curve.

Proposition 9.7. A surface z = z(x,y) solving (9.11) must be a union of char-
acteristic curves.

Proof The normal vector to such a surface is (zx,zy,−1). The tangent to a
characteristic curve is, up to scaling by a function of t, ( 1

z−1 ,
1
z ,c). Note that

these two vectors have dot product 0 by (9.11), so the tangent vector to the
characteristic curve is tangent to the surface. Thus, the characteristic curve
remains on the surface.

Next, we solve the equation determining the characteristic curves. Choose
z = t. Then:

dy
dz

=
1
cz
,

dx
dz

=
1

c(z−1)
.

The solutions to these equations are:

cy = lnz+ k1, cx = ln(z−1)+ k2.

Rearranging, we get the following form for a characteristic curve:

ze−cy = k̃1, (1− z)e−cx = k̃2,
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where k̃1 and k̃2 are arbitrary constants. The choice of these constants is re-
lated to the specification of the boundary conditions for the PDE (9.11), and
we need to specify which curves to use to form the surface. In general a two-
dimensional surface is a union of a one-parameter family of the curves, hence,
we can parameterize the desired k̃1, k̃2 by an equation Q(k̃1, k̃2) = 0. We con-
clude that the solution to (9.11) must be given by Q(ze−cy,(1− z)e−cx) = 0 for
some function Q.

We proceed to the complex case and seek for a solution in the same form.
The only difference is that Q is no longer arbitrary, but it is an analytic function.
We have arrived at the following statement from [KenyonOkounkov05]:

Theorem 9.8. Let c ̸= 0 and take any analytic function of two variables
Q(u,v). The surface given by:

Q(ze−cy,(1− z)e−cx) = 0 (9.12)

solves (9.11)

Proof Taking the derivatives in x and y of both sides of (9.12), we get

Q1zxe−cy +Q2(−zx)e−cx − cQ2(1− z)e−cx = 0,

Q1zye−cy − cQ1ze−cy +Q2(−zy)e−cx = 0,

where Qi denotes the derivative of Q in its i-th argument.
Note that we can isolate Q1e−cy

Q2e−cx in both these expressions to obtain the equal-
ity:

c(1− z)+ zx

zx
=

zy

zy − cz

Clearing denominators and rearranging, we obtain precisely (9.11).

A remark is in order. The Burgers equation (9.11) is only valid in the liq-
uid region. In the frozen part of the limit shape, only one type of lozenges
is present and the definition of the complex slope z is meaningless. On the
other hand, the limit shape is still analytic — it is in fact linear. However, non-
analyticity appears on the Arctic boundary — separation curve between liquid
and frozen phases; the behavior of the limit shape on two sides of this curve is
very different.

We still have not discussed how to find Q based on the boundary conditions
for lozenge tilings. We examine this question in the next lecture.



Lecture 10: Explicit formulas for limit
shapes

In the previous lectures we discussed two properties of the limit shapes of
tilings: they solve a variational problem and in liquid regions they solve the
complex Burgers equation. In this lecture we concentrate on algorithmic ways
to explicitly identify the limit shapes.

10.1 Analytic solutions to the Burgers equation

First, we continue our study of the solutions to the complex Burgers equation
appearing as Euler-Lagrange equation for limit shapes of random tilings. The
equation reads

−zx

1− z
+

zy

z
= c. (10.1)

In the last lecture we have shown in Theorem 9.8 that an analytic function
of two variables Q(u,v) gives rise to a solution to (10.1). However, we have
not explained whether every solution are obtained in this way, i.e. whether we
can use the formulation in terms of Q(u,v) as an ansatz for finding all possible
solutions to the Burgers equation and, hence, for finding the limit shapes of
tilings. We proceed by showing that this is indeed the case (still in the situation
c ̸= 0).

Theorem 10.1. If c ̸= 0, given a solution to (10.1) there exists an analytic Q
such that

Q(ze−cy,(1− z)e−cx) = 0. (10.2)

Remark 10.2. In the present formulation Theorem 10.1 is a bit vague and we
are not going to make it more precise here. Of course, one can always choose
Q to be identical zero, but this is not what we want. The theorem rather says
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that the first and second arguments of Q, ze−cy and (1− z)e−cx depend on each
other (locally near each point (x0,y0) of the liquid region) in an analytic way.1

The last property is easy to make precise in the case when the dependencies
(x,y)→ ze−cy and (x,y)→ (1− z)e−cx are non-degenerate; this is what we do
in the proof.

For the applications, the statement of Theorem 10.1 should be treated as an
ansatz: one should try to find a solution to (10.1) by searching for an analytic
function Q. Often, Q will end up being very nice, like a polynomial in Theorem
10.7 below.

If we knew the exact shape of the liquid region, then once Q is found, it
automatically provides the desired limit shape (maximizer) due to convexity
of the functional in the variational problem of Theorem 5.15, which guar-
antees that a solution to the Euler-Lagrange equations is the global maxi-
mizer. However, the Euler–Lagrange equations or the complex Burgers equa-
tion do not tell anything about the behavior (extremality) in the frozen regions,
and therefore, additional checks are necessary there after Q is identified, see
[AstalaDusePrauseZhong20] and, in particular, Theorem 8.3 there for a more
detailed discussion.

Sketch of the proof of Theorem 10.1 Take z(x,y) solving (10.1) and define
W = ze−cy and V = (1− z)e−cx. What we need to prove is that W (V ) is an
analytic function, in other words, W (V ) should satisfy the Cauchy-Riemann
equations. This is equivalent to showing

∂W
∂V̄

= 0.

Here we use the following notation: for a function f (z) : C→C with z = x+ iy
we denote

∂ f
∂ z

=
1
2

(
∂ f
∂x

− i
∂ f
∂y

)
and

∂ f
∂ z̄

=
1
2

(
∂ f
∂x

+ i
∂ f
∂y

)
.

The following lemma is the first step in computation.

Lemma 10.3. The Jacobian of the map (x,y)→ (V,W ) vanishes, i.e.

WxVy =VxWy.

1 Formally, this is a weaker property since, in principle, local analytic dependence does not
imply the existence of a global dependence as in (10.2), see the discussion in
[AstalaDusePrauseZhong20, Remark 3.10].
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Proof We have

WxVy = (zxe−cy)(−zye−cx)

and

VxWy = (−zxe−cx − c(1− z)e−cx)(zye−cy − cze−cy).

Therefore, subtracting and using (10.1) we find

VxWy −WxVy = e−cxe−cy(c2z(1− z)− czy(1− z)+ czxz) = 0,

as desired. The cancellation may seem (almost) magical; however the defini-
tions of W and V were chosen by the method of characteristic essentially to
have this property.

Now consider W (V ) =W (V (x,y)) =W (x,y). Using the chain rule, we find

∂W
∂x

=
∂W
∂V

(
∂V
∂x

)
+

∂W
∂V̄

(
∂V̄
∂x

)
and

∂W
∂y

=
∂W
∂V

(
∂V
∂y

)
+

∂W
∂V̄

(
∂V̄
∂y

)
.

Multiplying the first equation by ∂V
∂y and subtracting the second equation mul-

tiplied by ∂V
∂x , we get a restatement of Lemma 10.3:

0 =
∂W
∂x

∂V
∂y

− ∂W
∂y

∂V
∂x

=
∂W
∂V̄

(
∂V̄
∂x

∂V
∂y

− ∂V̄
∂y

∂V
∂x

)
.

This proves the desired Cauchy–Riemann relation ∂W
∂V̄ = 0 unless we have that(

∂V̄
∂x

∂V
∂y

− ∂V̄
∂y

∂V
∂x

)
= 0. (10.3)

The expression (10.3) coincides with the Jacobian of the transformation
(x,y)→V from (two-dimensional) liquid region to complex numbers (another
two-dimensional real space) so as long as the mapping is not degenerate we
are done. Note that in a similar manner we can demonstrate that ∂V

∂W̄ = 0 given
a similar non-degeneracy for the map (x,y)→W .

In other words, we have found Q(·, ·), which is analytic at any pairs of com-
plex points (V (x,y),W (x,y)), where at least one of the maps (x,y)→ V (x,y),
(x,y)→W (x,y) is non-degenerate. In a similar way, if we assume that (x,y)→
αV (x,y)+βW (x,y) is non-degenerate near (x0,y0) for some numbers α and
β , then the possibility of choosing an analytic Q would also follow.
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Theorems 9.8, 10.1 say that the map (x,y) 7→ (ze−cy,(1− z)e−cx) sends the
liquid region to a one-dimensional complex Riemann surface in C2. In fact,
this map is a bijection with its image, and therefore, it can be used to equip the
liquid region with the structure of a one-dimensional complex manifold.

Lemma 10.4. In the liquid region, given (W,V ) = (ze−cy,(1−z)e−cx) one can
recover (x,y)

Proof Note that given W,V one can immediately recover arguments of the
complex numbers z and (1− z) as x,y are real. Given this, one can recover
z and since z ̸= 0,1, as we are in the liquid region, we can therefore recover
x,y.

Next, we examine the c = 0 case.

Theorem 10.5. For a solution z(x,y) of the complex Burgers equation with
c = 0 as in (9.7) there exists an analytic Q0 such that

Q0(z) = yz+ x(1− z). (10.4)

Remark 10.6. The discussion of Remark 10.2 also applies to Theorem 10.5.
In addition, a solution z = const is possible for (9.7) with specific boundary
conditions. This corresponds to sending Q0 to infinity in (10.4), so that the
right-hand side becomes irrelevant.

The arguments leading to Theorem 10.5 are similar to the c ̸= 0 case and we
omit all of this analysis except for the basic computation through the charac-
teristics method.

The characterstic curves for

−zx

1− z
+

zy

z
= 0

solve
dx
dt

(z−1) =
dy
dt

(z)

and z is being kept constant. This gives dx
dy = z

z−1 leading to the parameteriza-
tion of the curves by two arbitrary constant k1, k2 via

x = y
z

z−1
+ k1, z = k2.

This is equivalent to x(1− z)+ yz = k1(1− k2) = Q0(z) of (10.4), where Q0

expresses the dependence between k1 and k2.
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Figure 10.1 A qVolume–random tiling of 70×90×70 hexagon with q = 0.96.

10.2 Algebraic solutions

Theorems 10.1 and 10.5 claim the existence of an abstract Q which describes
the liquid region. But how do we determine such Q? The following theorem of
Kenyon and Okounkov shows that in the case of polygonal domains that Q is
a polynomial.

Theorem 10.7 ([KenyonOkounkov05]). Take a polygonal region R with 3d
sides parallel to the coordinate direction repeated in cyclic order. (R is simply
connected.) Then Q in Theorem 10.1 is a polynomial of degree (at most) d with
real coefficients.

We sketch a plan of the proof and leave to the reader to figure out the neces-
sary (highly non-trivial) details, following [KenyonOkounkov05].

• Formulate the necessary properties that Q should have. “Q is given by a
cloud curve”. One of the properties is that the tangent vector should rotate d
times as we move around the boundary of the frozen region.

• Study c = −∞ case. In this case the limit shape is given by the tiling with
the minimal height function.

• Obtain a solution (i.e. the function Q) for finite c through a continuous de-
formation from the c = −∞ case, preserving the properties from the first
step.

• Prove that the resulting Q is not only a solution to the Euler–Lagrange equa-
tions but a genuine maximizer. This check is tricky in the frozen regions, as
the Burgers equation no longer holds there.

Let us explain how the boundary of the frozen region can be computed using
Q. In order to do this, we note that the boundary corresponds to real z such
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that Q(ze−cy,(1− z)e−cx) = 0. Since Q has real coefficients, z is a solution,
so is z̄. Hence, the frozen boundary corresponds to the double real roots of
Q. We conclude that the frozen boundary is the algebraic curve in e−cx, e−cy

describing the values when Q(ze−cy,(1− z)e−cx) has a double root. We expect
this curve to be tangent to all sides of the polygon that we tile — this is often
enough to uniquely fix Q.

Let us now specialize to the case of a hexagon. Then, by Theorem (10.7), Q
must be quadratic; that is, it has the form

Q(V,W ) = a+bV + cW +dV 2 + eVW + fW 2,

and we need to substitute W = ze−cy and V =(1−z)e−cx. This gives a quadratic
equation in z. The boundary curve is then the curve where discriminant of Q
vanishes, which is a fourth order polynomial equation in e−cx,e−cy. Since this
curve needs to be tangent to the six sides of the hexagon2 this gives 6 equations
in 6 unknowns a,b,c,d,e, f . Solving them, one finds Q.

Exercise 10.8. Find Q explicitly for given proportions of the hexagon.

The result of a computer simulation of the q–weighted random tilings of the
hexagon and corresponding theoretical boundary of the frozen boundary are
shown in Figure 10.1. Random tilings were sampled using the algorithm from
[BorodinGorinRains09]; another algorithm will be discussed in Lecture 25.

10.3 Limit shapes via quantized Free Probability

Let us now present another approach to computations of the limit shapes of
uniformly random lozenge tilings. Take any large domain, which does not have
to be polygonal, but we assume that its boundary has one vertical segment with
two adjacent diagonal segments forming 2π/3 angle with the vertical one, as
in Figure 10.2.

The combinatorics implies that in a vicinity of this vertical segment the hor-
izontal lozenges interlace and at a vertical line at distance N from this seg-
ment we observe N lozenges . Let their (random) positions be x1, . . . ,xN in
the coordinate system with zero at the lower boundary of the domain. We en-
code these lozenges through their empirical measure µN and its Stieltjes

2 This tangency can be clearly seen in computer simulations; it is rigorously proven by a
different method in [BorodinGorinRains09]. Also the tangency condition is an essential
component of the construction of Q in [KenyonOkounkov05], see Theorem 3 there.
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0

3

N

Figure 10.2 A part of a domain consisting of a vertical segment and two adjacent
straight diagonal segments. At distance N from the left boundary we observe N
horizotnal lozenges.

transform GµN (z):

µN =
1
N

N

∑
i=1

δxi/N , GµN (z) =
ˆ
R

1
z− x

µN(dx) =
1
N

N

∑
i=1

1
z− xi/N

.

Now assume that the domains start to grow and set N = ⌊αL⌋. Here L is the
linear size of the domain and parameter α > 0 is chosen so that αL remains
smaller than the length of the diagonal sides adjacent to the vertical segment
— this choise guarantees that we still have N horizontal lozenges at distance
N from the left boundary.

The limit shape theorem for uniformly random lozenge tilings (which we
established through the variational principle in Lectures 5-8) implies the con-
vergence

lim
L→∞

µ⌊Lα⌋ = µα , lim
L→∞

Gµ⌊Lα⌋(z) = Gµα
(z) =

ˆ
R

1
z− x

µα(dx),

where µα is a deterministic measure, whose density encodes the asymptotic
proportion of lozenges along the vertical line at distance α from the left
vertical boundary of the rescaled domain. Note that µα can be directly related
to the gradient of the limiting height function in vertical direction. Complex
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variable z in Gµα
(z) should be chosen outside the support of µα , so that the

integral is non-singular.
Let us emphasize that xi and the total weight of the measure are rescaled by

N, rather than by L in the definition of µN — in other words, this rescaling
depends on the horizontal coordinate α , which is slightly unusual.

It turns out that the measures µα are related to each other in a simple way.

Theorem 10.9 ([BufetovGorin13]). Define the quantized R–transform through

Rquant
µα

(z) = G(−1)
µα

(z)− 1
1− e−z .

Then for all α1,α2 > 0, for which the measures µα1 ,µα2 are defined, we have

α1Rµα1
(z) = α2Rµα2

(z). (10.5)

Remark 10.10. By G(−1)
µα

(z) we mean the functional inverse: the function
Gµα

(z) behaves as 1
z as z → ∞, hence, we can define an inverse function in

a neighborhood of 0, which has a simple pole at 0. Subtraction of 1
1−e−z can-

cels this pole and Rquant
µα

(z) is an analytic function in a complex neighborhood
of 0.

A modification of Rquant
µ (z) given by Rµ(z) := G(−1)

µ (z)− 1
z is known in

the Free Probability theory as the Voiculescu R–transform, see [Voiculescu91,
VoiculescuDykemaNica92, NicaSpeicher06]. One standard use of the R–
transform is to describe how the spectrum of large random Hermitian matri-
ces changes when we add independent matrices or multiply them by projec-
tors. [BufetovGorin13] demonstrated that Rquant

µ (z) replaces Rµ(z) when we
deal with discrete analogues of these operations: compute tensor products and
restrictions of the irreducible representations of unitary groups. The latter op-
eration turns out to intimately related to combinatorics of lozenge tilings (cf.
Proposition 19.3 in Lecture 19 below), hence, the appearance of Rquant

µ (z) in
Theorem 10.9. We discuss the link between tilings and random matrices in
more details in Lectures 19 and 20.

From the computational point of view, Theorem 10.9 leads to reconstruction
of all µα (and hence of the limit shape) once such measure is known for some
fixed choice of α . The following exercise provides an example where such
approach is useful.

Exercise 10.11. Consider the domain of Figure 10.3, which is a trapezoid
with N teeth sticking out of the right boundary at every second positions. By
definition as N → ∞ the empirical measures on the right boundary converge
to µ1 which is a uniform measure on [0,2]. Use this observation together with
(10.5) to compute the limit shape as N → ∞.
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N − 1

N

N

2N − 1

Figure 10.3 The half-hexagon domain: trapezoid with N teeth sticking to the right
at every second positions.

In particular, Exercise 10.11 recovers the result of [NordenstamYoung11]
which shows that the frozen boundary for this domain is a parabola.

The complex Burgers equation can be also extracted from the result of The-
orem 10.9. The following exercise is close in spirit to the computations in
[Gorin16, Section 4].

Exercise 10.12. Treating the formula (10.5) as a definition of the measures µα

(assuming one of them to be given) show that the limit shape of tilings encoded
by these measures satisfies the complex Burgers equation (9.7).

Hint: The density of the measure µα can be reconstructed as the imagi-
nary part of the Stieltjes transform Gµα

(z) as z approaches the real axis. On
the other hand, in the definition of the Kenyon–Okounkov complex slope the
density p becomes the argument of a certain complex number. This suggest
reconstruction of complex slope by exponentiating the Stieltjes transform.

We end this lecture by a remark that in the random matrix theory to which
we got linked through R–transforms, the complex Burgers equation has also
shown up, see [Matytsin93, Guionnet02], which were even before the work of
[KenyonOkounkov05].



Lecture 11: Global Gaussian fluctuations
for the heights

11.1 Kenyon-Okounkov conjecture

In previous lectures we found that the height function of random tilings for an
arbitrary domain R converges in probability to a deterministic limit shape as
the size of the domain grows to infinity

1
L

H(Lx,Ly) L→∞−−−→ h(x,y). (11.1)

The limit shape h(x,y) is a maximizer of a functional of the form¨
R

S(∇h)dxdy, (11.2)

and can be also identified with solutions to the complex Burgers equation on
a complex function z(x,y), where z encodes the gradient ∇h through a certain
geometric procedure.

In this section we start discussing the asymptotic fluctuations of the random
height function around its expectation. The fluctuations are very different in
the liquid and frozen regions. In the latter, the height function is flat with over-
helming probability already for finite values of L and hence, there are essen-
tially no fluctuations. For the former, the situation is much more interesting.

Conjecture 11.1 ([KenyonOkounkov05], [Kenyon04]). Consider qVolume–
weighted random tilings in domain R of linear size L and with q = exp(c/L).
In the liquid region L ,

H(Lx,Ly)−E[H(Lx,Ly)] d−−−→
L→∞

GFF, (11.3)

Where GFF is the Gaussian Free Field on L with respect to the complex struc-

92
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ture given by ze−cy and with Dirichlet boundary conditions. The GFF is nor-
malized, so that

Cov
(
H(Lx,Ly),H(Lx′,Ly′)

)
≈− 1

2π2 lnd
(
(x,y),(x′,y′)

)
(11.4)

for (x,y) ≈ (x′,y′), with d(·, ·) denoting the distance in the local coordinates
given by the complex structure, and with normalization for the definition of the
height function as in the discrete version of (9.3), (9.4).

In this lecture we aim to define and understand the limiting object — the
Gaussian Free Field. The next lecture contains a heuristic argument towards
the validity of Conjecture 11.1. Later on, in Lectures 22 and 23 we present a
proof of a particular case of this conjecture for random plane partitions.

For general domains R, Conjecture 11.1 is a major open problem in the
area. Yet, there are several approaches to its proofs for particular classes of
domains.

• One approach was suggested in [Kenyon99], [Kenyon00], [Kenyon04]. The
correlation functions of tilings are minors of the inverse Kasteleyn ma-
trix, which can be thought of as a discrete harmonic function. On the other
hand, the covariance of GFF is a continuous harmonic function. Thus, one
can be treated as a discretization of the other, which allows to use various
convergence results from the analysis. Techically, two challenging points
of such approach is to deal with non-trivial complex structure and with
frozen boundaries. Despite some progress (cf. [Russkikh16], [Russkikh18],
[BerestyckiLaslierRay16]), the proofs along these lines until very recently
were restricted to a special class of domains, which, in particular, have no
frozen regions. At the time of writing of this book new developments ap-
peared in [ChelkakLaslierRusskikh20], [ChelkakRamassamy20]: the cen-
tral idea is to construct a discrete approximation of the limiting complex
structure using the origami maps. There is a hope to reach a resolution of
Conjecture 11.1 through this approach in the future.

• The second approach (see [BorodinFerrari08], [Petrov12b]) is to use a dou-
ble contour integral representation for the inverse Kasteleyn matrix, and then
apply the steepest descent method for the asymptotic analysis. We will dis-
cuss some components of this method in Lectures 14-16. This method is
naturally restricted to the domains, where such contour integral representa-
tions are available. Yet, such domains include a class of specific polygons
with arbitrary many sides.

• The third approach combines a gadget called “Discrete Loop Equations”
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with the idea of applying differential/difference operators to inhomoge-
neous partition functions to extract asymptotic information. We discuss dis-
crete loop equations (cf. [BorodinGorinGuionnet15]) in Lecture 21 and the
use of difference operators for GFF asymptotics (cf. [BorodinGorin13],
[BufetovGorin16], [Ahn18]) in Lectures 22-23. Tilings of non-simply
connected domains with holes were analyzed through this approach in
[BufetovGorin17].

• In some case, the marginal distributions of random tilings can be identified
with discrete log-gases, as we will compute in Lecture 19. Yet another ap-
proach to global fluctuations exists in this case and links it to the asymptotic
of recurrence coefficients of orthogonal polynomials, see [BreuerDuits13],
[Duits15].

We remark that our toy example of the uniform measure on tilings of the
hexagon is covered by each of the last three methods.

11.2 Gaussian Free Field

We start our discussion of Conjecture 11.1 by defining the (two-dimensional)
Gaussian Free Field in a domain D ⊂ C in the standard complex structure of
C.

Take the Laplace operator on D

△=
∂ 2

∂x2 +
∂ 2

∂y2

∣∣∣∣
(x,y)∈D

.

We consider inverse operator −△−1 (note the minus sign) taken with Dirich-
let (i.e., identical zero) boundary conditions on the boundary ∂D . △−1 is an
integral operator (with respect to the Lebesgue measure on D), and its kernel
is known as the Green’s function. Equivalently, we define:

Definition 11.2. The Green’s function GD (z,z′) on D with Dirichlet boundary
condition is a function G : D ×D → R of two complex arguments z = x+ iy,
z′ = x′+ iy′, such that

△GD (z,z′) =−δ (z = z′),

where △ can be applied either in z or in z′ variables, and

GD (z,z′) = 0, if either z ∈ ∂D or z′ ∈ ∂D .

We remark without proof that for (non-pathological D) the Green’s func-
tion exists, is unique and symmetric, i.e., GD (z,z′) = GD (z′,z). When D is
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unbounded, one should add a (at most) logarithmic growth condition at ∞ to
the definition of the Green functions.

Exercise 11.3. Suppose that D is the upper halfplane H = {z ∈ C | ℑz > 0}.
Show that in this case

GH(z,z′) =− 1
2π

ln
∣∣∣∣ z− z′

z− z̄′

∣∣∣∣. (11.5)

For general domains, there is often no explicit formula for the Green’s func-
tion, but locally such function always grows like a logarithm of the distance:

GD (z,z′)∼− 1
2π

ln |z− z′| for z ≈ z′. (11.6)

We can now present an informal definition of the Gaussian Free Field.

Definition 11.4. The Gaussian Free Field on D is a random Gaussian function
GFFD : D → R such that

E
[
GFFD

]
= 0

E
[
GFFD (z)GFFD (z′)

]
= GD (z,z′)

However, there is a problem with this definition, if z = z′, then GD (z,z′) =
+∞, hence, the values of GFFD have infinite variance. This means that GFFD

is not a function, but a generalized function: we can not ask about the values of
this random function at a point, but we can compute its integrals (or pairings)
with reasonably smooth test functions.

Definition 11.5. For a test-function u : D → R, such that¨
D

u(z)G(z,z′)u(z′)dxdydx′ dy′ < ∞, z = x+ iy, z′ = x′+ iy′,

we define a pairing of GFFD with u, as a mean zero Gaussian random variable
⟨GFFD ,u⟩ with variance

E
[
⟨GFFD ,u⟩⟨GFFD ,u⟩

]
=

¨
D×D

u(z)G(z,z′)u(z′)dxdydx′ dy′.

If we take several such u’s, then the pairings are jointly Gaussian with covari-
ance

E
[
⟨GFFD ,u⟩⟨GFFD ,v⟩

]
=

¨
D×D

u(z)G(z,z′)v(z′)dxdydx′ dy′. (11.7)

Informally, one should think about the pairings as integrals

⟨GFFD ,u⟩=
¨

D
GFFD (z, ·)u(z)dxdy. (11.8)
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From this point of view, one can take as u a (reasonably smooth) measure rather
than a function.

By invoking the Kolmogorov consistency theorem, GFFD is well-defined as
a stochastic process through Definition 11.5, if we show that the joint distri-
butions appearing in this definition are consistent. Since they are all mean 0
Gaussians, it suffices to check that the covariance is positive-definite.

Lemma 11.6. The covariance of ⟨GFFD ,u⟩ given by (11.7) is positive-definite.

Proof We need to check that the operator with kernel GD is positive-definite,
which is equivalent to −△ being positive definite. The latter can be checked
integrating by parts to reduce to the norm of the gradient:

⟨−△u,u⟩=
¨

D

(
−△u(z)

)
u(z)dxdy =

¨
D
||∇u(z)||2L2 dxdy ≥ 0.

Remark 11.7. A better alternative to Definition 11.5 would be to define a func-
tional space (like the space of continuous functions in the definition of the
Brownian motion) to which the GFFD belongs. We refer to [Sheffield03b],
[Dubedat07, Section 4], [HuMillerPeres09, Section 2], [WernerPowell20] for
more details on the definition of the Gaussian Free Field.

An important property of the Gaussian Free Field is its conformal invari-
ance.

Recall that a map φ : D →D ′ is called conformal if it is holomorphic, bijec-
tive and its inverse is also holomorphic. A direct computation with Laplacian
△ leads to the conclusion that the Green’s function is preserved under confor-
mal bijections, thus implying the following result:

Exercise 11.8. If φ is a conformal bijection of D with D ′, then

{GFFD ′(φ(z))}z∈D ′
d
= {GFFD (z)}z∈D .

For instance, in the case when the domain is upper half-plane, D =D ′ =H,
the conformal bijections are Moebius transformations

z 7→ az+b
cz+d

, a,b,c,d ∈ R,

and one readily checks that the formula (11.5) is unchanged under such trans-
formations.

Another remark is that if we follow the same recipe for defining the Gaussian
Free Field in dimension 1, rather than 2, then we get the Brownian bridge.

Lemma 11.9. Consider the standard Brownian bridge,

B : [0,1]→ R , B(0) = B(1) = 0, (11.9)
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which can be defined as the Brownian motion conditioned to be at 0 at time 1,
or as a centered Gaussian process with covariance function

EBsBt = C (s, t) = min(t,s)(1−max(t,s)), 0 ≤ t,s ≤ 1. (11.10)

Then the function C (s, t) is the kernel of the (minus) inverse Laplace operator
on the interval [0,1] with Dirichlet boundary conditions at 0 and 1.

Proof Since the Laplace operator in dimension 1 is simply the second deriva-
tive, and the vanishing of C (s, t) at t = 0, s = 0, t = 1, and s = 1 is clear, it
suffices to check that

∂ 2

∂ t2 C (s, t) =−δ (s = t). (11.11)

We compute

∂C (s, t)
∂ t

=

{
1− s , t < s,

−s , t ≥ s.

Differentiating, we get (11.11).

We now give another informal definition of the Gaussian Free Field. Accord-
ing to it, GFFD is a probability measure on functions f in D with 0 boundary
conditions with density

ρ( f )∼ exp
(
− 1

2

ˆ
D
||∇ f ||2L2 dxdy

)
. (11.12)

The formula (11.12) is based on the well-known computation for the finite-
dimensional Gaussian vectors:

Exercise 11.10. For a Gaussian vector v ∈ RN with probability density

ρ(v) =

√
detB√
(2π)N

exp
(
−1

2
⟨v,Bv⟩

)
,

the covariance matrix E[vvT ] is equal to B−1.

Since the covariance for the GFFD is given by the (minus) inverse Laplace
operator, the matrix B appearing in its density should be identified with −△.
Integrating by parts, we then arrive at the formula (11.12). We will repeatedly
use (11.12) in the heuristic arguments of the following lectures. However, let us
emphasize, that the precise mathematical meaning of (11.12) is very tricky: it
is unclear with respect to which underlying measure the density is computed,
and also the symbol ||∇ f ||2L2 is not well-defined for non-smooth f (and we
already know that GFF is not smooth, even its values at points are not properly
defined).
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11.3 Gaussian Free Field in Complex Structures

The Gaussian Free Field appearing in Conjecture 11.1 is defined using the
complex structure ze−cy rather than the standard complex structure of the plane.
In this section we explain the meaning of this statement in two ways.

For the first approach, recall the results of Theorems 9.8, 10.1 and Lemma
10.4. There exists an analytic function Q(v,w), such that the map

(x,y) 7→ (ze−cy,(1− z)e−cx) (11.13)

is a bijection of the liquid region L with (a part) of the curve Q(v,w) = 0 in
C2. This part, being embedded in C2 has a natural local coordinate system on
it; in particular, we can define the gradient and the Laplace operator on the
curve Q(v,w) = 0 and then use one of the definitions of GFF from the previous
section directly on this curve. Then we pullback the resulting field onto the
liquid region L using the map (11.13). This is the desired field on Conjecture
11.1.

For the second approach, given the liquid region L and complex slope z =
z(x,y) on it we define a class of analytic functions. We give two closely related
definitions:

Definition 11.11. f : L → C is analytic with respect to ze−cy if for each
(x0,y0) ∈ L , there exists a holomorphic function g of complex variable, such
that

f (x,y) = g(ze−cy) (11.14)

in a small neighborhood of (x0,y0).

Definition 11.12. f : L →C is analytic with respect to ze−cy if f satisfies the
first order PDE:

fy

z
− fx

1− z
= 0 (11.15)

The complex Burgers equation of Corollary 9.6 implies that ze−cy itself sat-
isfies (11.15): (

ze−cy
)

y

z
−
(
ze−cy

)
x

1− z
= 0. (11.16)

This can be used to show that (11.14) implies (11.15). If ze−cy is locally in-
jective, then we can also argue in the opposite direction: (11.15) implies the
Cauchy–Riemann relations for the function g in (11.14) and two definitions
become equivalent.

All the above approaches accomplish the same goal: they create a structure
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of a one-dimensional complex manifold (Riemann surface) on the liquid region
L . The general Riemann Uniformization Theorem says that all Riemann sur-
faces of the same topology are conformally equivalent. In our case it specifies
to:

Theorem 11.13. There exists a conformal bijection Ω : L 7→ D with some
domain D ⊂ C, where D is equipped with the standard complex structure of
C, and the liquid region L is equipped with the complex structure of ze−cy,
i.e., Ω is analytic by Definitions 11.11, 11.12.

In other words, Ω is an identification of (part of) the curve {Q(v,w) = 0} ⊂
C2 with a part of the plane C.

Definition 11.14. The Gaussian Free Field in the liquid region L is defined
through

GFFL (x,y) = GFFD (Ω(x,y)).

This means, that for test functions u on L , its pairings with the Gaussian Free
Field ⟨GFFL ,u⟩ are jointly Gaussian with covariance

E
[
⟨GFFL ,u⟩⟨GFFL ,v⟩

]
=E

[
⟨GFFD , [u◦Ω

−1]·J
Ω−1⟩⟨GFFD , [u◦Ω

−1]·J
Ω−1⟩

]
=

ˆ ˆ
D×D

[u◦Ω
−1](z)GD (z,z′)[v◦Ω

−1](z′)J
Ω−1(z)JΩ−1(z′)dxdydx′ dy′,

(11.17)

where J
Ω−1 is the Jacobian of the map Ω−1 and z = x+ iy, z′ = x′+ iy′.

Let us emphasize that under the map Ω, GFF is transformed as a function
(rather than a distribution or measure); this again indicates that the test func-
tions u should be treated as measures u(x+ iy)dxdy.

One might be worried that the map Ω in Theorem 11.13 is not unique, as
it can be composed with any conformal bijection φ : D 7→ D ′. However, the
conformal invariance of the Gaussian Free Field of Exercise 11.8 guarantees
that the distribution of GFFL does not depend on the choice of Ω.

Finally, note that (11.4) differs from (11.6) by a factor of π . This is not
a typo, but rather a universal constant appearing in tilings. We will see this
constant appearing in the computation in the next section — the conceptual
reasons for the particular value of the constant for random lozenge tilings
are not completely clear to us at this point. The same factor π appears in
[KenyonOkounkovSheffield03, Theorem 4.5, see also Section 5.3.2] as a uni-
versal normalization prefactor for random tilings with periodic weights.



Lecture 12: Heuristics for the Kenyon-
Okounkov conjecture

This lecture focuses on a heuristic argument for the Kenyon-Okounkov con-
jecture on the convergence of the centered height function to the Gaussian
Free Field. We concentrate only on the case c = 0, i.e., the uniform mea-
sure, here. By the variational principle [CohnKenyonPropp00], in the limit
most height functions will be close to the unique maximizer h∗, which we
have pinned down (somewhat) explicitly in Lecture 9 by showing that the nor-
malized shifted height function h̃∗ satisfies (h̃∗x, h̃∗y) =

1
π
(arg(z),−arg(1−z))

where z = z(x,y) satisfies the transformed Burgers equation

− zx

1− z
+

zy

z
= 0. (12.1)

The Kenyon-Okounkov conjecture focuses on the fluctuations about this limit
shape and we repeat it now in the c = 0 case.

Conjecture 12.1 ([KenyonOkounkov05], [Kenyon04]). Take the same setup
as in Theorem 5.15: let R∗ be a domain in R2 with piecewise-smooth boundary
∂R∗ and a specified boundary height function hb. Take a sequence of domains
RL for a sequence L → ∞, such that ∂RL

L → ∂R∗ and the boundary height func-
tions converge as well. Now for each L consider the uniform probability mea-
sure on tilings of RL. Finally, let H(Lx,Ly) be the value of the height function
of a random tiling of RL at (Lx,Ly). Then for the points (x,y)∈ R∗ in the liquid
region, as L → ∞, the centered heights H(Lx,Ly)−E[H(Lx,Ly)] converge in
distribution to the Gaussian free field in complex structure given by1 z.

Remark 12.2. Let us clarify the normalizations. If we choose the (modi-
fied) definition of the height function as in (9.3), (9.4), then

√
π(H(Lx,Ly)−

1 See previous lecture for a precise description of what this means.
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E[H(Lx,Ly)]) should asymptotically behave as GFF of Definition 11.14 with
short-scale behavior of the covariance as in (11.6).

From here on, we will denote the liquid region by L . Recall from previous
lectures (see Theorem 8.4) that for large L, for a height function H on RL,

Pr(H)≈ exp
(

L2
¨

L
S
(

∇H
L

)
dxdy

)
(12.2)

(note that Pr(H) is really describing not a probability but a probability density
at H in the space of height functions, i.e. the probability of being close to H).

Since we would like to study limiting fluctuations about h∗, we can let
H = L

(
h∗+L−1g

)
, where g is a random function supported in the liquid re-

gion which represents the fluctuations about the limiting height function h∗.
Plugging this H into (12.2) yields

Pr(h∗+L−1g)≈ exp
(

L2
¨

L
S(∇h∗+L−1

∇g)dxdy
)
. (12.3)

We now Taylor expand the above integrand f (L−1) := S(∇h∗+L−1∇g) with
respect to the variable L−1,

f (L−1) = f (0)+ f ′(0)L−1 +
1
2

f ′′(0)L−2 + (lower order terms).

Using the chain rule, we have

f (0) = S(∇h∗),

f ′(0) = S1(∇h∗)gx +S2(∇h∗)gy,

where S1,S2 are the partial derivatives of S with respect to its first and second
coordinate, viewing S as a function of two arguments h∗x ,h

∗
y–the two coordi-

nates of ∇h∗. We also have

f ′′(0) = S11(∇h∗)(gx)
2 +2S12(∇h∗)gxgy +S22(∇h∗)(gy)

2.

The first term yields an L-dependent normalizing constant exp
(
L2˜

L S(∇h∗)
)

which does not affect the probabilities. Because H = Lh∗ minimizes¨
R∗

S
(

∇H
L

)
dxdy,

it follows that
d
dt

∣∣∣∣
t=0

¨
S(∇(h∗+ tg))dxdy = 0; (12.4)

this is exactly what was used to derive the Euler-Lagrange equations. Hence the
integral of the f ′(0)L−1 term vanishes. The L−2 in the quadratic term cancels
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with the L2 outside the integral in (12.3), yielding a nonzero probability density
function at g.

Thus

Pr(h∗+L−1g)≈ exp
(

L2
¨

L
S(∇h∗+L−1

∇g)dxdy
)

= exp

(
1
2

¨
L

[
S11(∇h∗)(gx)

2 +2S12(∇h∗)gxgy +S22(∇h∗)(gy)
2]dxdy

+ (lower order)

)
. (12.5)

Having completed this heuristic derivation, we can now (rigorously) show that
the right-hand side of (12.5) is exactly what we would get if the height func-
tion fluctuations converged to a Gaussian free field. This is the content of the
following lemma.

Lemma 12.3. With the setup above, we have
¨

L

[
S11(∇h∗)(gx)

2 +2S12(∇h∗)gxgy +S22(∇h∗)(gy)
2]dxdy

=−2πi
¨

L

dg
dz

dg
dz̄

dz∧dz̄. (12.6)

Before proving this lemma, we show why when combined with (12.5) it
shows that the fluctuations converge to a Gaussian free field. Recall from
(11.12) in Lecture 11 (with additional π–factor, as discussed at the end of
that lecture) that the Gaussian free field on a domain D may be thought of as a
probability measure on functions on D which vanish on ∂D, with density

ρ( f )∼ exp
(
−π

2

¨
D
||∇ f ||2dx̃dỹ

)
. (12.7)

Since dz = dx̃+ idỹ and dz̄ = dx̃− idỹ,

dz∧dz̄ =−2idx̃∧dỹ. (12.8)

Similarly,

dg
dz

=
1
2

(
∂g
∂ x̃

− i
∂g
∂ ỹ

)
, and

dg
dz̄

=
1
2

(
∂g
∂ x̃

+ i
∂g
∂ ỹ

)
, (12.9)

so that
dg
dz

dg
dz̄

=
1
4
||∇g||2. (12.10)

Making these substitutions in Lemma 12.3 and combining with (12.5), we have
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<(z)

=(z)

0 1

z

πp2

|1− z|
|z|

πp1

πp3

Figure 12.1 Correspondence between complex slope z and local proportions of
lozenges identified with angles of a triangle.

that the probability density on height function fluctuations g converges to the
one in (12.7). This completes the heuristic argument for Gaussian free field
fluctuations; the remainder of this lecture will be spent proving Lemma 12.3.

Proof of Lemma 12.3 First, recall from Lecture 9 that

S1(p1, p2, p3) = ln |1− z|, (12.11)

S2(p1, p2, p3) = ln |z|, (12.12)

where z is the complex number encoding the probabilities p1, p2, and p3 =

1 − p1 − p2, which we use as shorthand for the three lozenge probabilities
p (·), p (·), and p (·).

From Figure 12.1 clearly z = |z|eiπ p1 , and by the law of sines

|z|
sinπ p2

=
1

sinπ(1− p1 − p2)
=

1
sinπ(p1 + p2)

.

Therefore,

z =
sinπ p2

sinπ(p1 + p2)
eiπ p1 .

It follows that

S12 =
∂ ln |z|
∂ p1

=
∂

∂ p1
(ln(sinπ p2)− ln(sinπ(p1 + p2))) =−π cotπ(p1 + p2),

S22 =
∂ ln |z|
∂ p2

= π cotπ p2 −π cotπ(p1 + p2),

S11 = π cotπ p1 −π cotπ(p1 + p2),
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where the formula for S11 follows by symmetry of p1 and p2 from the formula
for S22.2 Recall that g is a function of x,y and also of (z, z̄), hence,

∂g
∂x

=
dg
dz

zx +
dg
dz̄

z̄x, (12.13)

∂g
∂y

=
dg
dz

zy +
dg
dz̄

z̄y. (12.14)

Therefore, combining the equations above, we have

S11(gx)
2 +2S12gxgy +S22(gy)

2

= π

(
− cotπ(p1 + p2)

(
dg
dz

(zx + zy)+
dg
dz̄

(z̄x + z̄y)

)2

+ cotπ p1

(
dg
dz

zx +
dg
dz̄

z̄x

)2

+ cotπ p2

(
dg
dz

zy +
dg
dz̄

z̄y

)2
)
, (12.15)

which is a quadratic form in dg
dz and dg

dz̄ . We split our further calculation into
three claims.

Claim 12.4. The coefficient of
(

dg
dz

)2
in (12.15) is 0.

Proof The coefficient is

π(−(zx + zy)
2 cotπ(p1 + p2)+ z2

x cotπ p1 + z2
y cotπ p2). (12.16)

Since zy
z − zx

1−z = 0 by (12.1) we may write zx =
1−z

z zy in the above, yielding

πz2
y

(
− 1

z2 cotπ(p1 + p2)+

(
1− z

z

)2

cotπ p1 + cotπ p2

)
. (12.17)

Substituting

z =
sinπ p2

sinπ(p1 + p2)
eiπ p1 , 1− z =

sinπ p1

sinπ(p1 + p2)
e−iπ p2 (12.18)

(the latter of which is easy to see by a similar law of sines argument on Figure

2 Explicit formulas make is straightforward to show that det
(

S11 S12
S21 S22

)
= π2, which actually

holds for the surface tensions in greater generality, see [KenyonOkounkov03, Section 2.2.3].
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12.1) to (12.17) yields

πz2
y

z2 sin2
π(p1 + p2)

(
−cosπ(p1+ p2)sinπ(p1+ p2)+e−2πip2 cosπ p1 sinπ p1

+ e2πip1 cosπ p2 sinπ p2
)

=
πz2

y

2z2 sin2
π(p1 + p2)

(−sin2π(p1+ p2)+e−2πip2 sin2π p1+e2πip1 sin2π p2).

Splitting both complex exponentials into real and imaginary parts, the imagi-
nary parts on the second and third of the above terms cancel, and the real part
is

−sin2π(p1 + p2)+ sin2π p1 cos2π p2 + cos2π p1 sin2π p2 = 0

by the identity for sin(A+B). This proves the claim.

Claim 12.5. The coefficient of
(

dg
dz̄

)2
in (12.15) is 0.

Proof The proof is exactly the same as for Claim 12.4.

Claim 12.6. The coefficient of dg
dz

dg
dz̄ in (12.15), multiplied by dxdy as in the

integral in (12.6), is equal to −2i dg
dz

dg
dz̄ dz∧dz̄.

Proof First, since dz = zxdx+ zydy and dz̄ = z̄xdx+ z̄ydy,

dz∧dz̄ = (zxz̄y − z̄xzy)dx∧dy =
zyz̄y

zz̄
(z̄− z)dx∧dy, (12.19)

where in the last step we use (12.1) to get

zxz̄y − z̄xzy = zyz̄y

(
1− z

z
− 1− z̄

z̄

)
=

zyz̄y

zz̄
(z̄− z).

Thus it suffices to show the following:

π(−cotπ(p1 + p2) ·2(zx + zy)(z̄x + z̄y)+ cotπ p1 ·2zxz̄x + cotπ p2 ·2zyz̄y)

?
=−2πi

zyz̄y

zz̄
(z̄− z). (12.20)

Again using zx =
1−z

z zy to get a common factor of zyz̄y, and multiplying (12.20)
by zz̄ and dividing by 2πzyz̄y, we see (12.20) is equivalent to

− i(z̄− z) ?
=−cotπ(p1 + p2)+(1− z)(1− z̄)cotπ p1 + zz̄cotπ p2. (12.21)

Substituting (12.18), the LHS of (12.21) equals

2
sinπ p1 sinπ p2

sinπ(p1 + p2)
(12.22)
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and the right-hand side equals

− cotπ(p1 + p2)+
sin2

π p1

sin2
π(p1 + p2)

cotπ p1 +
sin2

π p2

sin2
π(p1 + p2)

cotπ p2.

(12.23)
Multiplying through by sin2

π(p1 + p2), we have that (12.20) is equivalent to

2sinπ(p1 + p2)sinπ p1 sinπ p2
?
=−cosπ(p1 + p2)sinπ(p1 + p2)

+ sinπ p1 cosπ p1 + sinπ p2 cosπ p2.

Moving all terms with sinπ(p1 + p2) to one side, this is the same as

sinπ(p1 + p2)(cosπ(p1 + p2)+2sinπ p1 sinπ p2)

?
= sinπ p1 cosπ p1 + sinπ p2 cosπ p2.

Using the sine double angle identity and the formula cos(A+B), the desired
identity becomes

sinπ(p1 + p2)(cosπ p1 cosπ p2 − sinπ p1 sinπ p2 +2sinπ p1 sinπ p2)

?
=

1
2

sin2π p1 +
1
2

sin2π p2. (12.24)

Since

cosπ p1 cosπ p2 − sinπ p1 sinπ p2 +2sinπ p1 sinπ p2

= cosπ p1 cosπ p2 + sinπ p1 sinπ p2 = cosπ(p1 − p2),

(12.24) becomes

2sinπ(p1 + p2)cosπ(p1 − p2)
?
= sin2π p1 + sin2π p2. (12.25)

This is true by simple trigonometry. We proved Claim 12.6 and hence Lemma
12.3.

Exercise 12.7. Repeat the heuristic derivation of the GFF–fluctuations for
general c ̸= 0, i.e. for the asymptotic of the qVolume–weighted lozenge tilings.

Remark 12.8. One expects that a similar computation (leading to
GFF heuristics) can be done for dimers with periodic weights of
[KenyonOkounkovSheffield03], however, this is not explicitly present in the
literature as of 2021. The arguments of [BorodinToninelli18, Section 3] might
turn out to be helpful for simplifying computations for such generalizations.
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Remark 12.9. Can we turn the heuristics of this lecture into a rigorous proof of
convergence of fluctuations to the GFF? This is very difficult and has not been
done. In particular, the very first step (12.2) had o(L2) error in the exponent,
while we would need o(1) error for a rigorous proof.



Lecture 13: Ergodic Gibbs translation-
invariant measures

So far we were discussing global limits of random tilings. In other words, we
were looking at a tiling of a large domain from a large distance, so that its
rescaled size remained finite. We now start a new topic of local limits. The aim
is to understand structure of a random tiling of a large domain near a given
point and at the local scale so that we can observe individual lozenges.

We consider a uniformly random tiling of a domain of linear size L and
would like to understand the limit as L → ∞ of the probability measure on
tilings near (0,0), cf. Figure 13.1. There are two basic questions:

1 How do you think mathematically about the limiting object?
2 What are all possible objects (probability measures?) appearing in the limit.

13.1 Tilings of the plane

As our domain becomes large, its boundary is no longer visible on the local
scale and we deal with lozenge tilings of the whole plane.

Let us identify a tiling with a perfect matching of black and white vertices
of the infinite regular hexagonal lattice (cf. Figure 13.2). Let us denote the set
of all perfect matchings through Ω.

By its nature, Ω is a subset of the set of all configurations of edges on the
lattice, Ω ⊂ 2edges. If we equip 2edges with the product topology and corre-
sponding Borel σ–algebra, then Ω is a measurable subset.

Hence, we can speak about probability measures on Ω, which are the same
as probability measures P on the Borel σ -algebra of 2edges, such that P(Ω) = 1.

We describe measures on Ω through their correlation functions.

108
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(0, 0)

L → ∞

Figure 13.1 Random tiling of a large domain seen locally near the point (0,0).

Definition 13.1. For n = 1,2, . . . , the n-th correlation function of a probability
measure P on Ω is a function of n edges of the grid:

ρn(e1,e2, . . . ,en) = P(e1 ∈ random matching, . . . , en ∈ random matching).

Lemma 13.2. The collection of all correlation functions ρn, n = 1,2, . . . ,,
uniquely determines the measure P.

Proof By the Caratheodory theorem, any probability measure on 2edges (and
hence, on Ω) is uniquely fixed by probabilities of cylinders, which are proba-
bilities of the kind

P(a collection of edges ∈ matching, another collection of edges /∈ matching).

These probabilities can be expressed as finite signed sums of the correlation
functions by using the inclusion-exclusion principle.

Exercise 13.3. Consider the following probability measure P: we choose one
of the three types of lozenges , , with probability 1/3 each and then take
the (unique) tiling of the plane consisting of only the lozenges of this type.
Compute correlation functions of P.
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Figure 13.2 Infinite regular hexagonal graph.

13.2 Properties of the local limits

When a measure P on Ω appears as a local limit of uniform measures on tilings
of planar domains, it is not an arbitrary measure. Let us list the main properties
that we expect such measure to have.

Definition 13.4. A measure P on Ω is called Gibbs, if for any finite subdomain
R (=collection of vertices), the conditional measure on perfect matching of R
given that all vertices of R are matched with vertices of R, but not outside (and
in addition one can condition on any event outside R), is the uniform measure.

The Gibbs property is a way to say that a measure is uniform for the situation
when the state space Ω is infinite. Clearly, uniform measure on tilings of any
finite domain is Gibbs, as the conditionings do not change uniformity. Hence,
we expect every local limit of tilings also to be Gibbs.

Definition 13.5. A measure P on Ω is called translation–invariant, if the cor-
relation functions are unchanged upon translations of all arguments by a same
vector.

Why do we expect local limits to be translation–invariant? This property
should be treated as some kind of a continuity statement. In general, the local
limit might depend on the macroscopic zoom-in position inside the domain.
However, if we believe that this dependence is continuous, then a shift by a
finite vector should become negligible in the large domain limit, and, hence,
should not change the local limit.
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Let us take two Gibbs translation–invariant measures µ1 and µ2. For every
0 < α < 1 the (convex) linear combination αµ1 +(1−α)µ2 is also a Gibbs
translational–invariant measure. Hence, such measures form a convex set.

Definition 13.6. A Gibbs translation–invariant measure is called ergodic, if
it is an extreme point of the set of all such measures, i.e. if it can not be de-
composed into convex linear combination of two distinct measures from this
class.

We abbreviate EGTI for ergodic Gibbs translation–invariant measures.

Lemma 13.7. If P is an EGTI probability measure, and A is a translation–
invariant event, then either P(A) = 0 or P(A) = 1.

Remark 13.8. By definition, a translation–invariant event in Ω is a measurable
subset of Ω, which is preserved under shifts of the entire grid. For example, if
Rn is a growing sequence of convex domains (say, rectangles) exhausting the
plane, then{

limsup
n→∞

number of horizontal edges of matching inside Rn

area of Rn
≤ 1

7

}
is a translationa–invariant event.

Proof of Lemma 13.7 We argue by contradiction. Assume that 0 < P(A)< 1
and let Ā be the complementary event. Define P1 to be the normalized restric-
tion of P onto the set A, i.e.,

P1(B) =
P(A∩B)
P(A)

.

Also define P2 to be the normalized restriction of P onto the set Ā, i.e.,

P2(B) =
P(Ā∩B)
P(Ā)

.

Then both P1 and P2 are Gibbs translation–invariant measures and

P(·) = P(A)P1(·)+P(Ā)P2(·).

Therefore, P is not ergodic.

Exercise 13.9. Show that the measure P of Exercise 13.3 is Gibbs and
translation–invariant, but not ergodic. Represent it is as a convex linear com-
bonation of EGTI measures.
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13.3 Slope of EGTI measure

Let us introduce an important numeric characteristic of an EGTI measure.

Definition 13.10. Slope of an EGTI probability measure on Ω is a triplet
(p , p , p ) of non-negative numbers summing up to 1, defined in either of
two equivalent ways:

1 For an arbitrary triangle of the grid (=vertex of the hexagonal lattice), p ,
p , p are probabilities that this trangle belongs to a lozenge of a corre-
sponding type (is matched to one of the three corresponding adjacent ver-
tices of another color).

2 If Rn is a growing sequence of convex domains (say, rectangles) exhausting
the plane, then

p = lim
n→∞

number of triangles inside Rn covered by lozenges of type
number of triangles inside Rn

,

(13.1)
and similarly for p and p .

Remark 13.11. The probabilities in the first definition of the slope do not de-
pend on the choice of the triangle due to the translation invariance of the mea-
sure.

The limits in (13.1) exist almost surely, which is a property that needs to
be proven. (If we know that the limits exist, they have to be deterministic due
to ergodicity.) One way to prove that the limits in (13.1) exist in probability
(rather than the stronger condition of being almost sure limits) is by bounding
the variance of the right-hand side, using the explicit description of the EGTI
measures given later in this lecture.

As soon as we know that a deterministic limit in (13.1) exists, it has to be
equal to p from the first definition, as this is the expectation of the right-hand
side in (13.1).

The possible slopes (p , p , p ) form a triangle: p > 0, p > 0, p > 0,
p + p + p = 1. We say that the slope is extreme, if one of the proportions
of lozenges, p , p , or p is zero, and non-extreme otherwise.

Theorem 13.12 ([Sheffield03a]). For each non-extreme slope there exists a
unique EGTI probability measure of such slope.

Idea of the proof Suppose that there are two different EGTI measures of the
same slope and let π1, π2 be corresponding random perfect matchings from
Ω sampled independently. Superimpose π1 and π2, i.e. consider the union of
all edges of the hexagonal lattice appearing in either of the matchings. Then
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π1 ∪π2 is a collection of double edges (if the same edge belonged to both π1

and π2), finite cycles (of alternating edges from π1 and π2), and infinite curves
extending to infinity (again of alternating edges from π1 and π2).

Claim. Almost surely, π1 ∪ π2 has double edges and finite cycles, but no
infinite curves.

The claim is a difficult statement and we refer to [Sheffield03a] for the proof.
Note that for measures of different slopes it no longer holds.

Given the claim, let us show that the distributions of π1 and π2 coincide.
For that we demonstrate a sampling procedure, which is the same for both
measures.

Note that given a cycle of π1 ∪π2, half of its edges belong to π1 and another
half belongs to π2. There are two options: either all even edges belong to π1

(and all odd edges belong to π2) or all even edges belong to π2. Applying
Gibbs property to this cycle separately for π1 and for π2, we see that these
two options arise with equal probability 1

2 . Hence, we can sample π1 by the
following procedure: first sample π1 ∪ π2, and then flip an independent coin
for each cycle to decide which of its edges belong to π1. Since the procedure
for π2 is the same, we are done.

Theorem 13.12 has an interesting corollary. First, it explains why we ex-
pect local limits of random tilings to be ergodic: indeed, we want them to have
fixed slopes matching the slope of the global macroscopic limit shape. This ar-
gument can be also reversed: if we knew a priori that the local limits of random
tilings should be given by ergodic Gibbs translation invariant measures, then
Theorem 13.12 would uniquely fix such measure. Unfortunately, in practice,
checking the EGTI property is hard, with, perhaps, the most complicated part
being translation invariance.

Nevertheless, it was conjectured in [CohnKenyonPropp00, Conjecture 13.5]
that all the limits are EGTI, which was recently proven in [Aggarwal19].

Theorem 13.13 ([Aggarwal19]). Locally, near any point of a (proportionally
growing) domain with non-extreme slope of the limit shape, the uniform mea-
sure on tilings converges to EGTI measure of the same slope.

In Lecture 17 we present a partial result in the direction of Theorem 13.13
from [Gorin16] after some preparations in Lectures 14, 15, and 16. The proof
of the general case in [Aggarwal19] starts with the same approach and then
adds to it several additional ideas which we are not going to present in these
lectures.
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13.4 Correlation functions of EGTI measures

Theorem 13.13 provides a simple way to identify the EGTI measures for each
slope. We need to take any domain where such slope appears and compute the
local limit. In fact, we already made such computation when analyzing tilings
on the torus in Lecture 4 and the result is given by Theorem 4.11 there. Let us
recast the result here.

Corollary 13.14. For an EGTI measure of slope (p , p , p ), the nth

correlation function computing the probability of observing the edges
(x1,y1, x̃1, ỹ1), . . . ,(xn,yn, x̃n, ỹn) between white vertices (xi,yi) and black ver-
tices (x̃i, ỹi) in a random perfect matching is

ρn((x1,y1, x̃1, ỹ1), . . . ,(xn,yn, x̃n, ỹn))

=
n

∏
i=1

K00(xi,yi, x̃i, ỹi) det
1≤i, j,≤n

(K̃α,β [x̃i − x j, ỹi − y j]) (13.2)

where

K̃α,β (x,y) =
"

|z|=|w|=1

wxz−y

1+ eα z+ eβ w
dw

2πiw
dz

2πiz
,

we use the coordinate system of Figure 3.2, K00(xi,yi, x̃i, ỹi) are weights from
that figure, and the correspondence between (p , p , p ) and (α,β ) is as in
Theorem 6.1.

Remark 13.15. At this point the Gibbs property of the measure might seem
to be very far away from the determinantal formulas for the correlation func-
tions. However, the Gibbsianity can actually be directly seen from (13.2), as
explained in [BorodinShlosman08].

Let us get comfortable with formula (13.2) by computing the correlation
functions of horizontal lozenges along a vertical line. This corresponds to
taking x̃i = 1, xi = 0 and yi = ỹi. Hence, absorbing the K0,0 prefactor (which is
eβ in this case) into the determinant, we conclude that the correlation functions
of horizontal lozenges at positions yi are minors of the matrix

(yi,y j) 7→
"

|z|=|w|=1

eβ wzyi−y j

1+ eα z+ eβ w
dw

2πiw
dz

2πiz
, (13.3)

We further argue as in Section 6.1, and compute the w–integral as a residue at
the unique pole of the integrand to get

1
2πi

ˆ z0

z̄0

zyi−y j−1dz =
z

yi−y j
0 − z̄

yi−y j
0

2πi(yi − y j)
=

|z0|yi−y j

π(yi − y j)
sin
(
Arg(z0)(yi − y j)

)
.
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Note that the |z0|yi−y j prefactor cancels out when we compute the minors. By
looking at yi−y j = 0 case, we also match Arg(z0) with π p . Hence, we reach
a conclusion.

Corollary 13.16. For the EGTI probability measure of slope (p , p , p )

P( at positions (0,y1), . . . ,(0,yn)) = det[K(yi − y j)]
n
i, j=1,

with

K(y) =


sin(π p y)

πy
, y ̸= 0,

p , y = 0.
(13.4)

Remark 13.17. Rotating by 120 degrees, we can also get similar statements for
the and lozenges — their distributions along appropriate sections will be
described by (13.4) with parameter p replaced by p and p , respectively.

Exercise 13.18. Perform the computation of Remark 13.17 in details.

The kernel of (13.4) has the name discrete sine kernel and the point process
of Corollary 13.16 is called the discrete sine process.

The continuous counterpart of the sine process (when y’s become real num-
bers rather than integers) is a universal object in the random matrix theory1,
where it describes local limits for the eigenvalues in the bulk of the spectrum
of large complex Hermitian matrices, see [Kuijlaars11, TaoVu12, Lubinsky16,
ErdosYau17] for recent reviews. Conjecturally, sine process also appears in
many other settings such as large eigenvalues of Laplace operator in various
domains or even spacings between zeros of Riemann zeta-function.

13.5 Frozen, liquid, and gas phases

An important property of the EGTI measure with non-degenerate slope
(p , p , p ) satisfying p , p , p > 0 is the polynomial decay of the correla-
tions between lozenges with distance. This can be directly seen from the result
of Corollary 13.14, since K̃α,β (x,y) decays polynomially in x and y. This type
of EGTI measures is called the liquid phase in [KenyonOkounkovSheffield03]
with an alternative name being the rough unfrozen phase.

Extreme slopes (when either p , or p , or p vanishes) lead to very different
structure of the EGTI measure: the random tiling becomes degenerate and has
non-decaying correlations. This is the frozen phase.

1 We return to the connection between tilings and random matrix theory in Lectures 19 and 20.
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Figure 13.3 3×2–periodic weights used in Figure 13.4 with α = 10.

For uniformly random lozenge tilings the liquid and frozen phases exhaust
the list of possible types of EGTI measures appearing in local limits. How-
ever, we can allow more general non-uniform weights of tilings. One natural
choice of non-uniformity is by declaring that whenever a cube is being added
to the stepped surface encoding tiling, i.e. whenever one tiling differs from
another one by increase by 3 of the value of the height function (in terminol-
ogy of Lecture 1) at a single point (x,y), the weight of the tiling is multiplied
by w(x,y). If we require w(x,y) to be a periodic function of x and y, then we
arrive at periodically weighted lozenge tilings. In particular, if the period is 1
and w(x,y) = q, then these are the qVolume–weighted tilings, which we have al-
ready encountered in the previous lectures. A simpler, but slightly less general
way to introduce periodic weighting is by putting the weights on edges of the
hexagonal grid for perfect matchings, as we did in Lectures 3 and 4 (cf. Fig-
ure 3.2). The second approach does not allow one to obtain qVolume–weighting
with q ̸= 1; but modulo this fact the two approaches are equivalent.

[KenyonOkounkovSheffield03] produced a complete classification of possi-
ble EGTI measures for periodically weighted tilings. In particular, they have
shown that for certain choices of weights a third type of EGTI measures
appears. They called these new measures the gas phase, with an alternative
name being the smooth unfrozen phase. In this phase the correlations between
lozenges decays exponentially and the height function is almost linear with
small isolated defects. [KenyonOkounkovSheffield03] constructed EGTI mea-
sures by a limit transition from the torus, similarly to what we did in Lecture 4.
Obtaining the gas phase as a local limit of tilings of planar polygonal domains
is a more complicated task. It was first achieved for 2× 2–periodic domino
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Figure 13.4 A 3×2–periodic random lozenge tiling of 100×100×100 hexagon.
Two gas phases are visible adjacent to top and bottom green frozen regions. Let
us note that asymptotically a gas phase cannot be adjacent to a frozen phase (this
would contradict [DeSilvaSavin08, Theorem 4.1], which says that discontinuity
of lozenge densities can happen only at boundary slopes), hence, there is, in
fact, a very narrow liquid region separating the gas and frozen phases. (I thank
Christophe Charlier and Maurice Duits for the simulation.)

tilings of the Aztec diamond in [ChhitaYoung13, ChhitaJohansson14]. A sys-
tematic approach to periodic situations was introduced in [DuitsKuijlaars17]
and there is a hope that the gas phase in periodically weighted lozenge tilings
of polygons can be rigorously studied using this approach, yet, it was not done
at the time when this book was finished.

Figure 13.4 shows a simulation2 of 3 × 2–periodically weighted lozenge
tilings of the hexagon with weights assigned to edges in a periodic way with
fundamental domain shown in Figure 13.3, see also [BorodinBorodinA] for
a 3d virtual reality version of the same simulation. As a remark, the results

2 It was produced using an adaptation of the algorithm from [Propp01].
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Figure 13.5 A staircase–like frozen phase with two types of lozenges.

of [KenyonOkounkovSheffield03] imply that 3× 2 is the minimal size of the
fundamental domain, which makes the appearance of a gas phase possible.

The phenomenology for periodically weighted tilings becomes richer than
for the uniform case, which we mostly study in this book and we refer to
[Mktchyan19, CharlierDuitsKuijlaarsLenells19, BerggrenDuits19, Charlier20,
BeffaraChhitaJohansson20] for some results. Just as an example, while for the
uniformly random lozenge tilings we could observe only three frozen phases
corresponding to 3 types of lozenges, for 2× 2 periodic case another frozen
phase is possible, in which densities of two types of lozenges are equal to 1/2
and the corresponding stepped surface looks like a staircase, see Figure 13.5.



Lecture 14: Inverse Kasteleyn matrix for
trapezoids

Our goal over the next few lectures is to discuss a local limit theorem for the
trapezoid (or sawtooth) domain of Figure 14.1. It is so named because of the
“dents” along its right edge. We are going to prove that the local structure of
uniformly random lozenge tilings for such domains is asymptotically governed
by ergodic Gibbs translation–invariant (EGTI) measures introduced in the last
lecture.

Why should we study this particular class of domains?

• The sawtooth domains are integrable in the sense that they have explicit
inverse Kasteleyn matrix;

• This type of domains has links to representation theory. In particular, con-
sider a sawtooth domain with width N and dents at locations t1 > · · · > tN .
Writing λ j = t j − (N − j), we see that λ1 ≥ ·· · ≥ λN . Each irreducible rep-
resentation of the unitary group U(N) has a signature, and it turns out that
the number of tilings of the sawtooth domain is given by the (vector space)
dimension of the representation having signature (λ1, . . . ,λN), and by the
Weyl dimension formula this is given by ∏i< j

(λi−i)−(λ j− j)
j−i . We come back

to this computation in Lecture 19, see Proposition 19.3.
• The boundary of every domain locally looks like a trapezoid; eventually,

the results for sawtooth domains and their extensions can be used as a
building block for proving the local limit theorem for general domains, see
[Aggarwal19] and [Gorin16].

In Lecture 3 (see Theorem 3.5) we expressed the correlation functions of ran-
dom tilings through the inverse Kasteleyn matrix. The goal of this lecture is
to compute this inverse matrix explicitly, which will be the main tool for our
analysis in the subsequent lecture.

Following the notations of [Petrov12a] (which this lecture is based on), we

119
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Figure 14.1 Left: A trapezoid/sawtooth domain. Right: Observe that if the width
of the domain is N, then the domain is tileable by lozenges if and only if its right
border has N dents. Indeed, it is clear by inspection that the first layer has exactly
one horizontal lozenge, the second has two, and so forth.

apply a rotation and skew transformation to the sawtooth domain, as in Fig-
ure 14.2. This is helpful, as the triangles of the grid are now parameterized
by pairs of integers, the correspondence is shown in the bottom part of Figure
14.2.

The Kasteleyn (adjacency) matrix of the dual graph of triangles, restricted
to the sawtooth domain is as follows: if (x,n) and (y,m) are both inside the
domain, then

K( (x,n); (y,m)) =


1, if (y,m) = (x,n),
1, if (y,m) = (x,n−1),
1, if (y,m) = (x+1,n−1),
0, otherwise.

If one of the trigangles (x,n) or (y,m) is outside the domain, then
K( (x,n); (y,m) vanishes.

The following theorem is the main result of this lecture. We use the
Pochhammer symbol (u)a = u(u+1) · · ·(u+a−1).

Theorem 14.1 ([Petrov12a, Theorem 1]). As in Figure 14.2, consider a saw-
tooth domain with height N and dents at (t1,N), . . . ,(tN ,N). The inverse Kaste-
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n

N

0 x

tN · · · · · · t1

Figure 14.2 Top: After rotating and shearing the diagram, all lattice lines are
either grid-aligned or at a 45◦ angle. We set coordinates (x,n), where x is the
horizontal coordinate and n the vertical. We only care about x modulo additive
constant so we don’t specify it fully, and n starts at 0 on the bottom boundary and
increases to N at the top boundary. We understand the domain to be the sawtooth
region with its N dents removed (white portion of figure). Bottom left: There
are now two types of lattice triangles. We place a root on the horizontal edge
of each triangle, and define the coordinate of the triangle to be the coordinate
of its root. Bottom right: There are three types of lozenges we can make out of
triangles (x,n) and (y,m). From left to right: (y,m) = (x,n), (y,m) = (x,n−1),
(y,m) = (x+1,n−1).

leyn matrix K−1( (y,m); (x,n)) is given by

K−1( (y,m); (x,n)) = (−1)y−x+m−n+1
1m<n1y≤x

(x− y+1)n−m−1

(n−m−1)!

(14.1)

+
(−1)y−x+m−n

(2πi)2
(N −n)!

(N −m−1)!

˛

{y,...,t1}

˛

∞

dwdz
w− z

(z− y+1)N−m−1

(w− x)N−n+1

N

∏
r=1

w− tr
z− tr

,

(14.2)

where the z–contour, Cz, is a loop around {y,y+ 1, . . . , t1} (and enclosing no
poles of the integrand outside this set) and the w–contour, Cw, is a large loop
around Cz and all poles of the integrand.

Remark 14.2. We define our domain to be the trapezoid with dents re-
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moved, and therefore, the above formula is applicable only for triangles
(y,m), (x,n) which lie entirely in the white region of Figure 14.2 (Top).

In particular, we do not allow (x,n) ∈ { (t1,N), . . . , (tN ,N)} as these cor-
respond to the dents.

Remark 14.3. Our proof of Theorem 14.1 is through verification and before
proceeding to it, let us discuss how the statement can be obtained.

Historically, determinantal formulas for the two-dimensional correlation
functions were first deduced by Eynard and Mehta [EynardMehta97] in the
study of coupled random matrices, with the particular case given by the Dyson
Brownian Motion. The latter is the evolution of the eigenvalues of a Hermi-
tian matrix, whose matrix elements evolve in time as independent Brownian
motions. Another equivalent definition identifies the Dyson Brownian Mo-
tion with N independent Brownian motions conditioned to have no collisions,
which makes analogy with tilings in the form of Section 2.2 clear.

Simultaneously, Brezin and Hikami [BrezinHikami96a, BrezinHikami96b]
introduced double contour integral formulas for the correlation kernel for the
fixed time distribution of the Dyson Brownian Motion started from an arbitrary
initial condition.

During the next 15 years, double contour integrals were found in numer-
ous settings of random matrices and random tilings. The closest to the context
of Theorem 14.1 instances are the formulas for the random plane partitions
in [OkounkovReshetikhin01]1 and for continuous Gelfand–Tsetlin patterns in
[Metcalfe11].

Thus, the appearance of the double contour integrals in the setting of The-
orem 14.1 was not completely unexpected. The arguments in [Petrov12a] (see
also [DuseMetcalfe14]) use the Eynard-Mehta theorem to produce determi-
nantal formulas and then introduce a nice trick by inverting a matrix, which
enters into the correlation kernel, by using contour integrals.

Proof of Theorem 14.1 Throughout the proof, by K−1( (y,m); (x,n))
we mean the expression of (14.1), (14.2). We would like to evaluate
K−1K( (y,m); (y′,m′)) for each pair (y,m),(y′,m′), and show that it is the
delta function δ (y = y′;m = m′).

Case 1: Triangle (y′,m′) has all its neighbors inside the domain.
We need to show that

K−1( (y,m); (y′,m′))+K−1( (y,m); (y′,m′+1))

+K−1( (y,m); (y′−1,m′+1)) ?
= δ (y = y′;m = m′). (14.3)

1 We will return to this model in Lectures 22-23.
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We first compute the double integral term (14.2) for the LHS of (14.3), and
verify that it is zero. Indeed, the integrand is a multiple of

(N −m′)!
(w− y′)N−m′+1

− (N −m′−1)!
(w− y′)N−m′

+
(N −m′−1)!

(w− y′+1)N−m′

=
(N −m′−1)!
(w− y′)N−m′+1

(
(N −m′)− (w− y′+N −m′)+(w− y′)

)
= 0.

Next, we check that the first term (14.1) after summation in the LHS of (14.3)
gives δ (y = y′;m = m′). We have four subcases:

• (y,m) = (y′,m′). Then a direct evaluation yields −0 + (1)0
0! − 0 = 1, as

needed.
• m′ < m. All the indicators are zero, so this evaluates to zero.
• m′ = m,y′ ̸= y. Then the sum reduces to 0+1y≤y′ −1y≤y′ , which is zero.
• m′ > m. In this case, 1m<m′ = 1 for all terms, and we want to verify that

1y≤y′
(y′− y+1)m′−m−1

(m′−m−1)!
−1y≤y′

(y′− y+1)m′−m

(m′−m)!
+1y≤y′−1

(y′− y)m′−m

(m′−m)!
= 0.

– When y > y′, all terms are zero since the indicators are zero.
– When y = y′, we indeed get

(1)m′−m−1

(m′−m−1)!
− (1)m′−m

(m′−m)!
+0 = 0,

since (1)a = a!.
– When y < y′ we have

(y′− y+1)m′−m−1

(m′−m)!
(
(m′−m)− (y′− y+m′−m)+(y′− y)

)
= 0,

as needed.

This finishes the proof for the case when triangle (y′,m′) has all its neighbors
inside the domain. Note that the situations when (y′,m′) is on a vertical

boundary of the trapezoid, or on its top boundary, but not adjacent to dents, are
included in this case.

Case 2: (y′,m′) lies on the bottom boundary; i.e. m′ = 0.
In this case, we claim that K−1((y,m);(y′,m′)) = 0, so the analysis of the

previous case is sufficient. The first term (14.1) is zero since 1m<m′ = 0. When
w → ∞, the w-integrand of the contour integral (14.2) decays as 1

|w|2 , and so
taking the contour Cw to be a circle of large radius R we see that (14.2) has
magnitude bounded by R−1 and hence must vanish.
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Case 3: (y′,m′) is on the top boundary, and is adjacent to one or two dents
.
As in the case of the bottom boundary, it suffices to show that if there is a

dent (y′ − 1,m′ + 1) (resp. (y′,m′ + 1)), then K−1( (y,m); (y′ − 1,m′ +

1)) = 0 (resp. K−1( (y,m); (y′,m′+1)) = 0). We only prove the former, the
proof for the latter is similar.

Consider the double contour integral term (14.2) of K−1( (y,m); (y′ −
1,m′ + 1)). Observe that in our case, since (y′ − 1,m′ + 1) is a dent, we
have y′ − 1 = tr for some r and m′ = N − 1. Hence, the factor in the de-
nominator (w − (y′ − 1))N−(m′+1)+1 = w − (y′ − 1) cancels with the factor
(w − tr) in the numerator of the integrand. Therefore, the only pole of w-
integrand is at w = z arising from 1

w−z . Hence, the w–integral evaluates
as the residue at w = z, which is computed in Lemma 14.4 below to be

1y≤y′
(m′−m)y′−y
(y′−y)! . Since

(y′−y+1)m′−m−1
(m′−m−1)! =

(m′−m)y′−y
(y′−y)! , we conclude that the dou-

ble integral (14.2) is exactly the negative of the indicator term (14.1), so that
K−1( (y,m); (y′−1,m′+1)) = 0 as needed. We are done with this case, and
hence with the proof of Theorem 14.1.

Lemma 14.4. Take integers y, y′, m, m′ and assume m′ ≥ m. Then

(N −m′)!
(N −m−1)!

1
2πi

˛
y,y+1,y+2,...

(z− y+1)N−m−1

(z− y′)N−m′+1
dz = 1y≤y′

(m′−m)y′−y

(y′− y)!
,

where the integration contour encloses all the poles of the integrand to the left
from or equal to y.

Proof We first rephrase the statement to reduce notations. For suitably de-
fined A,B > 0 and ∆x, the desired statement can be written as

A!
B!

1
2πi

˛
C̃z

(z+∆x+1)B

(z)A+1
dz = 1∆x≥0

(B−A+1)∆x

(∆x)!
, (14.4)

where the contour C̃z surrounds the integers −∆x, . . . ,0. We prove (14.4) by
induction. We need the following base cases where (14.4) is easy to check:

• Case ∆x < 0. Then right-hand side is clearly zero, and the left-hand side is
also zero since there are no singularities enclosed by the contour.

• Case ∆x ≥ 0 and A = B. Then the right-hand side is clearly one, and the
integrand of the left-hand side has no poles outside of C̃z, so we may enlarge
the contour to infinity, and thus see that the residue is 1 (there’s one more
linear in z factor in the denominator than in the numerator).

We also need the following linear relations. Write L(A,B,∆x) and R(A,B,∆x)



125

for the left-hand side and right-hand side of (14.4), respectively. Then we have

L(A,B+1,∆x)−L(A,B+1,∆x−1) = L(A,B,∆x), (14.5)

R(A,B+1,∆x)−R(A,B+1,∆x−1) = R(A,B,∆x). (14.6)

Indeed, to prove the first of these relations, we observe that the integrand in the
left-hand side is equal to that in the right-handside:(

z+∆x+B+1
B+1

− z+∆x
B+1

)
A!
B!

1
2πi

(z+∆x+1)B

(z)A+1
=

A!
B!

1
2πi

(z+∆x+1)B

(z)A+1
.

Likewise, we can check the second linear relation (14.6):(
B−A+1+∆x

B−A+1
− ∆x

B−A+1

)
1∆x≥0

(B−A+1)∆x

(∆x)!
= 1∆x≥0

(B−A+1)∆x

(∆x)!
.

Consequently, if we know that (14.4) holds for two of the three triples (A,B+

1,∆x), (A,B+1,∆x−1), (A,B,∆x), then it also holds for the third one.
We now prove (14.4) by induction on ∆x. We know that (14.4) holds for all

triples (A,B,∆x) with ∆x < 0. Now suppose that for some ∆x ≥ 0 we know for
all A,B that (14.4) holds for (A,B,∆x−1). For any A, we also know that (14.4)
holds for the triple (A,A,∆x). Repeatedly using (14.5), (14.6), we extend from
B = A to arbitrary B case and conclude that (14.4) holds for all (A,B,∆x).

Exercise 14.5. Consider a macroscopic rhombus or, equivalently, A×B× 0
hexagon (which is a particular case of a trapezoid). It has a unique lozenge
tiling and, therefore, the correlation functions for uniformly random tilings of
this domain are straightforward to compute. Check that they match the expres-
sion given by the combination of Theorems 3.5 and 14.1.



Lecture 15: Steepest descent method for
asymptotic analysis

15.1 Setting for steepest descent

In this lecture we discuss how to understand asymptotic behavior of the inte-
grals similar to that of the correlation function for trapezoids in Theorem 14.1.
A general form of the integral is˛

Cw

˛
Cz

exp
(
N(G(z)−G(w))

)
f (z,w)

dz dw
z−w

. (15.1)

This sort of integral arises frequently in integrable probability, and as such
there is a well developed machinery to deal with it. The key features of (15.1)
are:

• The integrand grows exponentially with N. In (14.2) this is due to ∏
N
r=1

product and growing Pochhammer symbols.
• The leading contributions in z and w are inverse to each other, hence G(z)−

G(w) in the exponent of (15.1).
• The integrand has a simple pole at z = w.
• Additional factors in the integrand denoted f (z,w) grow subexponentially

in N.

We start with simpler examples and work our way towards (15.1).

15.2 Warm up example: real integral

Let us compute the large N asymptotics of the real integral
ˆ 1

0
exp(N(x− x2)) dx.

126



127

We use the Laplace method. Write f (x) = x−x2; this is a concave function on
[0,1] with maximum at 1

2 . The integral is dominated by a neighborhood of 1
2

(indeed, exp(N f (x)) is exponentially smaller away from 1
2 ), so we do a Taylor

expansion there:

f (x) =
1
4
−
(

x− 1
2

)2

.

Making the substitution y =
√

N(x− 1
2 ), we get

ˆ 1

0
exp

(
N

(
1
4
−
(

x− 1
2

)2
))

dx = e
N
4

1√
N

ˆ √
N/2

−
√

N/2
e−y2

dy

= e
N
4

1√
N

ˆ
∞

−∞

e−y2
dy ·
(
1+o(1)

)
= e

N
4

√
π

N
·
(
1+o(1)

)
.

The conclusion is that the integral is dominated by the neighborhood of the
point where f (x) is maximized. This point can be found solving the critical
point equation f ′(x) = 0.

Exercise 15.1. Prove the Stirling’s formula by finding the large N asymptotics
of the integral

N! =
ˆ

∞

0
xN exp(−x)dx.

(Hint: start by changing the variables x = Ny.)

15.3 One-dimensional contour integrals

For the next step we take K =αN and study for large N the binomial coefficient(
N
K

)
=

1
2πi

˛
(1+ z)N

zK+1 dz,

where the contour encloses the origin. (Since (1+z)N

zK+1 has only a single pole at
z = 0, any contour surrounding 0 gives the same result.)

Inspired by the previous case, we might think that the integral is dominated
by a neighborhood of the maximizer of |1+ z|N/|z|K+1 on the integration con-
tour. This turns out to be false; indeed, if this worked, one could vary the
contour and get a different answer! The problem is that there could be huge
oscillations in the complex argument (i.e., angle) of the integrand, causing can-
cellations. We generalize the previous approach in a different way.
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We write f (z) = ln(1+ z)−α lnz, so that the integral can be written as

1
2πi

˛
exp(N f (z))

dz
z
.

Notice that

f ′(z) =
1

1+ z
− α

z

Hence, f has a unique critical point

zc =
α

1−α

and

f ′′(zc) =
(1−α)3

α
> 0.

f admits the Taylor expansion in a neighborhood of zc

f (z) = f (zc)+
1
2

f ′′(zc)(z− zc)
2 + . . . .

Notice that along a vertical segment through zc, since (z− zc)
2 < 0, the real

part of f (z) is maximized at zc (it would have been minimized for the horizon-
tal contour). Thus, we want to choose a contour through zc which is locally
vertical at zc. But how do we specify the contour globally? The trick is to use
the level lines of ℑ f — imaginary part of the complex function f .

Lemma 15.2. Take a function f (z) with a critical point zc such that f ′′(zc) ̸= 0.
Suppose that f (z) is holomorphic in a neighborhood of zc. Then there are two
curves γ passing transversally to each other through zc and such that ℑ f (γ)
is constant along each curve. Along one of these curves γ , the function ℜ f
decreases as you move away from zc, until you reach either another critical
point of f or a point of nonanalyticity. The same is true for the other curve
except that ℜ f instead increases as you move away from zc.

Proof Using Taylor expansions in a neighborhood of zc, one sees four level
lines ℑ f (z) = const staring at z = zc in four different directions; they form two
smooth curves passing through zc. Consider the curve for which ℜ f decreases
locally as we move away from zc, and suppose that when moving along the
curve we reach a local minimum (along the curve) of ℜ f at a point w. If f is
not analytic at w we are done, so assume it is. Since w is a minimizer of ℜ f
along γ we have d

dγ

∣∣
wℜ f = 0, but since γ is a level line of ℑ f we also have

d
dγ

∣∣
wℑ f = 0. Combining these yields f ′(w) = 0, so w is a critical point of f .

The same argument holds for the other curve.
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In our case f (z) = ln(1+ z)−α lnz, so the function is holomorphic in the
slit domain C\(−∞,0]. Let’s take the locally vertical contour ℑ f (z) = const
passing through zc, and try to understand its shape. By symmetry it suffices to
understand the half-contour γ starting at zc and going upward.

• γ cannot escape to infinity. Indeed, ℜ f is bounded from above on γ (since
it is decreasing away from zc), but exp(Nℜ f (z)) = |1+ z|N/|z|K grows as
|z| → ∞.

• Similarly γ cannot hit 0 since |1+ z|N/|z|K explodes near 0.
• Finally, γ cannot hit a point in R+ = (0,+∞). If it did, γ and its conjugate

would together form a closed contour in the slit domain C\(−∞,0) along
which the harmonic function ℑ f is constant. By the maximum principle of
harmonic functions we conclude that ℑ f is constant on the whole domain,
which is false.

We conclude that γ starts at zc and exits the upper half plane somewhere
along R− = (−∞,0). We take for our contour γ ∪γ — we can deform the orig-
inal contour of integration into γ ∪γ without changing the value of the integral.
At this point by the same analysis as for the warm up example above (the in-
tegral is dominated by a neighborhood of zc since exp(N f (z)) is exponentially
smaller away from zc), we see that(

N
K

)
=

(
1+o(1)

)
2πi

(1+ zc)
N

zK+1
c

ˆ zc+i∞

zc−i∞
exp
(

1
2

N
(1−α)3

α
(z− zc)

2
)

dz

=(1+o(1))
( 1

α
)N( 1−α

α

)K+1
1√

2πN

√
α

(1−α)3 =
1+o(1)√

2πN αK+1/2(1−α)N−K+1/2
.

Exercise 15.3. Prove the Stirling’s formula by finding the large N asymptotics
of the contour integral around 0

1
N!

=
1

2πi

˛
ez dz

zN+1 .

15.4 Steepest descent for a double contour integral

Now we turn to the double contour integral (15.1). A typical situation is that
G(z) is real on the real line, which implies G(z) = G(z). Hence, the solutions
to G′(z) = 0 come in complex-conjugate pairs. For now we do not discuss
the question of choosing the correct critical point and assume that G(z) has a
unique pair of critical points: zc, zc. From these critical points, we construct
level lines of ℑG to obtain a pair of contours C̃w,C̃z (see Figure 15.1 for a
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schematic drawing), different from the original Cw, Cz. Note that near the crit-
ical point zc, two level lines intersect orthogonally; ℜG has a maximum along
one of them at zc and a minimum along another. This is good for us, since we
would like to have a maximum both for ℜG(z) and ℜ(−G(w)).

C̃w

C̃z

zc

zc

Figure 15.1 A different pair of contours for (15.1). Here, zc and zc are critical
points of G. The dashed curves are the level lines of ℜG, and the black and gray
contours are the level lines of ℑG.

In two dimensions, it turns out that the singularity 1
z−w is integrable since

C̃z,C̃w are transverse. Thus we can use the methods of the previous case to
understand the integral˛

C̃w

˛
C̃z

f (z,w)exp(N(G(z)−G(w)))
dz dw
z−w

, (15.2)

by expanding around zc and zc for the level lines C̃w,C̃z. The exponentially
large prefactor vanishes (since it’s reciprocal for the w and z integrals), leaving
only the polynomially decaying term. (Indeed, we only care about (z,w) close
to (zc,wc), more precisely, we should set z− zc =

z̃√
N

and w−wc =
w̃√
N

. After

this change of variables the integrand behaves as

(
1√
N

)2

1√
N

→ 0.). We conclude

that this integral goes to zero as N → ∞.
Does this mean that asymptotically the integrals of the kind (15.1) always

vanish? Note quite, since (15.1) differs from (15.2) by the choice of contours.
Hence, we should account for additional residues which might arise in the con-
tour deformation. If we go back to the setting of Theorem 14.1, when we see
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that the original contours are disjoint, while the new ones intersect. Hence, in
the deformation we pick up the residue at z = w arising from the 1

z−w factor in
the integrand. In principle, we might have needed to cross other poles, coming
from the remaining factors of the integrand. Yet, let us assume that this is not
happening. Then we can conclude˛

Cw

˛
Cz

f (z,w)exp(N(G(z)−G(w)))
dz dw
z−w

=

ˆ zc

zc

Resz=w dz+O
(

1√
N

)
,

where the integral is over the part of C̃z between zc and zc. If the factor f (z,w)
in (15.1) is non-singular, then the residue at z = w is equal to f (z,z), which
needs to be integrated from zc to zc. This integral gives the leading asymptotic
of (15.1).



Lecture 16: Bulk local limits for tilings of
hexagons

In this lecture, we use the material of the previous few lectures to find the
asymptotic for the correlation functions of uniformly random tilings near a
point of a large hexagonal domain. Specifically, we apply the steepest descent
techniques of the previous lecture to find the asymptotic of the double contour
integral formula for the entries of the inverse Kasteleyn matrix from Lecture
14.

Recall that we use shifted coordinates, so that the hexagonal domain has
two horizontal and two vertical edges. For simplicity we consider a hexagon
with all side lengths N/2. Let us relate the trapezoids (or sawtooth domains)
studied in previous lectures to the hexagons. If we consider a trapezoid with
all dents located in the extreme rightmost and left-most positions along the top
side (shown as solid black lozenges in Figure 16.1), then the lozenges below
the dents are forced to be vertical (shown as outlined lozenges), and once all
of these forced lozenges are removed, the domain becomes a hexagon.

For the desired N/2×N/2×N/2 hexagon, we choose its location such that
the coordinates of the dents are −N/2,−N/2+1, . . . ,−1 for the dents on the
right, and −3N/2, . . . ,−N −1 for the dents on the left.

Theorem 14.1 from Lecture 14 specializes to the following statement for the
hexagon.1

Theorem 16.1 ([Petrov12a]). For even N consider the N/2 × N/2 × N/2

1 Another approach to explicit inversion of the Kasteleyn matrix for the hexagon is in
[Gilmore17].

132
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n

N

0 x

N/2

N/2

N/2

Figure 16.1 A trapezoid/sawtooth domain with the dents chosen such that once
the ‘forced’ vertical lozenges are removed, the remainder of the domain is an
N/2×N/2×N/2 hexagon. Note that while the diagonal sides appear longer by
a factor of

√
2, length should be measured in terms of the sides of our sheared

lozenges.

hexagon. The inverse Kasteleyn matrix K−1( (y,m); (x,n)) is given by

(−1)y−x+m−n+1

[
1m<n1y≤x

(x− y+1)n−m−1

(n−m−1)!
(16.1)

− (N −n)!
(N −m−1)!

˛
Cz

˛
Cw

(z− y+1)N−m−1

(w− x)N−n+1

(w+1)N/2(w+N +1)N/2

(z+1)N/2(z+N +1)N/2

dzdw
w− z

]
,

(16.2)

where the contour Cz is a loop around {y,y+ 1, . . . ,−1} (and enclosing no
other integers) and the contour Cw is a large loop around Cz and all poles of
the integrand.

Since we are sending N to ∞ and studying the local behavior near a point
(Nx̃,Nñ) in the bulk, we should work in coordinates which reflect this. Namely,
we consider the asymptotic of the inverse Kasteleyn matrix evaluated in two
points (x,n) and (y,m) given by

x := Nx̃+∆x, (16.3)

y := Nx̃+∆y, (16.4)

n := Nñ+∆n, (16.5)

m := Nñ+∆m. (16.6)
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The fact that x and y are both close to Nx̃, and similarly m,n are close
to Nñ, guarantees that the points (x,n) and (y,m) stay close to (Nx̃,Nñ).
∆x,∆y,∆n,∆m control exactly where the two points sit relative to (Nx̃,Nñ) on
a local scale.

Here is our aim for this lecture:

Theorem 16.2. For (x̃, ñ) inside the liquid region (i.e. inside the ellipse in-
scribed into the hexagon), the correlation functions of uniformly random tilings
of the hexagon converge to those of the ergodic Gibbs translation-invariant
measure (see Lecture 13) associated to the slope of the limit shape at (x̃, ñ).

Remark 16.3. Since probabilities of the cylindrical events for random tilings
can be expressed as finite linear combinations of the correlation functions, the
convergence of the latter implies weak convergence of measures on tilings.

Proof of Theorem 16.2 Theorem 3.5 expresses the correlation functions of
tilings through the inverse Kasteleyn matrix which is computed in Theorem
16.1. We would like to apply the steepest descent method to the double con-
tour integral in (16.2). For that we want to write the integrand of (16.2) as
exp(N(G(z)−G(w))) ·O(1) for some function G, where (z,w) = (Nz̃,Nw̃).
We set

G(z) =
1
N

N(1−ñ)

∑
i=1

ln(z−Nx̃+ i)− 1
N

N/2

∑
i=1

ln(z+ i)− 1
N

N/2

∑
i=1

ln(z+N + i) (16.7)

and note that

1
N

N(1−ñ)

∑
i=1

(
ln(z−Nx̃+ i)− lnN

)
=

1
N

N(1−ñ)

∑
i=1

ln(z̃− x̃+
i
N
) (16.8)

is a Riemann sum for
´ 1−ñ

0 ln(z̃− x̃+u)du. Hence by subtracting one lnN term
and adding two more to (16.7) to normalize the three sums as in (16.8), we
obtain three Riemann sums corresponding to the three integral summands in

G̃(z̃) :=
ˆ 1−ñ

0
ln(z̃− x̃+u)du−

ˆ 1/2

0
ln(z̃+u)du−

ˆ 1/2

0
ln(z̃+1+u)du.

(16.9)
It follows that

G(z) = G̃(z̃)+o(1)− ñ lnN, (16.10)

and the lnN term will cancel in G(z)−G(w) so we may ignore it.
For steepest descent analysis, we need the critical points of G̃. In order to

compute the derivative ∂ G̃
∂ z̃ , we differentiate under the integral sign, then take
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the definite integral with respect to u which gives us back the logarithm, yield-
ing

∂ G̃
∂ z̃

= ln(z̃− x̃+(1− ñ))− ln(z̃− x̃)− ln(z̃+1/2)

+ ln(z̃)− ln(z̃+3/2)+ ln(z̃+1). (16.11)

Exponentiating we get a quadratic equation in z̃ for the critical point:

∂ G̃
∂ z̃

= 0 ⇐⇒ (z̃− x̃+(1− ñ))(z̃)(z̃+1) = (z̃− x̃)(z̃+1/2)(z̃+3/2)

(16.12)

⇐⇒ ñz̃2 − (x̃+
1
4
− ñ)z̃− 3

4
x̃ = 0. (16.13)

This equation has a pair of complex conjugate roots if and only if the discrim-
inant is negative:

D = (x̃+1/4− ñ)2 +3ñx̃ < 0.

Remark 16.4. The region on the x̃, ñ coordinate plane given by (x̃+1/4− ñ)2+

3ñx̃ < 0 is exactly the interior of the inscribed ellipse of the hexagon of side
lengths 1/2 which is the scaled version of Figure 16.1. Clearly the equation
corresponds to a ellipse, and we can check that (x̃+1/4− ñ)2 +3ñx̃ = 0 has a
single solution (−3/4,1) when ñ= 1 and a single solution (−1/4,0) when ñ=
0, corresponding to the tangency points at the top and bottom of the hexagon.
The tangency points to other sides of the hexagon can be found similarly. Since
an ellipse is determined by five points, these tangency points fix the ellipse
uniquely.

We assume that D < 0 and consider two conjugate critical points, zc and z̄c;
this corresponds to (x̃, ñ) lying in the liquid region.

Next, we wish to find the steepest-descent contours for z and w. For that we
consider level lines of real and imaginary parts (ℜG̃(z̃) = const and ℑG̃(z̃) =
const) passing through zc, zc. The latter will be the steepest descent contours,
while the former will help us to understand their geometry. The schematic
drawing of the configuration of the level lines is shown in Figure 16.2. The
level lines of the real part, ℜG̃(z̃) = const, partition the Riemann sphere into
regions where ℜG̃(z̃)−ℜG̃(zc) is < 0 and > 0, represented by + and − in
the figure. Because ℜG̃(z̃) goes to −∞ as z → ∞, the ‘outer’ region is a “−”
region, and this determines all the others since crossing a contour changes the
sign.

There are two contours passing through zc and z̄c along which G̃(z̃) has
constant imaginary part; one lies in the region of negative real part, the other in
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−

−−

−
−

−
+

+ +

+

=G̃(z) = =G̃(zc)

<G̃(z) = <G̃(zc)

zc

zc

<G̃(z) = <G̃(zc)

=G̃(z) = =G̃(zc)

Figure 16.2 Level lines of ℜG̃(z) and ℑG̃(z) passing through zc. The w–contour
in (16.2) is to be deformed to the closed loop of the constant imaginary part in “+”
region and the z–controur is to be deformed to the curve of the constant imaginary
part extending to infinity in “−” region.

the region of positive real part. However, the geometry of these contours is not
obvious: the one that lies partially in the outer “−” region may either intersect
with the positive real axis, or the negative real axis, or just go off to infinity. In
order to distinguish between the three possible scenarios, we use the explicit
formula for G̃(z̃). First, note that for a complex, which very close to the real
axis, the value of 1

π
ℑ ln(z− a) is very close to 0 for z > a and close to 1 for

z < a, with some smoothed-out step function-like behavior near a. Hence each
of the three

´
ln terms in G̃(z̃) cause the slope of the function 1

π
G̃(x+ i0) to

change at various points: 1
π

´ 1−ñ
0 ln(z̃− x̃+ u)du gives slope −1 contribution

on the segment [x̃+ ñ− 1, x̃], − 1
π

´ 1/2
0 ln(z̃+ u)du gives slope 1 contribution

on the segment [− 1
2 ,0], and − 1

π

´ 1/2
0 ln(z̃+1+u)du gives slope 1 contribution

on the segment [− 3
2 ,−

1
2 ]. Adding the three terms, we arrive at the graph of

1
π

G̃(x+ i0) schematically shown in Figure 16.3.
We are seeking for the possible points of intersections of the curve ℑG̃(z̃) =

ℑG̃(zc) with the real axis. They correspond to the intersections of the graph
in Figure 16.3 with a horizontal line. Note that the curve ℑG̃(z̃) = ℑG̃(zc) can
not intersect the real axis in a point inside a horizontal segment of the graph
of Figure 16.3, since that would have to be another critical point other than zc,
and we know there is no other critical points. Hence, there are either 1, 3, or 0
points where ℑG̃(z̃) = ℑG̃(zc) can intersect the real axis.



137

1
π=G̃(x+ i0)

x

− 3
2 −1 − 1

2

x̃x̃+ ñ− 1

0

Figure 16.3 The graph of ℑG̃(x+ i0).

Recall that there are four different curves ℑG̃(z̃) = ℑG̃(zc) starting at zc.
If less than three of them reach the real axis, then at least two should escape
to infinity. However, this would contradict the configuration of Figure 16.2,
as the outer “−” region for the real part can have only one ℑG̃(z̃) = ℑG̃(zc)

curve inside (in the upper halfplane). Hence, there are precisely three points
of intersection of ℑG̃(z̃) = ℑG̃(zc) with the real axis (each one inside the cor-
responding slope ±1) and the configuration should necessary resemble Figure
16.2.

Because we want the integral of exp(N(G(z)−G(w))) to go to 0, the con-
stant imaginary part contour in the region of positive real part should be the
w contour Cw, and the contour in the negative real part region should be the
z contour Cz. Recall that in Theorem 16.1, the two contours look as in Figure
16.4, i.e. one is inside another.

Hence deforming the integration contour in (16.2) to be as in Figure 16.2
requires passing Cz through Cw, which picks up the residue at w = z given by

(−1)y−x+m−n

2πi
(N −n)!

(N −m−1)!

˛ Nzc

Nz̄c

(z− y+1)N−m−1

(z− x)N−n+1
dz, (16.14)

with integration contour going to the right from the singularities of the inte-
grand. As we discussed in the previous lecture, the double contour integral on
the deformed contours of Figure 16.2 vanishes asymptotically. Hence, the lead-
ing contribution of (16.2) is given by (16.14). Note that we should also check
that in the contour deformation we do not cross any z–poles arising from the
denominator (z+1)N/2(z+N +1)N/2 or w–poles arising from the poles from
the denominator (w− x)N−n+1; this check can be done by locating the inter-
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Cz

Cw

Figure 16.4 In (16.2) the z–contour is inside the w–contour.

section points of the desired steepest descent contours with the real line using
Figures 16.2 and 16.3.

Sending N → ∞ and substituting (16.3), (16.4), (16.5), (16.6), the integral
(16.14) becomes

(−1)∆x+∆n−∆y−∆m

2πi
(1− ñ)∆m−∆n+1

×
˛ zc

z̄c

(z̃− x̃)∆y−∆x−1(z̃+ x̃+1− ñ)∆x+∆n−∆y−∆m−1dz̃, (16.15)

and the contour again passes to the right from the singularities. We would like
to change the variables to simplify (16.15). Set

v =
z̃− x̃

z̃− x̃+1− ñ
, (16.16)

so that

1− v =
1− ñ

z̃− x̃+1− ñ
, (16.17)

and let vc be the result when zc is plugged into the above. Then changing vari-
ables to v in (16.15) yields

(−1)∆x−∆y+∆n−∆m

2πi

˛ vc

v̄c

v∆y−∆x−1(1− v)∆m−∆ndv, (16.18)

where the contour is one for which the intersection with the real axis lies in
(0,1).

It remains to deal with the indicator term in (16.1). Lemma 14.4 says that
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this term can be identified with the full residue of the double contour integral
at z = w. One can check that this remains true as N → ∞. Therefore, if we add
(16.18) to the indicator function in (16.1), the result is the same integral as in
(16.18), except that the integration contour intersects the real axis on (0,1) for
∆m ≥ ∆n, and intersects on (−∞,0) for ∆m < ∆n, which is when the indicator
function is nonzero. This gives us the limiting value of K−1.

Remark 16.5. The limiting kernel which we just found, was first introduced
by Okounkov and Reshetikhin in [OkounkovReshetikhin01]. It is called the
incomplete beta kernel (since the integrand is the same as in the classical Beta
integral) or extended sine kernel. Here is the reason for the latter terminology.

If we set ∆m = ∆n in (16.18), then it becomes

(−1)∆x−∆y

2πi

˛ vc

v̄c

v∆y−∆x−1dv. (16.19)

Since the inverse Kasteleyn matrix is encoding probabilities of observing
lozenges of different types, for any set of k points with the same n-coordinate
and x-coordinates x1, . . . ,xn, the probability of observing a vertical lozenge
(i.e., of left-most type in bottom-right panel of Figure 14.2) at each of the k
points is det(K(xi − x j))1≤i, j≤k where

K(x) =
(−1)x

2πi

ˆ vc

v̄c

vx−1dv = (−1)x (vc)
x − v̄c

x

2πix
=

(−|vc|)x

πx
sin(xArg(vc)).

(16.20)
The (−|vc|)x factor cancels in det(K(xi−x j))1≤i, j≤k and therefore, we can omit
it. The conclusion is that the correlation functions of vertical lozenges along a
horizontal slice are given by the minors of the matrix

K(x) =

{
sin p1πx

πx , x ̸= 0,

p1, x = 0,

where p1 is the asymptotic density of the vertical lozenges. We recognize the
discrete sine-kernel, which already appeared before in Corollary 13.16. Hence
the kernel of (16.18) yields the discrete sine kernel when restricted to a line,
which is the origin of the name extended sine kernel.

Exercise 16.6. Show that the measure on lozenge tilings of the plane with cor-
relation functions given by the minors of the extended sine kernel (16.18) (with
the choice of integration contour described in the paragraph after the formula)
is the same as one coming from the ergodic Gibbs translation-invariant mea-
sure of Lecture 13 with slope corresponding to vc. Note that our ways of draw-
ing lozenges differ between this lecture and Lecture 13, since we used affine-
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transformed coordinate system starting from Figure 14.2 in order to match the
notations of [Petrov12a].

This check is a more general version of the argument in Remark 16.5.

Coming back to the proof of Theorem 16.2, at this point we have established
the local convergence of the correlation functions to those of an EGTI measure
of Lecture 13. It remains to identify the slope of the local measure with the one
of the limit shape for the height function (found through the variational prob-
lem and Burgers equation) at (x̃, ỹ). Indeed, the local slope gives the average
proportion of lozenges of each of the three types locally around (x̃, ỹ). Because
the asymptotics are uniform over all points (x̃, ỹ), they yield asymptotics for the
expected increments of the limiting height function or, equivalently, for the in-
tegral of the slope along macroscopic domains. By concentration of the height
function, expected increments are asymptotically the same as limit shape in-
crements. Hence, integrals of the local slope and of the limit shape slope along
macroscopic domains are the same. Therefore, these two kinds of slopes have
to coincide.

Exercise 16.7. Show that outside the inscribe ellipse there are six regions
(adjacent to six vertices of the hexagon) where one observes only one type of
lozenges. Find out which type of lozenges appears in each region, thus explain-
ing Figure 1.5.



Lecture 17: Bulk local limits near
straight boundaries

In the last lecture we studied the asymptotic behaviour of correlation functions
for tilings of hexagons. It turned out that in the bulk the correlation functions
converge to those of EGTI (ergodic Gibbs translation invariant) measure. The
proof consisted of the steepest descent method applied to the inverse of the
Kasteleyn matrix.

We would like to extend this approach to more general regions. To describe
the situations where our approach still works, we need the following definition.
Recall that a trapezoid is a quadrilateral drawn on the triangular grid (with one
pair of parallel sides and one pair of non-parallel sides), with the longer base
being “dashed” as in Figure 17.1.

Definition 17.1. Let R be a tileable region on the triangular grid. A trapezoid
T is covering a part of R if

1) R\T touches the boundary of T only along the dashed side.
2) T\R consists of big disjoint triangles along the dashed part of the bound-

ary, that is, T\R can be obtained as the region of T frozen by sequences of
consecutive ”teeth” along the dashed side.

The definition above ensures the following property: every tiling of a region
R gives a tiling of a trapezoid T covering R. Note that here by a tiling of R
we mean a strict tiling, forbidding lozenges to stick out of the region R, while
a tiling of trapezoid T is allowed to have lozenges sticking out of T (called
”teeth”), but only along the dashed side (actually, any tiling of T will have
exactly N teeth, where N is the height of T ), see Figure 17.1.

Theorem 17.2. Take a sequence of tileable domains L ·R with L → ∞, and a
point (x,y) ∈ R such that

141
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N

C

Figure 17.1 A trapezoid with a tiling

1) proportions p , p , p encoding the gradient to limit shape of uniformly
random tilings of L ·R are continuous and ̸= 0 in a neighbourhood of (x,y).

2) (x,y) is covered by a trapezoid.
Then the correlation functions near (Lx,Ly) converge to those of EGTI mea-

sure of slope (p , p , p ).

Remark 17.3. The continuity assumption for p , p , p ensures that their
value at a point is well defined. Also, recall that for polygons limit shapes
are algebraic, hence the proportions are continuous in the liquid region.

Remark 17.4. For some regions (including a hexagon with a hole) the second
condition holds everywhere inside (that is, the region R can be completely
covered by trapezoids). But we cannot completely cover a general region (even
a polygon) by trapezoids, see Figure 17.2.

Remark 17.5. The theorem remains valid without the second condition,
but the argument becomes much more elaborate (although, the steepest de-
scent analysis of double contour integrals still remains a key ingredient), see
[Aggarwal19].

We will derive Theorem 17.2 as a corollary of the following statement.

Theorem 17.6. Take a sequence of trapezoids TN of height N and with teeth
t1 < · · ·< tN . Let

µN =
1
N

N

∑
i=1

δti/N

be a scaled empirical measure encoding {t1, . . . , tN}. Assume that
1) the support Supp[µn]⊂ [−C;C] for a constant C > 0 independent of N.
2) µN −−−→

weak
µ as N → ∞ for some probability measure µ .



143

Figure 17.2 Examples of various domains covered by trapezoids. The right-most
region cannot be completely covered

Then: 1) Uniformly random tilings of TN have limit shape as N → ∞, de-
pending only on µ .

2) For (x,y) s.t. p , p , p are continuous and nonzero in a neighbourhood
of (x,y), correlation functions near (Nx,Ny) converge to those of EGTI mea-
sure with slope p , p , p .

Remark 17.7. In Theorem 17.6 one can take random empirical measures µN ,
converging in probability to a deterministic µ . This is exactly the form of The-
orem 17.6 used in the proof of Theorem 17.2.

Proof of Theorem 17.2 using Theorem 17.6 Let (x,y) be a point of R satis-
fying conditions of the theorem, T be a trapezoid covering (x,y). As noted
before, tilings of L ·R give tilings of TN(L) (for some N(L) tending to infinity
as L → ∞) with random teeth t1 < · · ·< tN(L). Moreover, by Gibbs property the
restriction of a uniformly random tiling on L ·R is a uniformly random tiling
on TN(L).

Note that the locations of teeth t1 < · · ·< tN(L) determines a height function
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hL along the dashed side of TN up to a constant, and µN(L) is the distribution of
hL(Lx,Ly)

L . Since uniformly random tilings of R converge to a deterministic limit
shape, random functions hL(Lx,Ly)

L converge to a deterministic function ĥ and
hence the corresponding measures µN(L) converge to a deterministic measure
µ . Also, note that the length of the dashed side of TN(L) grow linearly as L→∞,
hence the support of measures µN(L) is inside [−C;C] for some C > 0.

So, both assumptions of Theorem 17.6 hold, hence the correlation functions
of uniformly random tilings near (Lx,Ly) converge to those of EGTI with the
same slope.

Proof of Theorem 17.6 For the first part note that the convergence of mea-
sures µn imply the convergence of height functions on the dashed side of the
boundary, hence height functions on the boundaries of TN converge and we
have a limit shape.

The proof of the second part is similar to the hexagon case (which is a partic-
ular case where all teeth are concentrated near end-points of the dashed side):
we study the asymptotic behaviour of the correlation kernel K−1((y,m),(x,n))
using the steepest descent method. Here we cover only the main differences
from the hexagon case, for the full detailed exposition see [Gorin16].

Recall that the correlation kernel is given by the inverse Kasteleyn matrix

(−1)y−x+m−nK−1((y,m),(x,n)) =−1m<n1y≤x
(x− y+1)n−m−1

(n−m−1)!

+
(N −n)!

(N −m−1)!

˛
C(y,...,t1−1)

dz
˛

C(∞)
dw

1
w− z

(z− y+1)N−m−1

(w− x)N−n+1

N

∏
i=1

w− ti
z− ti

.

The behaviour of the indicator part is the same as in the hexagon case, so
we will focus on the double integral. Let T denote the set {t1, . . . , tN} and
T = Z\T . Then the integrand has the form

1
(w− x)(w− x+N −n)

exp(G1(z)−G2(w))
(w− z)

where

G1(z) =− ∑
t∈T

ln(z− t)+
y−1

∑
i=y−N+m

ln(z− i)

=− ∑
d∈T \[y−N+m;y−1]

ln(z−d) + ∑
d′∈[y−N+m;y−1]∩T

ln(z−d′)

and G2(w) is the same as G1(z) with y,m replaced by x,n.
Recall that in order to use the steepest descent method we want to find suit-

able contours s.t. the exponent will be negative and the whole expression will
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vanish as N → ∞. To do it, we have taken critical points of Gi as N → ∞,
and constructed contours ℑ Gi = const passing through them. In the hexagon
case there were only two critical points, but now there can be more, making
the construction of the contours seem more complicated. Fortunately, next two
lemmas show that actually there are still no more than two nonreal critical
points.

Lemma 17.8. Equation G′
1(z) = 0 has either zero or two nonreal roots. More-

over, in the latter case the roots are complex conjugate.

Proof Rewrite G′
1(z) = 0 as

−∑
d

1
z−d

+∑
d′

1
z−d′ = 0. (17.1)

Let M denote the number of terms in (17.1). Multiplying (17.1) by a common
denominator, we get a degree M −1 polynomial with real coefficients. Hence
all roots of G′

1(z) = 0 are either real or form pairs of complex conjugate roots.
So it is enough to show that there always are at least M−3 real roots.

Note that the restriction of G′
1(z) to the real line is a real function with

M simple poles. Moreover, all poles outside of [y−N +m;y− 1] have nega-
tive residues, while poles inside have positive residue. Then consecutive poles
di,di+1 s.t.

y−N +m ̸∈ (di,di+1], y−1 ̸∈ [di,di+1)

have residues of the same sign. Since there are M−1 pairs of consecutive poles
and only two pairs can violate condition on y− 1 and y−N +m above, there
are M − 3 pairs of consecutive poles with residues of the same sign. But any
continuous real function has a zero between simple poles with the residues of
the same sign. Hence G′

1(z) has at least M−3 real roots.

For N → ∞ set

x = Nx̂+∆x, m = Nn̂+∆m,

y = Nx̂+∆y, n = Nn̂+∆n,

Let

Ĝ(ẑ) =
ˆ x̂

x̂+n̂−1
ln(ẑ− t)dt −

ˆ
R

ln(ẑ− t)µ(t)dt.

Lemma 17.9. Ĝ(ẑ) has either zero or two complex conjugate roots.
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Proof Note that

G′
1(Nẑ) =− ∑

t∈T

1
N(ẑ− t/N)

+
y−1

∑
i=y−N+m

1
N(ẑ− i/N)

Both sums are Riemann sums of integrals in

Ĝ′(ẑ) =−
ˆ
R

1
ẑ− t

µ(t)dt +
ˆ x̂

x̂+n̂−1

1
ẑ− t

dt

hence G′
1(Nẑ) ⇒ Ĝ′(ẑ) uniformly on compact subsets of C\[−D,D], where

D is a large enough real number. Then by Hurwitz’s theorem the zeroes of
G′

1(Nẑ) converge to zeroes of Ĝ′(ẑ), hence Ĝ has no more than two complex
conjugate critical points.

Call a pair (x̂, n̂) good if there are two complex conjugate critical points of
Ĝ(ẑ), let τ(x̂, n̂) denote the critical point in the upper half-plane. Then 1

N Gi(Nẑ)
converge to Ĝ(ẑ) and as N → ∞ we have

exp(G1(Nẑ)−G1(Nŵ))≈ exp(N(Ĝ(ẑ)− Ĝ(ŵ)))

Now we are in the same situation as in the last lecture and repeating the steepest
descent argument we get (after change of variables)

(−1)y−x+m−nK−1((y,m),(x,n))−→ 1
2πi

ˆ
ξ

ξ̄

v∆y−∆x−1(1− v)∆m−∆ndv,

where ξ = τ−x̂
τ−x̂+1−n̂ and the contour between ξ and ξ̄ intersects R in [0,1]

if ∆m ≥ ∆n or in (−∞;0) otherwise. As noted in the previous lecture, this
is exactly correlation kernel of EGTI measure. Moreover, in the end of the
previous lecture we proved that the slope of this EGTI measure must match
the slope of the limit shape.

To finish the proof we must show that the ”good” points above (i.e. the points
s.t. τ(x̂, n̂) is well defined) are exactly the points s.t. the slope is nonextreme.
Recall that the slope (p , p , p ) can be directly recovered from the correla-
tion kernel by looking at the first correlation function, see Corollary 13.16 and
Remark 13.17. The three components of the slope (which we intentionally do
not write as , , here in order to avoid the confusion between two coordinate
systems in Lecture 13 and in Lectures 14,16) are

p1(x̂, n̂) = lim
N→∞

K−1((Nx̂,Nn̂),(Nx̂,Nn̂)) =
1

2πi

ˆ
ξ

ξ̄+
v−1dv

=
ln+(ξ )− ln+(ξ̄ )

2πi
=

Arg ξ

π
,
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p2(x̂, n̂) = lim
N→∞

K−1((Nx̂,Nn̂),(Nx̂−1,Nn̂+1)) =
1

2πi

ˆ
ξ

ξ̄

(1− v)−1dv

=
− ln+(1−ξ )+ ln+(1− ξ̄ )

2πi
=−Arg(1−ξ )

π
,

p3(x̂, n̂) = lim
N→∞

K−1((Nx̂,Nn̂),(Nx̂,Nn̂+1)) =− 1
2πi

ˆ
ξ

ξ̄

v−1(1− v)−1dv

=−
ln−( ξ

1−ξ
)− ln−( ξ̄

1−ξ
)

2πi
= 1−

Arg( ξ

1−ξ
)

π
.

(the contours pass through [0,1] in the first case and through (−∞,0) in the sec-
ond and third cases, ln+(z) is a branch of ln(z) defined on C\(−∞;0), ln−(z)
is a branch defined on C\(0,∞)).

This computation shows that the three components of the slope (multiplied
by Π) are precisely the angles of the triangle with vertices 0,1,ξ (and therefore,
ξ is the Kenyon-Okounkov cooridnate). Hence for a “good”, ξ is complex and
the slope is nonextreme. For the other direction see [Gorin16].



Lecture 18: Edge limits of tilings of
hexagons

In this lecture we study the edge limits (as opposed to the bulk limits which
we investigated in several previous lectures) of the uniformly random tilings
of the hexagon. We start by explaining what we mean by such limits.

Let us look back at Figures 1.3 or 1.5 in Lecture 1. Near the top of the
pictures we see a frozen region filled by green lozenges. As we move down,
we observe the boundary of this region formed by paths built out of red and
yellow lozenges of two other types. We would like to understand the scaling
limit of this collection of paths right at the frozen boundary or, equivalently, at
the edge of the liquid region.

We do not need to be close to the frozen region in order to identify paths
as we saw in Lecture 2. Two types of lozenges always form non-intersecting
paths, as in Figure 18.1. In terms of these paths, we are trying to understand
the scaling limit of the top-most path, of the second top-most path, etc.

We expect to see some limiting family of continuous non-intersecting paths,
under appropriate rescaling. But what scale should we choose to see a nontriv-
ial limit? We need to choose two scalings, one in the direction transversal to
the frozen boundary (vertical direction in Figure 18.1) and one in the direction
tangential to the frozen boundary (horizontal direction in Figure 18.1).

In the first part of the lecture, we give two heuristics to guess the transversal
and tangential rescalings. Later we sketch a rigorous analysis.

18.1 Heuristic derivation of two scaling exponents

For the first heuristic, we notice that the density of the two types of lozenges
that we’re interested in behaves as C

√
x (for some constant C > 0) in a neigh-

borhood of the edge of the liquid region, where x is the distance from the frozen
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L1/3

L2/3

Figure 18.1 A tiling of a hexagon, corresponding non-intersecting paths, and a
L2/3 ×L1/3 window for observing the edge limit.

Figure 18.2 Left panel: unit hexagon and corresponding frozen boundary. Right
panel: asymptotic density of horizontal lozenges along the vertical line x = 0.
We use formulas from [CohnLarsenPropp98, Theorem 1.1].

region re-scaled by the linear size L of the hexagon. One way to see this
√

x
behavior is through the relation of densities to the complex slope. The latter
for the hexagon is found as a solution to a quadratic equation, see Lectures
10 or 16. The square root in the formula for the solution of a quadratic equa-
tion eventually gives rise to the desired C

√
x behavior of the densities. Figure

18.2 shows the plot of the complimentary density of the lozenges of the third
type along one particular vertical section of the hexagon. We remark that the
same square root behavior at the edges also appears in lozenge tilings of more
complicated domains.

If we (non-rigorously) assume that the
√

x behavior of the density extends
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up to the local scales, then we can deduce one the transversal edge scaling as
a corollary. Indeed, if the k-th path is at (vertical) distance xk from the frozen
boundary, then we expect

ˆ xk/L

0
C
√

xdx ≈ k/L,

implying xk =C′ ·L1/3. Thus, we expect the k–th path to be at distance of order
L1/3 from the frozen boundary and the transversal rescaling should be L1/3.

For the second heuristic, note that, locally, paths look like random walks
with up-right and down-right steps (these steps correspond to lozenges of types

and , respectively). Moreover, there are rare interactions between paths,
since the spacings are large (L1/3 due to the first step). Hence, on the local
scale we expect to see some version of a random walk, and therefore, zooming
further away, in a proper rescaling we should locally see some “Brownian-like
behavior”. For the standard Brownian bridge B(t), 0 ≤ t ≤ T , the variance of
B(αT ) (for 0<α < 1) is α(1−α)T , so for large T one needs a

√
T transversal

rescaling to see non-trivial fluctuations. Since in our case we already fixed the
transversal rescaling to be of order L1/3, then the horizontal rescaling should
be given by a square of that, i.e. L2/3, as in Figure 18.1.

18.2 Edge limit of random tilings of hexagons

For the rigorous part of the lecture, we consider a regular hexagon of side-
length N/2 (for N ranging over even positive integers) and recall the notation
and the result of Theorem 16.1 (yet again we switch from lozenges of Figure
18.1 to those of Figures 14.2, 16.1). We know an explicit expression for the
probabilities of the kind

Prob(there are lozenges at (x1,n1), . . . ,(xk,nk))

= det
(
K−1((xi,ni);(x j,n j))

)
1≤i, j≤k . (18.1)

Let us look at the paths formed by two other (not ) types of the lozenges.
The correlation functions for points of such paths can be found through the
following complementation principle.

Lemma 18.1. If P is a determinantal point process on a countable set L (e.g.,
one can take L = Z) whose correlation functions are given by the minors of
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the correlation kernel C(x,y), then the point process of complementary config-
urations P = L \P is a determinantal point process with correlation kernel
C(x,y) = δx,y −C(x,y).

Proof Let k ∈ N be any positive integer, then

Prob
(
x1, . . . ,xk ∈ P

)
= Prob(x1, . . . ,xk /∈ P)

= 1− ∑
1≤i≤k

Prob(xi ∈ P)+ ∑
1≤i, j≤k

i ̸= j

Prob(xi,x j ∈ P)−·· ·

= 1− ∑
1≤i≤k

C(xi,xi)+ ∑
1≤i, j≤k

i̸= j

det
[

C(xi,xi) C(xi,x j)

C(x j,xi) C(x j,x j)

]
−·· ·

= det [δi, j −C(xi,x j)]1≤i, j≤k ,

where the first equality is obvious, the second is the principle of inclusion-
exclusion, the third is because P is a determinantal point process, and the last
equality follows from using the multilinearity (and definition) of the determi-
nant.

From (18.1) and the previous lemma, we have

Prob(non-intersecting paths go through (x1,n1), . . . ,(xk,nk))

= det
(
δi, j −K−1((xi,ni);(x j,n j))

)
1≤i, j≤k . (18.2)

Thus we would like to compute the limit of δ(x1,n1),(x2,n2) −
K−1((x1,n1);(x2,n2)) when (x1,n1) and (x2,n2) are close to the bound-
ary of the frozen region.

Recall the result of Theorem 16.1:

K−1 ((x1,n1);(x2,n2))

= (−1)x1−x2+n1−n2+11{n1<n2}1{x1≤x2}
(x2 − x1 +1)n2−n1−1

(n2 −n1 −1)!

+(−1)x1−x2+n1−n2
(N −n2)!

(N −n1 +1)!

˛
C(x1,x1+1,...,t1−1)

dz
2πi

˛
C(∞)

dw
2πi

× 1
w− z

(z− x1 +1)N−n1−1

(w− x2)N−n2+1

(w+1)N/2(w+N +1)N/2

(z+1)N/2(z+N +1)N/2
. (18.3)

We will zoom in near the right part of the frozen boundary, circled in Figure
18.3. From our initial heuristics, we want the points (x1,n1) and (x2,n2) to
be separated by the distance O(N2/3) in the tangential direction to the frozen
boundary and by O(N1/3) in the normal direction.
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n

N

0 x

N/2

N/2

N/2

Figure 18.3 Hexagonal domain, boundary of the frozen region, and the part of
the boundary where we zoom in to see the edge limit.

For that we specify the points via

n1 = ñN +(∆n1)N2/3, n2 = ñN +(∆n2)N2/3,

x1 = x(n1)+(∆x1)N1/3, x2 = x(n2)+(∆x2)N1/3.
(18.4)

At this moment we need to be careful in specifying x(n1),x(n2) — the curva-
ture of the frozen boundary is important (because of the different tangential and
normal scalings) and we are not allowed to simply use linear approximation.

Taking logarithm of the z–part of the integrand in (18.3), we define Gn1
N (z)

through

Gn1
N (z) :=

N−n1

∑
i=1

ln(z− x+ i)−
N/2

∑
i=1

ln(z+ i)−
N/2

∑
i=1

ln(z+N + i).

The equation ∂

∂ z Gn1
N (z) = 0 is

∂

∂ z

(
N−n1

∑
i=1

ln(z− x+ i)−
N/2

∑
i=1

ln(z+ i)−
N/2

∑
i=1

ln(z+N + i)

)
= 0.

Instead of this equation, it is easier to consider its N → ∞ approximation:

∂

∂ z

(ˆ 1− n1
N

0
ln
( z

N
− x

N
+u
)

du

−
ˆ 1/2

0
ln
( z

N
+u
)

du−
ˆ 1/2

0
ln
( z

N
+1+u

)
du

)
= 0.
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The above equation is quadratic in z and one needs to take x = x(n1) so that
this equation has a double real root zc. The value of x(n2) is obtained through
the same procedure.

The steepest descent analysis of the double contour integral is done similarly
to the bulk case, except that now two complex conjugate critical points merge
into a single double critical point on the real axis. In the neighborhood of the
critical point we have

Gn1
N (z)≈ Gn1

N (zc)+(z− zc)
3
α, (18.5)

for some explicit α .
Previously, in the bulk analysis the steepest descent contours of integration

passed through two critical points, but now there is only one critical point zc,
so the situation is degenerate. One can obtain the configuration of the contours
for the present case by continuously deforming Figure 16.2 into the situation
of merging critical points. The z contour should pass through zc and w contour
should pass through similarly defined wc (which is close to zc, since n2 is close
to n2) under such angles as to guarantee the negative real part of Gn1

N (z)−
Gn2

N (w) after using (18.5) in a neighborhood of the critical point.
For the limit, we zoom-in near the critical points, where the contours can

be chosen to look like in Figure 18.4. As in the bulk case, one also needs to
make sure that this local picture can be extended to the global steepest descent
contours (such that the real part of the exponent is still maximized near the
critical point) — we omit this part of the argument. We reach the following
theorem and refer to [Petrov12a, Section 8] for more details.

Theorem 18.2. In the limit regime (18.4), which describes the random lozenge
tiling near the boundary of the frozen region, we have

lim
N→∞

N1/3 (
δ(x1,n1),(x2,n2)−K−1 ((x1,n1);(x2,n2))

)
=A ((∆x1,∆n1);(∆x2,∆n2)) ,

where

A ((∆x1,∆n1);(∆x2,∆n2)) :=−1∆n1<∆n2(residue of the integral at its pole)

+
1

(2πi)2

ˆ ˆ
exp
(

w̃3 − z̃3

3

)
exp(−w̃∆x2β + z̃∆x1β )

β dw̃dz̃
w̃− z̃+ γ(∆n1 −∆n2)

,

(18.6)

and where β ,γ are explicit (by rescaling ∆xi,∆n j properly, these constants can
actually be removed from the formula). The contours are as in Figure 18.4.

Remark 18.3. The z and w integration variables were shifted by different
amounts zc and wc when getting (18.6). Hence 1

w−z turned into 1
w̃−z̃+γ(∆n1−∆n2)

.
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w-contourz–contour

π
3

Figure 18.4 Local configuration of the steepest descent integration contours for
the edge limit. The figure is centered at the critical point.

The tips of the contours (where they intersect the real axis) should have suf-
ficient distance between themselves, so that the denominator does not vanish
on the contours. The factor exp(−w̃∆x2β + z̃∆x1β ) in (18.6) appears because
Gn1

N (z) has x = x(n1) in its definition, but in the integrand of (18.3) we rather
have x = x1 (and similarly for Gn2

N (w)).

Remark 18.4. The convergence of the correlation kernels implies conver-
gence of the paths in the sense of finite-dimensional distributions. The lim-
iting object is defined through its correlation function given by the minors of
(18.6). The definition of the correlation functions is slightly more complicated
for the continuous (rather than discrete) state space, see, e.g., [Johansson06],
[Borodin11], or [BorodinGorin12, Section 3] for the details in determinantal
contexts and [DaleyVere-Jones03] for the general theory.

Exercise 18.5. Finish the proof of Theorem 18.2 and compute the values of β

and γ .

A rescaled version of the kernel A above is known as the extended Airy
kernel in the literature. Here is its standard form:

KAiry
extended ((x, t);(y,s)) :=

{´
∞

0 e−λ (t−s)Ai(x+λ )Ai(y+λ )dλ , if t ≥ s,

−
´ 0
−∞

e−λ (t−s)Ai(x+λ )Ai(y+λ )dλ , if t < s,
(18.7)
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where

Ai(z) :=
1

2πi

ˆ
exp
(

v3

3
− zv

)
dv, (18.8)

is the Airy function1; the contour in the integral is the upwards-directed con-
tour which is the union of the lines {e−iπ/3t : t ≥ 0} and {eiπ/3t : t ≥ 0} (it
looks like the w̃–contour in Figure 18.4).

Exercise 18.6. Match KAiry
extended((x, t);(y,s)) with A ((x, t);(y,s)) in Theorem

18.2 by substituting (18.8) into (18.7), and explicitly evaluating the λ -integral.

The conclusion is that the ensembles of extreme paths (edge limit) in ran-
dom tilings of large hexagons converge to the random path ensemble whose
correlation functions are minors of the extended Airy kernel.

18.3 The Airy line ensemble in tilings and beyond

It is believed that Theorem 18.2 is not specific to the hexagons.

Conjecture 18.7. The extended Airy kernel arises in the edge limit of the uni-
form lozenge tilings of arbitrary polygonal domains, as the mesh size of the
grid goes to zero.

The conjecture has been proved in certain cases (for trapezoids) in
[Petrov12a], [DuseMetcalfe17]. The first appearance of the extended Airy ker-
nel is in [PrahoferSpohn01] in the study of the polynuclear growth model
(PNG). Closer to the tilings context, [FerrariSpohn02] were first to find the
extended Airy kernel in the edge limit of the qVolume–weighted plane parti-
tions (we will discuss this model of random plane partitions in Lecture 22) and
[Johansson05] found it in the domino tilings of the Aztec diamons.

The random two-dimensional ensemble (a random ensemble of paths) aris-
ing from the extended Airy kernel is called the Airy line ensemble. It is a
translation-invariant ensemble (in the space direction). In the next lecture, we
will learn more about it and tie it to other subjects in probability. As a warm-
up, let us mention that the one-point distribution of the “top-most” path is
known as the Tracy-Widom distribution2. This distribution also appears in var-
ious other contexts:

1 Airy function solves the second order differential equation ∂ 2

∂ z2 Ai(z)− zAi(z) = 0.
2 The wikipedia page https://en.wikipedia.org/wiki/Tracy-Widom_distribution

is a good initial source of the information

https://en.wikipedia.org/wiki/Tracy-Widom_distribution
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1 In random matrix theory: the TW distribution is (the limit of) the dis-
tribution of the largest eigenvalue of a large Hermitian random matrices
of growing sizes, see reviews [Forrester10, AndersonGuionnetZeitouni10,
AkemannBaikFrancesco11]. We are going to explain in more details the link
between tilings and random matrices in the next two lectures.

2 A closely related applied point of view says that TW distribution appears
as an asymptotic law in statistical hypothesis testing procedures involving
sample covariance matrices, sample canonical correlations between various
types of data, multivariate analysis of variance (MANOVA). Note that in
order to see our TW distribution in such a context one needs to deal with
complex data, which might be less common. A more widespread setting of
real data leads to the appearance of the closely related β = 1 Tracy-Widom
distribution TW1, see, e.g., [Johnstone08], [BykhovskayaGorin20] for the
examples of such results.

3 In interacting particle systems: the TW distribution arises as the limit-
ing particle current for various systems, including the Totally Asymmetric
Simple Exclusion Process (TASEP). We do not have time to discuss the
direct links between tilings and interacting particle systems in these lec-
tures, and we instead only refer to reviews [Johansson06, BorodinGorin12,
BorodinPetrov13, Romik15].

4 In directed polymers: the TW distribution governs the asymptotic law of
the partition function for directed polymers in random media and related
solution of the Kardar–Parisi–Zhang stochastic partial differential equation,
see reviews [Corwin11, QuastelSpohn15]

5 In asymptotic representation theory: the TW distribution is the asymp-
totic law for the first row of random Young diagrams encoding decompo-
sition of representations (typically of unitary or symmetric groups) into ir-
reducible components. The most celebrated result of this kind deals with
Plancherel measure for the symmetric groups, see reviews [Johansson06,
BorodinGorin12, Romik15, BaikDeiftSuidan16].



Lecture 19: The Airy line ensemble and
other edge limits

19.1 Invariant description of the Airy line ensemble

In the previous lecture we found Airy line ensemble as the edge limit of the
uniformly random tilings of hexagons. We described it in terms of its correla-
tion functions, which are minors of the extended Airy kernel of (18.7). On the
other hand, in the bulk, we could describe the limiting object without formulas:
it was a unique Gibbs, translation–invariant, ergodic measure of a given slope.

Is there a similar description for the Airy line ensemble?

Conjecturally, the answer is yes, based on the following three facts:
(1) The Airy line ensemble is translation–invariant in the t (i.e., horizontal)
direction — this immediately follows from (18.7).

(2) The Airy line ensemble possesses an analogue of the Gibbs property known
as the Brownian Gibbs property. Let {Li(t)}i≥1 be an ensemble of random
paths such that L1(t) ≥ L2(t) ≥ . . . , for all t ∈ R. It satisfies the Brownian
Gibbs property if the following is true. Fix arbitrary k = 1,2, . . . , two reals
a< b, k reals x1 > · · ·> xk, k reals y1 > · · ·> yk and a trajectory f (t), a≤ t ≤ b,
such that f (a)< xk and f (b)< yk. Then the conditional distribution of the first
k paths L1, . . . ,Lk conditioned on Li(a) = xi, Li(b) = yi, for 1≤ i≤ k, and on
Lk+1(t) = f (t), for a ≤ t ≤ b, is the same as that of k independent Brownian
bridges conditioned to have no intersection and to stay above of f (t), a≤ t ≤ b,
see Figure 19.1.

Theorem 19.1 ([CorwinHammond11]). For the Airy line ensemble Ai(t), i =
1,2, . . . , with correlation functions given by the minors of (18.7), let Li(t) :=

1√
2
(Ai(t)− t2), for all i ≥ 1. Then the random path ensemble {Li}i≥1 satisfies

the Brownian Gibbs property.
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x1

x2 y2

y1

f(t)

a b x

t

Figure 19.1 The Brownian Gibbs property: given x1, x2, y1, y2 and f (t), a ≤ t ≤
b, the distribution of the dashed portion of the paths is that of non-intersecting
Brownian bridges staying above f (t).

Roughly speaking, the proof is based on the Gibbs resampling property
for the tilings: clearly, the non-intersecting paths coming from uniformly ran-
dom tilings, as in Figure 18.3, satisfy a similar Gibbs property with Brownian
bridges replaced by simple random walks. We know that these paths converge
to the Airy line ensemble and simultaneously non-intersecting random walks
converge to non-intersecting Brownian bridges in the same regime. What re-
mains to show (and what is the essense of the [CorwinHammond11] argument)
is that the topology of the convergence toward the Airy line ensemble can be
made strong enough, so that to guarantee that the Gibbs property survives in
the limit. The subtraction of t2 in the statement comes from the curvature of
the frozen boundary near the edge, which was a part of x(n) in (18.4).

(3) [CorwinSun14] proved that the sequence {Ai(t)+C}i≥1 is a translation–
invariant, ergodic line ensemble, for any constant C.

The additive constant C mentioned in the last point plays the role of the
slope (s, t) for the corresponding result at the bulk. Taking it into account, the
following conjecture has been formulated by Okounkov and Sheffield in 00’s:

Conjecture 19.2. {Ai(t)}i and its deterministic shifts (in the vertical direc-
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tion) are the unique translation–invariant, ergodic line ensembles such that
the sequence { 1√

2
(Ai(t)− t2)}i≥1 has the Brownian Gibbs property.

Conceptual conclusion. The Airy line ensemble should appear whenever we
deal with a scaling limit of random ensembles of non-intersecting paths at the
points where their density is low.

19.2 Local limits at special points of the frozen boundary

In the previous lecture we saw the appearance of the Airy line ensemble at a
generic point where the frozen boundary is smooth. However, as we tile vari-
ous complicated polygons, the frozen boundary develops various singularities,
where the asymptotic behavior changes.

• One type of special points of the boundary arises in any polygons. These are
the points, where the frozen boundary is tangent to a side of the polygon.
For instance, in the hexagon we have six such points. In this situation the
correct scaling factor in the tangential direction to the frozen boundary is
L1/2 (where L is the linear size of the domain) and we do not need any
rescaling in the normal direction. The limiting object GUE–corners process
connects us to the random matrix theory and we are going to discuss it in
the next section and continue in the next lecture.

• The frozen boundary can develop cusp singularities. For instance, they are
visible in the connected component of the boundary surrounding the hole in
our running example of the holey hexagon, see Figure 24.2 in Lecture 1 and
Figures 24.1, 24.5 in Lecture 24. There are two types of these cusps: one
type is presented by two vertical cusps in the above figure, which separate
two types of frozen regions; the limit shape develops a corner at such cusp.
In this situation the scaling factors are L1/3 in the direction of cusp and finite
in the orthogonal direction. The scaling limit is known as Cusp–Airy pro-
cess, see [OkounkovReshetikhin06], [DuseJohanssonMetcalfe15]. We also
observe two cusps of another type in the picture: these cusps are adjacent to
a single type of the frozen region each; the limit shape is C1–smooth near
these cusps. The fluctuations of the discrete boundaries of such cusp are of
order L1/4 and one needs to travel the distance of order L1/2 along the cusp
to see a non-trivial 2d picture. The limit is known as the (extended) Pearcey
process, see [OkounkovReshetikhin05, BorodinKuan08] for its appearances
in tilings.

• Another possible situation is when the frozen boundary (locally near a
point) has two connected components, which barely touch each other.
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As in the cusp case, there are two subcases depending on how many
types of frozen regions we see in a neighborhood and we refer to
[AdlerJohanssonMoerbeke16, AdlerJohanssonMoerbeke17] and references
therein for exact results. The limiting processes which appear in this situa-
tion share the name Tacnode process.

Together with generic points the above list gives six different scaling limits,
corresponding to six ways the frozen boundary can look like near a given point.
As [AstalaDusePrauseZhong20, Section 9] suggests, this list corresponds to
six types of local behaviors of the frozen boundaries and, as long as we deal
with uniformly random tilings of polygons with macroscopic side lengths, no
other types of behavior for the frozen boundary should occur.

In all the above situations the processes which appear in the limit are be-
lieved to be universal (and their universality extends beyond random lozenge
tilings), but such asymptotic behavior was proven rigorously only for specific
situations.

Let us also remark that if we allow non-uniform measures on tilings1, then
the number of possibilities starts to grow and we can encounter more and
more exotic examples. Just to give one example: [BorodinGorinRains09] stud-
ied tilings with weight proportional to the product w( ) over all horizontal
lozenges in tilings. The possible choices for w(·) included the linear function
of the vertical coordinate of the lozenge . Tuning the parameters, one can
make this weight to vanish near one corners of the hexagon, leading to the
frozen boundary developing a node, see Figure 19.2. Again one expects to see
a new scaling limit near this node.

19.3 From tilings to random matrices

Our next topic is the link between random tilings and random matrix theory.
Indeed, historically the distribution A1(0) of the “top-most” path of the Airy
line ensemble at time t = 0, known as the Tracy-Widom distribution, first ap-
peared in the random matrix theory. At this point, one might be wondering,
what do tilings have in common with matrices and why do the same limiting
objects appear in both topics and we are going to explain that.

The general philosophy comes from the notion of semiclassical limit in rep-
resentation theory: large representations of a Lie group G behave like orbits of
the coadjoint action on the corresponding Lie algebra g.

1 Alternatively, one can tile more complicated domains than macroscopic polygons, e.g., by
allowing various tiny defects to the domain boundaries.
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Figure 19.2 Random lozenge tiling of a 70×90×70 hexagon and corresponding
limit shape. Weight of tiling is proportional to the product of the vertical coordi-
nates of all its horizontal lozenges (shown in gray).

When G = U(N), the Lie algebra is g = iHerm(N) ∼= Herm(N) (the latter
is the space of complex Hermitian matrices). We care about this case, because
tilings in the hexagonal lattice are linked to the representation theory of U(N).
This is illustrated by the following proposition, which claims that the number
of tilings of certain domain can be calculated via Weyl’s formula for dimen-
sions of U(N) irreducible representations.

Proposition 19.3. The number of tilings of the trapezoid with teeth at positions
t1 < t2 < · · ·< tN , as in Figures 14.1, 14.2, is

∏
1≤i< j≤N

t j − ti
j− i

and coincides with the dimension of the irreducible representation of U(N)

with highest weight λ1 ≥ λ2 ≥ ·· · ≥ λN such that tN+1−i = λi +N − i, i =
1, . . . ,N.

Proof This is left as an exercise, we only mention three possible approaches:

• One can identify the terms in the combinatorial formula for the expansion
of Schur polynomials sλ (x1,x2, . . . ,xN) into monomials with tilings of the
trapezoid. Then use known formulas for evaluations of Schur polynomials
sλ (1,1, . . . ,1). We refer to [Macdonald95, Chapter I] for the extensive infor-
mation on the Schur polynomials and to [BorodinPetrov13, Section 2.2] for
the review of the interplay between tilings and symmetric polynomials. This
interplay appears again in Lecture 22 and is explained there in more details.



162 Lecture 19: The Airy line ensemble and other edge limits

• Identify tilings of the trapezoid with basis elements of the irreducible rep-
resentation Vλ of U(N) associated to λ . Then use Weyl’s formula to find
the dimension of the irreducible representation of U(N) corresponding to λ .
See, e.g., [BorodinPetrov13, Section 2.2] for more details on this approach
and further references.

• Identify tilings of the trapezoid with families of non-intersecting paths as
in the previous lecture. Then use Theorem 2.5 from Lecture 2 to count the
number of such non-intersecting paths via determinants, and use the evalu-
ation formulas from [Krattenthaler99] to compute these determinants.

Exercise 19.4. Identifying hexagon with a trapezoid as in Figure 18.3, use
Proposition 19.3 to give another proof of MacMahon formula (1.1) for the
total number of tilings of A×B×C hexagon.

Remark 19.5. Enumeration of tilings of trapezoids possessing axial symme-
try also admits a connection to representation theory, this time of orthogonal
and symplectic groups. We refer to [BorodinKuan10] and [BufetovGorin13,
Section 3.2] for some details.

We now explain an instance of the semiclassical limit by making a down-
to-earth computation for random lozenge tilings of a hexagon. For that let us
investigate the law of the N horizontal lozenges at distance N from the left edge
in a uniformly random tiling of the A×B×C hexagon, as in Figure 19.3. The
vertical line at distance N from the left intersects two sides of the hexagon and
splits it into two parts. The left part has a geometry of a trapezoid. The right
part can be also identified with trapezoid, if we extend it to the continuation of
two sides of the trapezoid, as in the right panel of Figure 19.3.

Using Proposition 19.3 and denoting the positions of the desired N hori-
zontal lozenges through t1, . . . , tN , we compute for the case N < A = B = C
(general case can be obtained similarly)

Prob(t1, . . . , tN) =
#tilings of left trapezoid×#tilings of right trapezoid

#tilings of the hexagon

∝ ∏
1≤i< j≤N

(t j − ti) · ∏
1≤a<b≤2A−N

(̃tb − t̃a)

∝ ∏
1≤i< j≤N

(t j − ti)2 ·
N

∏
i=1

(ti +1)A−N(A+N − ti)A−N . (19.1)

(Recall the Pochhammer symbol notation: (x)n := x(x+ 1) · · ·(x+ n− 1) =
Γ(x+n)/Γ(x).)

Above, 0 ≤ t1 < · · · < tN ≤ A+N − 1 are the positions of the horizontal
lozenges at level N. Equivalently, they are the teeth of the left trapezoid. On
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N = 3

A = 3

B = 4
C = 5

Figure 19.3 Three horizontal lozenges at the vertical line at distance 3 of the left
edge in 3×4×5 hexagon. In order to find the law of these lozenges, one needs to
count tilings of two trapezoids: to the left and to the right from the cut.

the other hand, t̃1 < t̃2 < .. . < t̃2A−N are the positions of the teeth of the right
trapezoid. That is, {t̃1, . . . , t̃A−N} = {−1, . . . ,−(A−N)}, {t̃A+1, . . . , t̃2A−N} =

{A+N, . . . ,2A−1} and {t̃A−N+1, . . . , t̃A}= {t1, . . . , tN}.

Exercise 19.6. Generalize the computation (19.1) to arbitrary A × B ×C
hexagons and arbitrary values of 0 ≤ N ≤ B+C.

Exercise 19.7. Find an analogue of (19.1) for qVolume–weighted lozenge tilings
of the hexagon.2

We would like to study the limit A → ∞ of the distribution (19.1), while
keeping N fixed. It is clear that E[ti] ≈ A/2 when A is large compared to N,
because of the symmetry of the model. Hence, recentering by A

2 is necessary.
Let us guess the magnitude of the fluctuations by looking at the simplest N = 1
case. From (19.1), we have Prob(t) ∝ (t +1)A−1(A+1− t)A−1, which is pro-
portional to the product of two binomial coefficients. Recall the De Moivre–
Laplace Central Limit Theorem theorem, which says that if Prob(t) was pro-
portional to a single binomial coefficient, then the order of the fluctuations, as
A → ∞, would be

√
A. It turns out that the same is true in our case of the prod-

uct of two binomial coefficients. Thus we expect to see a non-trivial scaling

2 The computation is possible for more complicated distributions on tilings as well. In
particular, [BorodinGorinRains09, Section 10] studies the situation when weights of lozenges
are given by elliptic functions in their coordinates.
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limit in the following regime:

ti =
A
2
+
√

Axi, i = 1, . . . ,N. (19.2)

We plug (19.2) into (19.1) and send A → ∞. With (19.2), we have

∏
1≤i< j≤N

(ti − t j)
2

∝ ∏
1≤i< j≤N

(xi − x j)
2, (19.3)

where the hidden constant is independent of the xi’s. Moreover,

(ti +1)A−N(A+N − ti)A−N =
(ti +A−N)!

ti!
(2A− ti −1)!

(A+N − ti −1)!

=

(
3A
2 −N +

√
Axi

)
!(

A
2 +

√
Axi

)
!

(
3A
2 −

√
Axi −1

)
!(

A
2 +N −

√
Axi −1

)
!
.

We can use Stirling’s formula M! =
√

2πM(M/e)M(1+o(1)), M → ∞, in the
formula above. It is safe to ignore N and other finite order constants for the
computation, as only growing terms will give a non-trivial contribution. Using
the asymptotic expansion ln(1+ x) = x− x2/2+O(x3), x → 0, we get

(ti +1)A−N(A+N − ti)A−N

≈exp
((

3A
2 +

√
Axi

)(
ln
(

3A
2 +

√
Axi

)
−1
)
+
(

3A
2 −

√
Axi

)(
ln
(

3A
2 −

√
Axi

)
−1
))

exp
(
−
(

A
2 +

√
Axi

)(
ln
(

A
2
+
√

Axi

)
−1
)
−
(

A
2 −

√
Axi

)(
ln
(

A
2 −

√
Axi

)
−1
))

≈exp
(

A
[(

3
2 +

xi√
A

)(
ln
(

1+ 2xi

3
√

A

))
+

(
3
2 −

xi√
A

)
ln
(

1− 2xi

3
√

A

)])
exp
(

A
[
−
(

1
2
+ xi√

A

)(
ln
(

1+ 2xi√
A

))
−
(

1
2 −

xi√
A

)
ln
(

1− 2xi√
A

)])
≈exp

(
−4

3
x2

i

)
.

As a result, in the regime (19.2), we have

N

∏
i=1

(ti +1)A−N(A+N − ti)A−N =
N

∏
i=1

exp
(
−4

3
x2

i

)
· (1+o(1)). (19.4)

From (19.1), (19.3), and (19.4), we get the following proposition, whose
proof first appeared in [Nordenstam09].

Proposition 19.8. Consider uniformly random tilings of A×A×A hexagon
and let t1, . . . , tN denote the (random) coordinates of N lozenges on the vertical
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line at distance N from the left edge. The N–dimensional vectors ti − A
2√

3A
8


1≤i≤N

converge in distribution to the absolutely continuous probability measure on
{(x1, . . . ,xN) ∈ RN : x1 ≤ ·· · ≤ xN} with density proportional to

∏
1≤i< j≤N

(xi − x j)
2

N

∏
i=1

exp
(
−x2

i
2

)
. (19.5)

We can go further and look not only at level N (at distance N from the base),
but at the first N levels simultaneously. In the tilings model, let t j = (t j

1 < · · ·<
t j

j ) be the positions of horizontal lozenges at the j-th level, counted so that we

have 0 ≤ t j
1 < · · · < t j

j ≤ A+ j− 1. The combinatorics of tilings implies that
the interlacing3 inequalities

t j+1
i+1 > t j

i ≥ t j+1
i , for all relevant i, j.

Proposition 19.9. The N(N +1)/2–dimensional vectors t j
i −

A
2√

3A
8


1≤i≤ j≤N

(19.6)

converge in distribution as A → ∞ to the absolutely continuous probability
measure on

{(x j
i )1≤i≤ j≤N ∈ RN(N+1)/2 : x j+1

i+1 ≥ x j
i ≥ x j+1

i for all relevant i, j}

with density proportional to

∏
1≤i< j≤N

(xN
j − xN

i ) ·
N

∏
i=1

exp
(
−
(xN

i )
2

2

)
. (19.7)

Proof We set

t j
i =

A
2
+

√
3A
8

x j
i .

3 An interlacing triangular array of integers (or, sometimes, reals) satisfying such inequalities is
often called a Gelfand–Tsetlin pattern. The name originates from the labeling with such
patterns of the Gelfand–Tsetlin basis in irreducible representations of unitary groups U(N),
first constructed in [GelfandTsetlin50].
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From Proposition 19.8, the law of tN
i − A

2√
3A
8


1≤i≤N

(19.8)

as A → ∞ has density proportional to

∏
1≤i< j≤N

(xN
j − xN

i )
2 ·

N

∏
i=1

exp
(
−
(xN

i )
2

2

)
· (1+o(1)), A → ∞.

By the Gibbs property (following from the uniformity of random tilings), the
law of the N(N +1)/2–dimensional vectors (19.6) is obtained from the law of
tN
1 < · · · < tN

N dividing by the number of lozenge tilings of the trapezoid with
teeth at the positions tN

i . Therefore, by Proposition 19.3, we need to multiply
the law of the rescaled vector (19.8) by a constant (independent of the tN

i )
multiple of

1
∏1≤i< j≤N (tN

j − tN
i )

∝
1

∏1≤i< j≤N (xN
j − xN

i )
.

The result follows.

So far, we have only discussed random tilings of hexagons and a scaling
limit of their marginals. What is the relation with random matrices, that we
promised? In the next lecture we are going to show that the distribution (19.7)
has random matrix origin: its name is GUE–corners process and it appears in
the celebrated Gaussian Unitary Ensemble.



Lecture 20: GUE–corners process and its
discrete analogues

At the very end of Lecture 19 we obtained an interesting distribution on inter-
lacing arrays of reals {x j

i }1≤i≤ j≤N as a scaling limit for positions of lozenges in
uniformly random tilings of the hexagon near one of the sides of the hexagon.
Our next task is to identify this distribution with the so–called GUE–corners
process.1

20.1 Density of GUE–corners process

For k dimensional real vector u = (u1, . . . ,uk) and (k + 1)–dimensional real
vector v = (v1, . . . ,vk+1) we say that u interlaces with v and write u ≺ v, if

v1 ≤ u1 ≤ v2 ≤ u2 ≤ ·· · ≤ uk ≤ vk+1.

Theorem 20.1. Let X be an N ×N matrix of i.i.d. complex Gaussian random
variables of the form N(0,1)+ iN(0,1) and set M = X+X∗

2 to be its Hermitian
part. Define xm

1 ≤ xm
2 ≤ ·· · ≤ xm

m to be the eigenvalues of the principal top-left
corner of M as in Figure 20.1. Then the array {xm

i }1≤i≤m≤N has the density
(with respect to the N(N+1)/2–dimensional Lebesgue measure) proportional
to

1x1≺x2≺···≺xN ∏
1≤i< j≤N

(xN
j − xN

i )
N

∏
i=1

exp
(
−
(xN

i )
2

2

)
. (20.1)

Our proof closely follows the exposition of [Baryshnikov01], [Neretin03].
One earlier appearance of such arguments is [GelfandNaimark50, Section 9.3].

1 Other name used in the literature is the GUE–minors process. Since, by the definition a minor
is the determinant of a submatrix (rather than the submatrix itself appearing in the definition
of our process), we choose to use the name GUE–corners instead.
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Figure 20.1 Principal submatrices of M.

Proof of Theorem 20.1 We proceed by induction in N with base case N = 1
being the computation of the probability density of the Gaussian law.

For the induction step, we need to verify the following conditional density
computation

Prob
(
xm+1

i = yi +dyi, 1 ≤ i ≤ m+1 | x j
i ,1 ≤ i ≤ j ≤ m

)
?∼ 1xm≺y

∏1≤i< j≤m+1(y j − yi)

∏1≤i< j≤m(xm
j − xm

i )
exp

(
−

m+1

∑
i=1

(yi)
2

2
+

m

∑
i=1

(xm
i )

2

2

)
, (20.2)

where ∼ means proportionality up to a coefficient, which depends on m, but
not on x j

i or yi.
Let Y denote the (m+1)×(m+1) corner and let X denote the m×m corner.

Instead of (20.2) we prove a stronger equality, in which we condition on the full
matrix X , rather than its eigenvalues. We, thus, aim to compute the conditional
law of the eigenvalues of Y given the corner X :

Y =


u1

X
...

um

ū1 . . . ūm v

 .

Note that u1, . . . ,um are i.i.d. complex Gaussians and v is a real Gaussian ran-
dom variable.

In order to shorten the notations we denote x1, . . . ,xm the eigenvalues of X ,
i.e. xi := xm

i . Choose a unitary m × m matrix U , which diagonalizes X , i.e.
UXU∗ = diag(x1, . . . ,xm). Let Ũ be the (m+1)× (m+1) unitary matrix with
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m×m corner U , the unit diagonal element Um+1,m+1 = 1 and vanishing re-
maining elements Um+1,i =Ui,m+1 = 0, 1 ≤ i ≤ m. Set Ỹ = ŨYŨ∗, so that

Ỹ =


x1 u′1

. . .
...

xm u′m
ū′1 . . . ū′m v′

 .

We claim that u′1, . . . ,u
′
m are still i.i.d. Gaussians and v′ is still a real Gaus-

sian random variable. Indeed, the law of these random variables is obtained
by rotating a Gaussian vector with (independent from it) unitary matrix, which
keeps the distribution unchanged.

Since conjugation of Y does not change its eigenvalues, it remains to com-
pute the law of the eigenvalues of Ỹ . For that we evaluate the characteristic
polynomial of Ỹ . Expanding the determinant by the last column, we get

det
(
y · Id− Ỹ

)
=

m

∏
i=1

(y− xi) ·

(
y− v′−

m

∑
i=1

|u′i|2

y− xi

)
. (20.3)

Let us denote |u′i|2 through ξi. Since u′i is a two-dimensional Gaussian vector
with independent N(0,1/2) components, ξi has standard exponential distribu-
tion of density exp(−ξ ), ξ > 0. Since the characteristic polynomial of Ỹ can
be alternatively computed as ∏

m+1
i=1 (y− yi), (20.3) implies

m+1
∏
i=1

(y− yi)

m
∏
i=1

(y− xi)
= y− v′−

m

∑
i=1

ξi

y− xi
. (20.4)

Here is a corollary of the last formula.

Lemma 20.2. We have

ξa =− ∏
m+1
b=1 (xa − yb)

∏1≤c≤m;c ̸=a(xa − xc)
, 1 ≤ a ≤ m, and v′ =

m+1

∑
b=1

yb −
m

∑
a=1

xa.

(20.5)

Proof Multiplying (20.4) with y− xa and then setting y = xa, we get the for-
mula for ξa is obtained. Looking at the coefficient of 1

y in the expansion of
(20.4) into a series in 1

y for large y, we get the formula for v′.

In addition we have the following statement, whose proof we leave as an
exercise.
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Exercise 20.3. In formula (20.4) all the numbers ξa, 1 ≤ a ≤ m are non-
negative if and only if the sequences {xi} and {yi} interlace, i.e. x⃗ ≺ y⃗.

We continue the proof of Theorem 20.1. Since we know the joint distribution
of ξa and v′, and we know their link to {yi} through (20.4), it only remains
to figure out the Jacobian of the change of variables {ξa, 1 ≤ a ≤ m; v′} 7→
{yi, 1 ≤ i ≤ m+1}. Straightforward computation based on Lemma 20.2 shows
that

∂ξa

∂yb
= ξa ·

1
xa − yb

,
∂v′

∂yb
= 1.

Hence, the desired Jacobian is

ξ1 · · ·ξm ·det

 1
1

xa−yb

...
1

 . (20.6)

We can simplify the last formula using the following determinant computation.

Lemma 20.4 (Cauchy determinant formula). For any u1, . . . ,uN , v1, . . . ,vN we
have

det
(

1
ua − vb

)N

a,b=1
=

∏a<a′(ua −ua′)∏b<b′(vb′ − vb)

∏
N
a,b=1(ua − vb)

(20.7)

Proof Multiply (20.7) by ∏
N
a,b=1(ua − vb) and notice that the left-hand side

becomes a polynomial in ui and v j of degree N(N − 1). This polynomial is
skew symmetric both in variables (u1, . . . ,uN) and in variables (v1, . . . ,vN).
Therefore, it has to be divisible by ∏a<a′(ua − ua′)∏b<b′(vb′ − vb). Compar-
ing the degrees, we conclude that (20.7) has to hold up to multiplication by a
constant. Comparing the coefficients of the leading monomials we see that this
constant is 1.

Sending one of the variables in (20.7) to infinity, we compute the determi-
nant in (20.6). Hence, the desired Jacobian is

ξ1 · · ·ξm ·
∏

1≤a<a′≤m
(xa − xa′) ∏

1≤b<b′≤m+1
(yb − yb′)

m
∏

a=1

m+1
∏

b=1
(xa − yb)

=

∏
1≤b<b′≤m+1

(yb − yb′)

∏
1≤a<a′≤m

(xa − xa′)
.

Using the explicit formula for the joint density of {ξa, 1 ≤ a ≤ m; v′}, we
conclude that the conditional density of y1, . . . ,ym+1 given x1, . . . ,xm is propor-
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tional to
∏

1≤b<b′≤m+1
(yb − yb′)

∏
1≤a<a′≤m

(xa − xa′)
exp

(
−

m

∑
a=1

ξa −
(v′)2

2

)
.

Inserting the indicator function from Exercise 20.3 into the last formula we get
(20.2), as soon as we notice that the definition of the matrix Ỹ implies

m

∑
a=1

ξa+
(v′)2

2
=

1
2

(
Trace(Ỹ 2)−

m

∑
a=1

(xa)
2

)
=

1
2

(
m+1

∑
b=1

(yb)
2 −

m

∑
a=1

(xa)
2

)
.

Exercise 20.5. Repeat the argument for real (rather than complex) matrix X
with i.i.d. N(0,1) matrix elements.2 How does the density (20.1) change?

20.2 GUE–corners process as a universal limit

In Lecture 19 we obtained GUE–corners process as a scaling limit for random
lozenge tilings of hexagons. In fact, it appears much wider.

Conjecture 20.6 ([OkounkovReshetikhin06, JohanssonNordenstam06]).
GUE–corners process is a universal scaling limit for uniformly random
lozenge tilings at the points where the boundary of the frozen boundary of a
tiling is tangent to a straight segment of the boundary of the tiled domain.

For trapezoid domains Conjecture 20.6 was settled in [GorinPanova13]. For
almost general domains it was recently proven in [AggarwalGorin21]

Similarly to the extended sine process (or ergodic Gibbs translation–
invariant measure), which we saw in the bulk of the tilings, and the extended
Airy process (or Airy line ensemble) which appears at the edges of liquid re-
gions, the GUE–corners process can be obtained as a solution to a certain clas-
sification problem. That was an argument of [OkounkovReshetikhin06] for the
validity of Conjecture 20.6. The classification problem in which GUE–corners
process appears can be linked to the representation theory and to the ergodic
theory and we now present it.

Let U(N) denote the group of all (complex) N ×N unitary matrices. There
is a natural embedding of U(N) into U(N + 1) identifying an operator in N
dimensional space with a one in N +1 dimensional space fixing the last basis

2 In this case M = X+X∗
2 is known as the Gaussian Orthogonal Ensemble.
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vector. Through these embeddings we can define the infinite-dimensional uni-
tary group as the union of all finite dimensional groups: U(∞) =

⋃
∞
N=1 U(N).

Each element of U(∞) is an infinite matrix, whose upper–left k× k corner is
a unitary matrix of size k and the rest of the matrix is filled with 1’s on the
diagonal and with 0’s everywhere else.

Consider the space H of all infinite complex Hermitian matrices. Their
matrix elements hi j ∈C, i, j = 1,2,3, . . . satisfy hi j = h ji. The group U(∞) acts
on H by conjugations and we can study U(∞)–invariant probability measures
on H . We call such measure ergodic if it is an extreme point of the convex set
of all U(∞)–invariant probability measures.

One can construct three basic examples of ergodic measures or, equivalently,
infinite random Hermitian matrices:

1 A deterministic diagonal matrix γ1 · Id, γ1 ∈ R.
2 Gaussian Unitary Ensemble. Take γ2 ∈ R>0 and an infinite matrix X of

i.i.d. N(0,1)+ iN(0,1) matrix elements. Consider a random matrix γ2
X+X∗

2 .
3 Wishart (or Laguerre) ensemble. Take α ∈ R and an infinite vector V

of i.i.d. N(0,1) + iN(0,1) components. Consider a rank 1 random matrix
αVV ∗.

A theorem of Pickrell and Olshanski-Vershik claims that sums of indepen-
dent matrices from these three ensembles exhaust the list of ergodic U(∞)–
invariant measures.

Theorem 20.7 ([Pickrell91], [OlshanskiVershik96]). Ergodic U(∞)–invariant
measures on H are parameterized by γ1 ∈ R, γ2 ∈ R≥0, and a collection of
real numbers {αi}, such that ∑i α2

i < ∞. The corresponding random matrix is
given by

γ1 · Id+ γ2
X +X∗

2
+∑

i
αi

(
ViV ∗

i
2

− Id
)
, (20.8)

where all terms are taken to be independent.

Note that, in principle, the subtraction of ∑i αiId could have been absorbed
into the γ1 term. However, in this case the sum over i would have failed to
converge (on the diagonal) for sequences αi such that ∑i α2

i < ∞, but ∑i |αi|=
∞.

One sees that the GUE–corners process appears in a particular instance of
Theorem 20.7 with γ1 = 0 and αi = 0. Let us explain how to link this appear-
ance to the limits of random tilings.
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Lemma 20.8. Let M ∈ H be a random U(∞)–invariant infinite hermitian
matrix and denote mN

1 ≤ mN
2 ≤ ·· · ≤ mN

N the eigenvalues of its principle N×N
top-left corner. Then the eigenvalues m j

i interlace, which means

mN+1
i ≤ mN

i ≤ mN+1
i+1 , 1 ≤ i ≤ N.

Moreover, they satisfy the Gibbs property, which says that conditionally on the
values of mN

1 ,m
N
2 , . . . ,m

N
N , the N(N − 1) eigenvalues m j

i , 1 ≤ i ≤ j < N, have
uniform distribution on the polytope determined by the interlacing conditions.

Sketch of the proof The interlacement is a general linear algebra fact about
eigenvalues of corners of a hermitian matrix. The conditional uniformity can
be proven by a version of the argument that we used in determining the density
of GUE–corners process in Theorem 20.1.

In fact, one can show that classification of ergodic U(∞)–invariant random
hermitian matrices of Theorem 20.7 is equivalent to the classification of all
ergodic Gibbs measures on infinite arrays mi

j of interlacing real numbers.

Lemma 20.8 explains why we expect the scaling limit of uniform measure
on tilings near a straight boundary of the domain to be one of the measures
in Theorem 20.1: horizontal lozenges in tiling near the boundary satisfy the
discrete versions of the interlacement and Gibbs property. Hence, we expect
continuous analogues to hold for the limiting object. But why do we observe
only the GUE–corners process, but no deterministic or Wishart components?

This can be explained by very different Law of Large Numbers for these en-
sembles. Take a random infinite hermitian matrix M and consider the empirical
measure of the eigenvalues of its corner:

δ
N =

1
N

N

∑
i=1

δmN
i
.

The N → ∞ behavior of the empirical measure is very different for the three
basic examples:

1 For the diagonal matrix γ1 · Id, δ N is a unit mass at γ1 for all N.
2 For the GUE ensemble with γ2 = 1, the eigenvalues as N → ∞ fill the seg-

ment [−2
√

N,2
√

N], after normalization by
√

N, the measure δ N converges
to the Wigner semicircle law.

3 For the rank 1 Wishart matrix 1
2VV ∗, the empirical measures δ N has mass

N−1
N at 0 with an outlier of mass 1

N at point ≈ N as N → ∞.

Exercise 20.9. Prove the last statement about rank 1 Wishart matrices.
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On the other hand, in the tilings picture, we deal with a point where the
frozen boundary is tangent to the straight boundary of the domain. Hence, the
frozen boundary locally looks like a parabola, which is consistent only with
[−2

√
N,2

√
N] segment filled with eigenvalues in the GUE case.

Conceptual conclusion. The GUE–corners process is expected to appear in the
scaling limit near the frozen boundary tangency points whenever we deal with
interlacing triangular arrays of particles satisfying (asymptotically) conditional
uniformity.

This prediction matches rigorous results going beyond random tilings. For
instance, [GorinPanova13, Gorin13, Dimitrov16] demonstrated the appearance
of the GUE–corners process as the scaling limit of the six-vertex model.

20.3 A link to asymptotic representation theory and
analysis

In Theorem 20.7 and Lemma 20.8 we saw how GUE–corners process gets
linked to the classification problem of ergodic theory or asymptotic represen-
tation theory. But in fact, the same connection exists already on the discrete
level of random lozenge tilings.

Let us present a discrete space analogue of Theorem 20.7. For that we let T

denote the set of all lozenge tilings of the (right) half–plane, such that far up
there are only lozenges of type and far down there are only lozenges of type

, cf. Figure 20.2. This constraint implies that there is precisely one horizontal
lozenge on the first vertical line, precisely two on the second one, precisely
three on the third one, etc. Their coordinates interlace, as in Sections 10.3
or in Proposition 19.9. When one forgets about tilings considering only these
coordinates, then the resulting object is usually called an (infinite) Gelfand–
Tsetlin pattern or a path in the Gelfand–Tsetlin graph.

We aim to study the probability measures on T , which are Gibbs in the
same sense as in Definition 13.4 of Lecture 13. Due to our choice of boundary
conditions, the interlacing can be equivalently restated in terms of horizontal
lozenges : given the positions of N horizontal lozenges on Nth vertical, the
conditional distribution of N(N − 1)/2 horizontal lozenges on the first N − 1
verticals is uniform on the set defined by the interlacing conditions.

Theorem 20.10 ([AissenSchoenbergWhitney52], [Edrei53, Voiculescu76,
VershikKerov82, BorodinOlshanski12, Petrov12c, GorinPanova13]). The er-
godic Gibbs measures on T are parameterized by two reals γ+ ≥ 0, γ− ≥ 0
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0

N

x

Figure 20.2 The first four verticals of a tiling of the right half–plane, which has
prescribed lozenges far up and far down. Horizontal lozenges interlace and are
shown in dark gray. The coordinate system is shown by dashed lines.

and four sequences of non–negative reals

α
+
1 ≥ α

+
2 ≥ ·· · ≥ 0, α

−
1 ≥ α

−
2 ≥ ·· · ≥ 0,

β
+
1 ≥ β

+
2 ≥ ·· · ≥ 0, β

−
1 ≥ β

−
2 ≥ ·· · ≥ 0,

such that ∑
∞
i=1(α

+
i +β

+
i +α

−
i +β

−
i )< ∞ and β

+
1 +β

−
1 ≤ 1.

One exciting feature of Theorem 20.10 (which is also a reason for so many
authors producing different proofs of it) is that it is equivalent to two other
important theorems, one from the representation theory and another one from
the classical analysis. Let us present them.

Recall that infinite-dimensional unitary group U(∞) is defined as the in-
ductive limit, or union of finite-dimensional unitary groups U(1) ⊂ U(2) ⊂
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U(3) ⊂ ·· · ⊂ U(∞). A (normalized) character χ(u) of U(∞) is a continuous
complex function on the group, which is:

1 central, i.e. χ(ab) = χ(ba) for all a,b ∈U(∞),
2 positive–definite, i.e. for each k = 1,2, . . . , complex numbers z1, . . . ,zk, and

elements of the group u1, . . . ,uk we have

k

∑
i, j=1

ziz jχ(uiu−1
j )≥ 0,

3 Normalized, i.e. χ(e) = 1, where e is the unit element (diagonal matrix of
1s) in U(∞).

The characters of U(∞) form a convex set, i.e. the convex linear combination
of characters is again a character, and we are interested in extreme ones, which
can not be decomposed into linear combination of others. As it turns out, the
complete list of extreme characters is given by Theorem 20.10. The value of
an extreme character corresponding to the parameters of Theorem 20.10 on the
matrix U ∈U(∞) is given by

χ(U) = ∏
u∈Spectrum(U)

eγ+(u−1)+γ−(u−1−1)
∞

∏
i=1

1+β
+
i (u−1)

1−α
+
i (u−1)

·
1+β

−
i (u−1 −1)

1−α
−
i (u−1 −1)

.

(20.9)
Note that all but finitely many eigenvalues of a matrix U ∈U(∞) are equal to
1, therefore, the product over u in (20.9) is actually finite. The double multi-
plicativity (in u and in i) of the extreme characters is a remarkable feature of
U(∞), which has analogues for other infinite–dimensional groups. However,
nothing like this is true for the finite–dimensional unitary groups U(N), whose
extreme characters are much more complicated (normalized) Schur polynomi-
als sλ (u1, . . . ,uN) (see Definition 22.3 in Lecture 22).

The correspondence between Theorem 20.10 and characters of U(∞) goes
through the expansion of the restrictions of characters. Take any character χ of
U(∞) and consider its restriction to U(N). This restriction is a symmetric func-
tion in N eigenvalues u1, . . . ,uN of N ×N unitary matrix and can be expanded
in Schur polynomials basis as follows:

χ
∣∣
U(N)

(u1, . . . ,uN) = ∑
λ=(λ1≥λ2≥···≥λN)∈ZN

PN(λ )
sλ (u1, . . . ,uN)

sλ (1, . . . ,1)
. (20.10)

One proves that the coefficients PN(λ ) are non–negative and sum up to 1: the
first condition follows from positive-definiteness and the second one is implied
by the normalization χ(e) = 1. By setting µi = λi +N − i, these coefficients
thus define a probability distribution on N tuples of horizontal lozenges as at
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the Nth vertical line of the lozenge tiling of the right halfplane, cf. Figure 20.2.
With a bit more work one proves that the correspondence χ ↔{P1,P2,P3, . . .}
of (20.10) is a bijection between characters of U(∞) and Gibbs measures on
T .

For another equivalent form of Theorem 20.10 consider a doubly–infinite
sequence of reals . . .d−2,d−1,d0,d1,d2, . . . and introduce a doubly–infinite
Toeplitz matrix D by D[i, j] = d j−i, i, j = . . . ,−1,0,1, . . . . The matrix D is
called totally–positive, if all (finite) minors of D are non–negative. For a nor-
malization, we further assume that the sum of elements in each row of D is 1,
i.e. ∑

∞
i=−∞ di = 1 3. Then the classification of totally positive doubly–infinite

Toeplitz matrices is equivalent to Theorem 20.10, with bijection given by the
generating series (convergent for u in the unit circle on complex plane):

∞

∑
i=−∞

uidi = eγ+(u−1)+γ−(u−1−1)
∞

∏
i=1

1+β
+
i (u−1)

1−α
+
i (u−1)

·
1+β

−
i (u−1 −1)

1−α
−
i (u−1 −1)

.

The classification of totally–positive Toeplitz matrices was originally moti-
vated by a data smoothing problem. Suppose that we have a real data sequence
xi, i∈Z and a pattern di, i∈Z, then we can construct a smoothed data sequence
yi through

yi = ∑
j

xi− jd j.

One shows that the amount of sign–changes (“oscillations”) in yi is always
smaller than that in xi if and only if the corresponding Toeplitz matrix D[i, j] =
d j−i is totally–positive.

The reason why Theorem 20.10 is linked to totally positive Toeplitz matrices
lies in the formulas for the coefficients in the decomposition (20.10). From one
side, they must be non–negative, as they define probability measures, on the
other hand, they essentially are the minors of a certain Toeplitz matrix, as the
following exercise shows:

Exercise 20.11. Consider the following decomposition of symmetric two-sided
power series in variables u1, . . . ,uN:

N

∏
i=1

(
∑
k∈Z

ck(ui)
k

)
= ∑

λ=(λ1≥λ2≥···≥λN)∈ZN

cλ ·
det
[
u

λ j+N− j
i

]N

i, j=1

∏1≤i< j≤N(ui −u j)
. (20.11)

Multiplying both sides by the denominator show that the coefficients cλ are

3 A relatively simple argument shows that if D is a totally–positive Toeplitz matrix, then either
di =CRi for all i, or replacing di by CRidi with appropriate C and R, we can guarantee the
condition ∑

∞
i=−∞ di = 1. Therefore, the normalization condition does not reduce the generality.



178 Lecture 20: GUE–corners process and its discrete analogues

computed as

cλ = det
[
cλi−i+ j

]N
i, j=1 .

Using the Weyl character formula (cf. [Weyl39]) one identifies the Schur
functions sλ (u1, . . . ,uN) with the ratios in the right-hand side of (20.11).
Hence, the coefficients cλ of Exercise 20.11 differ from PN(λ ) in (20.10) by
the factor sλ (1, . . . ,1). This factor is a positive integer (it counts the dimension
of a representation of U(N) as well as lozenge tilings of a trapezoid domain,
see Proposition 19.3 and Section 22.2) — hence, non-negativity of cλ and
PN(λ ) is the same condition.

The character theory for U(∞) also admits a q–deformation, which turns to
be closely related both to the study of qVolume–weighted random tilings and to
the quantum groups, see [Gorin10, GorinOlshanski15, Sato19].

We end this lecture by a remark that both Theorems 20.7 and 20.10, as
well as their q–deformations fit into a general framework for studying Gibbs
measures on branching graphs. These graphs can be very different and we
refer to [Kerov03], [BorodinOlshanski13], [BorodinOlshanski16, Section 7]
for some details and examples.



Lecture 21: Discrete log-gases

21.1 Log-gases and loop equations

Recall that in Lecture 19 we computed in (19.1) the law of horizontal lozenges
on N-th vertical of randomly tiled equilateral hexagon with side length A:

P(x1, . . . ,xN) ∝ ∏
1≤i< j≤N

(xi − x j)
2

N

∏
i=1

w(xi), (21.1)

where w(x) = (x+1)A−N(A+N −x)A−N . The distribution of form (21.1) with
arbitrary w is usually called “log–gas” in statistical mechanics. The name orig-
inates from the traditional rewriting of (21.1) as

exp

(
β ∑

1≤i< j≤N
H(xi,x j)+

N

∑
i=1

lnw(xi)

)
, H(x,y) = ln |x− y|, β = 2,

(21.2)
where H(x,y) represents the functional form of the interaction between parti-
cles (which is logarithmic in our case) and β is the strength of interaction.

The distributions of the form (21.2) with xi ∈ R or xi ∈ C are widespread
in the random-matrix theory, where they appear as distributions of eigenval-
ues for various ensembles of matrices, see [Forrester10]. In this setting the
parameter β is the dimension of the (skew)–field to which the matrix elements
belong. Here β = 1,2,4 corresponds to reals, complex numbers, and quater-
nions, respectively. General real values of parameter β also have relevance in
theoretical physics and statistical mechanics, but we are not going to discuss
this here.

One powerful tool for the study of log-gases as the number of particles N
goes to infinity is based on certain exact relations for the expectation of observ-
ables1 in the system. The usefulness of these relations was understood by the

1 By an observable we mean a function f (X) of the random system state X , such that the
expectation E f (X) is accessible either through explicit formulas or equations fixing it.

179
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mathematical community since [Johansson98]; before that they were known to
theoretical physicists under the name of loop or Dyson–Schwinger equations;
we refer to [Guionnet19] for a recent review.

These equations can be treated as far–reaching generalizations of the follow-
ing characterization of the Gaussian law. Let ξ be a standard Normal N(0,1)
random variable and let f (x) be a polynomial. Then straightforward integration
by parts shows that

E
[
ξ f (ξ )

]
= E

[
f ′(ξ )

]
(21.3)

and the relation (21.3) can be used to compute all the moments Eξ k and, hence,
to reconstruct the distribution of ξ .

In a similar spirit the loop equations for (continuous space) log-gases can be
obtained by a smart integration by parts and further used to extract probabilistic
information.

In the context of this book we are interested in the discrete setting when
the particles xi in (21.1) are constrained to the lattice Z. It took a while to
generalize the loop equations to such setting, since the naive replacement of
integration by parts with summation by parts did not seem to work. The correct
form of equations was recently introduced in [BorodinGorinGuionnet15], it
was guided by the notion of qq–characters of [Nekrasov15].

Theorem 21.1 (Nekrasov equation, discrete loop equation). Consider a point
process (x1 < x2 < · · ·< xN)⊂{0, . . . ,M} with law of the form (21.1). Suppose
that there exist functions ϕ+(z),ϕ−(z) such that

1 Functions ϕ+(z) and ϕ−(z) are holomorphic in a complex neighbourhood
of [0,M+1]

2 For any x ∈ {1, . . . ,M} we have

w(x)
w(x−1)

=
ϕ+(x)
ϕ−(x)

.

3 ϕ+(M+1) = ϕ−(0) = 0.

Then the function RN(z) defined by

RN(z) = ϕ
−(z)E

N

∏
i=1

(
1− 1

z− xi

)
+ϕ

+(z)E
N

∏
i=1

(
1+

1
z− xi −1

)
(21.4)

is holomorphic in the neighbourhood of [0,M+1].

Remark 21.2. The theorem admits a generalization to distributions involving
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an additional parameter β similarly to (21.2). However, rather than straight-
forward ∏i< j |xi − x j|β one has to use a more delicate deformation involving
Gamma-functions, see [BorodinGorinGuionnet15] for the details.

Proof of Theorem 21.1 Note that RN(z) is a meromorphic function in the
neighbourhood of [0,M] with possible poles only at {0,1, . . . ,M + 1}. More
precisely, the first term of (21.4) might have poles only at z = xi ∈ {0, . . . ,M}
and the second term only at z = xi +1 ∈ {1, . . . ,M+1}.

Thus, in order to show that RN(z) is holomorphic, it is enough to prove that
RN(z) has no poles at {0, . . . ,M+1}. Note that in the point process (x1, . . . ,xN)

all particles are almost surely at distinct positions, hence all poles of RN must
be simple.

For the point z = 0, we have ϕ−(0) = 0, hence, in the first term of (21.4) a
possible simple pole at z = 0 cancels out with the zero of ϕ−, while the second
term has no pole at 0. Therefore, RN(z) has no pole at 0. Similarly for z=M+1
a possible pole in the second term cancels out, while the first term has no poles.
Thus, RN(z) has no pole at M+1.

Let m∈ {1, . . . ,M}. Since all poles of RN(z) are simple, it is enough to prove
that the residue at m vanishes. Residue at m results from configurations with
xi = m for some i (first term) or configurations with xi = m+ 1 for some i.
Expanding E in (21.4) we get

resmRN = ∑
i

res(i)m RN ,

where

res(i)m RN =− ∑
x⃗:xi=m

ϕ
−(m)P(⃗x)∏

j ̸=i

(
1− 1

m− x j

)
+ ∑

x⃗:xi=m−1
ϕ
+(m)P(⃗x)∏

j ̸=i

(
1+

1
m− x j −1

)
.

Note that we can pair configurations x⃗ in the first term and x⃗−(i) = (x1, . . . ,xi −
1, . . . ,xN) in the second term. The poles cancel out leading to res(i)m RN = 0,
once we prove

ϕ
−(m)P(x1, . . . ,xi−1,m,xi+1, . . . ,xN)∏

j ̸=i

(
1− 1

m− x j

)
= ϕ

+(m)P(x1, . . . ,xi−1,m−1,xi+1, . . . ,xN)∏
j ̸=i

(
1+

1
m− x j −1

)
. (21.5)
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The validity of (21.5) can be checked directly using (21.1):

LHS = ϕ
−(m)w(m) ∏

j,k ̸=i
j<k

(x j − xk)
2
∏
j ̸=i

[
(m− x j)

2w(x j)
m− x j −1

m− x j

]

= ϕ
+(m)w(m−1) ∏

j,k ̸=i
j<k

(x j − xk)
2
∏
j ̸=i

[
(m− x j −1)2w(x j)

m− x j

m− x j −1

]

= RHS.

Remark 21.3. For the above cancellation argument we also should check the
boundary cases when one of the configurations x⃗, x⃗−(i) is not well-defined. But
the computation above shows that in such cases the corresponding term in
res(i)m RN will vanish either due to ∏(xi − x j)

2 in the law or due to the boundary
condition ϕ+(M+1) = ϕ−(0) = 0.

Theorem 21.1 can be used to describe various probabilistic properties of log-
gases. In particular, it can be applied to the asymptotic study of the uniformly
random lozenge tilings of the hexagon. We are going to show two applications.
The first one produces another way (in addition to the approaches of Lectures
10 and 16) to compute the limit shape for the tilings and see the frozen bound-
ary — inscribed ellipse. The second one (we only sketch the arguments there)
leads to the Gaussian Fluctuations, which we already expect to be described
by the Gaussian Free Field after Lectures 11 and 12.

21.2 Law of Large Numbers through loop equations

We start by specializing Theorem 21.1 to the distribution of the lozenges on
the section of hexagon as in (19.1), (21.1).

Note that for w(x) = (x+1)A−N(A+N − x)A−N we have

w(x)
w(x−1)

=
x+A−N

x
A+N − x

2A− x
.

Hence, we can take

ϕ
+(z) = (z+A−N)(A+N − z), ϕ

−(z) = z(2A− z),
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and by Theorem 21.1 the function

RN(Nz)
N2 = z

(
2A
N

− z
)
E

N

∏
i=1

(
1− 1

N(z− xi
N )

)

+

(
z+

A−N
N

)(
A+N

N
− z
)
E

N

∏
i=1

(
1+

1
N(z− xi

N − 1
N )

)
is an entire function. For the limit shape of tilings, we want to consider N → ∞

with A = ãN for some fixed ã. Note that for z away from [0, A+N
N ] we have

N

∏
i=1

(
1− 1

N(z− xi
N )

)
= exp

(
N

∑
i=1

ln
(

1− 1
N(z− xi

N )

))

= exp

(
− 1

N ∑
i

1
z− xi

N
+O(1/N)

)
→ exp(−G(z)),

where G(z) is the Cauchy–Stieltjes transform

G(z) =
ˆ ã+1

0

1
z− y

µ(y)dy,

and µ is the limiting density at (1,y) of horizontal lozenges as N → ∞,
similarly to Section 10.3. Recall that the existence of the deterministic µ (or,
more generally, the limit shape) was proved earlier using either a concentration
of martingales or variational problem (see Lectures 5-7).

Repeating the same computation for the second term, for z away from
[0, ã+1] we have

RN(Nz)
N2 −−−→

N→∞
R∞(z)= z(2ã−z)exp(−G(z))+(z+ ã−1)(ã+1−z)exp(G(z)).

(21.6)

Proposition 21.4. R∞(z) is an entire function.

Proof Note that outside of [0; ã+1] the holomorphicity is immediate. More-
over, outside of [0; ã+1] entire functions RN(Nz)

N2 converge to R∞(z).
Take a closed contour C around [0; ã+1]. For any z inside C, Cauchy integral

formula reads
RN(Nz)

N2 =
1

2πi

˛
C

RN(Nv)
N2(v− z)

dv.

Taking N → ∞ we get a holomorphic inside C function

1
2πi

˛
C

R∞(v)
(v− z)

dv,
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which coincides with R∞(z) outside of [0; ã+1]. Hence R∞(z) is entire.

Corollary 21.5. R∞(z) is a degree two polynomial.

Proof R∞ is an entire function growing as z2 when z → ∞. Hence R∞ is a
degree two polynomial by Liouville’s theorem (by Cauchy’s integral formula
the second derivative is bounded, hence constant).

Let us explicitly compute this degree two polynomial. Note that

G(z) =
1
z
+

c
z2 + . . . ,

when z → ∞. Hence, using Taylor expansion for exp, for z → ∞ we have

R∞(z) = z(2ã− z)(1−G(z)+
G(z)2

2
+o(z−2))

+(z+ ã−1)(ã+1− z)(1+G(z)+
G(z)2

2
+o(z−2))

=
(
−z2 +(2ã+1)z+(c−2ã− 1

2 )
)
+
(
−z2 +(2−1)z+(ã2 −1− c+2− 1

2 )
)

+o(1) =−2z2 +2(ã+1)z+ ã2 −2ã+o(1).

But R∞(z) is a polynomial, hence o(1) term is equal to 0 and

R∞(z) =−2z2 +2(ã+1)z+ ã2 −2ã.

Comparing the definition (21.6) of R∞ with the expression above, we get a
quadratic equation for exp(G(z)), namely

z(2ã− z)exp(−G(z))+(z+ ã−1)(ã+1− z)exp(G(z))

=−2z2 +2(ã+1)z+ ã2 −2ã. (21.7)

Solving it, we can get an explicit formula for G(z), which is a Stieltjes trans-
form of µ , hence, we can recover µ . Integrating it we get a formula for the
limit shape (asymptotic height function of tilings). Therefore, Theorem 21.1
gives one more approach to computing the LLN, with others being the Kenyon-
Okounkov theory and steepest descent analysis of the correlation kernel.

Exercise 21.6. For each fixed ã the function G(z) found from (21.7) has two
real branching points (of type

√
z; they correspond to the points where the

density of µ reaches 0 or 1). If we start varying â, then these branching points
form a curve in ( 1

ã ,z) plane. Find out how this curve corresponds to the circle
inscribed into the unit hexagon.

Hint: Dealing with lozenges along the vertical line at distance 1 from the left
boundary of ã× ã× ã hexagon is essentially the same as dealing with lozenges
along the vertical line at distance 1

ã from the left boundary of 1×1×1 hexagon.
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Exercise 21.7. Consider the distribution on 0 ≤ x1 < x2 < · · ·< xN ≤ M with
weight proportional to2

∏
1≤i< j≤N

(xi − x j)
2

N

∏
i=1

(
M
xi

)
. (21.8)

Assuming that the Law of Large numbers holds in the system and using discrete
loop equations, find explicitly the limit of the empirical measures 1

N ∑
N
i=1 δxi/N

as M,N → ∞ in such a way that M
N → m > 1.

21.3 Gaussian fluctuations through loop equations

Our next step is to improve the arguments of the previous section by looking
at lower–order terms of RN(Nz). Eventually this provides access to the global
fluctuations in the system.

We only sketch the approach, for the detailed exposition see
[BorodinGorinGuionnet15]. We have

N

∏
i=1

(
1− 1

N(z− xi
N )

)
= exp

(
N

∑
i=1

ln
(

1− 1
N(z− xi

N )

))

= exp

(
−G(z)−∆GN(z)+

1
2N2

N

∑
i=1

1
(z− xi

N )
2 +O(1/N2)

)
,

where ∆GN(z) is a random fluctuation of the (empirical) Stieltjes transform:

∆GN(z) =
1
N

N

∑
i=1

1
z− xi

N
−
ˆ

1
z− y

µ(dy).

Note that as N → ∞

1
2N2

N

∑
i=1

1
(z− xi

N )
2 =− 1

2N2
∂

∂ z

(
N

∑
i=1

1
z− xi

N

)
=− 1

2N
G′(z)+o(1).

Hence,

N

∏
i=1

(
1− 1

N(z− xi
N )

)
= exp

(
−G(z)−∆GN(z)−

1
2N

G′(z)+O(1/N2)

)
.

Making a similar computation for the second term of RN(Nz) we eventually

2 This distribution appears on sections of uniformly random domino tilings of the Aztec
diamond as in Figure 1.10.
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get

RN(Nz)
N2 = ϕ

−
N (Nz)exp(−G(z))+ϕ

+
N (Nz)exp(G(z))

+E
[
∆GN(z)

](
−ϕ

−
N (Nz)exp(−G(z))+ϕ

+
N (Nz)exp(G(z))

)
+

1
N
(some explicit function of G(z))+o(1/N), (21.9)

where

ϕ
+
N (Nz) =

ϕ+(Nz)
N2 =

(
z+

A−N
N

)(
A+N

N
− z
)
,

ϕ
−
N (Nz) =

ϕ−(Nz)
N2 = z

(
2A
N

− z
)
.

Remark 21.8. We use the lower subscript N in ϕ
±
N (Nz) to emphasize that

these functions might depend on N for general discrete log-gases. Note that
in the hexagon case with scaling A = ãN the functions ϕ

±
N (Nz) actually are

N–independent.

Remark 21.9. The identity (21.9), or, more precisely, the o(1/N) part of it,
requires an asymptotic estimate of E[∆GN(z)]. It turns out that E[∆GN(z)] =
O(1/N), but the proof of this fact is a nontrivial argument based on “self-
improving” estimates, see [BorodinGorinGuionnet15] for details.

The identity (21.9) has the form

RN(Nz)
N2 = R∞(z)+E

[
∆GN(z)

]
Q∞(z)+E +S , (21.10)

where E is an explicit expression in terms of the limiting G(z), S is a small
term of order o(1/N) and

Q∞(z) =−ϕ
−
N (Nz)exp(−G(z))+ϕ

+
N (Nz)exp(G(z)).

Our next step is to find E[∆GN(z)] by solving (21.9) asymptotically as N → ∞.
Let us emphasize that we have no explicit expression for RN(Nz), but, never-
theless, the equation still can be solved by using a bit of complex analysis.

Note that

R∞(z)2 −Q∞(z)2 = 4ϕ
−
N (Nz)ϕ+

N (Nz).

In the hexagon case, the right-hand side of the last identity is a degree four
polynomial, hence Q∞(z)2 is a polynomial. But Q∞(z) grows linearly as z→∞.
Hence

Q∞(z) = const ·
√
(z− p)(z−q).
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(one can show similarly to Exercise 21.6 that p,q above are the intersections
of the vertical segment with the boundary of the liquid region).

Take a contour C encircling [0;1 + ã] and let w be a point outside of C.
Integrating (21.10), we have

const
2πi

˛
C
E
[
∆GN(z)

]√(z− p)(z−q)
z−w

dz

=
1

2πi

˛
C

1
N2 RN(Nz)−R∞(z)−E −S

z−w
dz. (21.11)

Note that
( 1

N2 RN(Nz)−R∞(z)
)
/(z−w) is analytic inside C, hence its integral

vanishes (removing the unknown and asymptotically dominating part of the
equation). The function

E[∆GN(z)]
√

(z− p)(z−q)
z−w

decays as O(z−2) when z → ∞, hence, it has no poles outside of C. Therefore,
the LHS of (21.11) is equal to minus the residue at w, so that (21.11) transforms
into

E
[
∆GN(w)

]√
(w− p)(w−q) = (explicit)+(small),

giving an explicit expression for the first moment of ∆GN(w) as N → ∞.

Higher moments of ∆GN can be computed repeating the argument above for
the deformed distribution (21.1) with weight

w̃(x) = w(x)
k

∏
a=1

(
1+

ta
va − x

N

)
,

where ta are parameters and va are complex numbers. Then, using the compu-
tation above one can evaluate EP̃[∆GN ] for the deformed measure P̃. On the
other hand:

Exercise 21.10. Show that differentiating EP̃[∆GN ] by ∂ k

∂ t1...∂ tk
at t1 = · · · =

tk = 0 one gets higher order mixed cumulants3 of ∆GN with respect to the
original measure.

Further details on how this computation leads to the proof of asymptotic
Gaussianity of fluctuations ∆GN (and explicit evaluation of the covariance of
∆GN(z1) and ∆GN(z2)) can be found in [BorodinGorinGuionnet15].

3 See Definition 23.15 and Exercise 23.16 for some further details.
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21.4 Orthogonal polynomial ensembles

The distributions on N–particle configurations of the form (21.1) are also
known as orthogonal polynomial ensembles. The following statement explains
the name.

Theorem 21.11. Consider the probability distribution on N–particle configu-
rations x1 < x2 < · · ·< xN , xi ∈ Z of the form

P(x1, . . . ,xN) ∝ ∏
1≤i< j≤N

(xi − x j)
2

N

∏
i=1

w(xi), (21.12)

where the weight w(x), x ∈ Z, either has finite support, or decays faster than
x−2N as x → ∞. Let Pk(x) be monic orthogonal polynomials with respect to
w(x):

Pk(x) = xk + . . . , ∑
x∈Z

Pk(x)Pℓ(x)w(x) = δk=ℓ ·hk (21.13)

Define the Christoffel-Darboux kernel:

K(x,y) =
√

w(x)w(y)
N−1

∑
k=0

Pk(x)Pk(y)
hk

.

Then random N particle configuration X with distribution (21.12) is a deter-
minantal point process with kernel K, which means that for any m = 1,2, . . . ,
and any distinct integers u1, . . . ,um

Prob
(
u1 ∈ X , u2 ∈ X , . . . ,um ∈ X

)
= det

[
K(ui,u j)

]m
i, j=1. (21.14)

Sketch of the proof First note that the matrix K(x,y) has rank N, since it
can be represented as AAt for Z×{0,1, . . . ,N − 1} matrix A with elements

A(x,k) =
√

w(x)
hk

Pk(x). Hence, the right-hand side of (21.14) vanishes for
m > N. So does the left-hand side.

For the case m = N the identity (21.14) relies on the observation:

Exercise 21.12. Let Pk(x) = xk + . . . be any sequence of monic polynomials.
Then

det
[
Pi−1(x j)

]N
i, j=1 = ∏

1≤i< j≤N
(x j − xi). (21.15)

Using (21.15) we rewrite (21.12) as

det

[√
w(xi)√
ha−1

Pa−1(xi)

]N

i,a=1

det

[√
w(x j)√
ha−1

Pa−1(x j)

]N

a, j=1

. (21.16)

Multiplying the matrices under determinants (summing over the a–indices),
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we get (21.14) up to a constant normalization prefactor which is implicit in
(21.12). For the prefactor verification we need to check that the sum of (21.16)
over arbitrary choices of x1,x2, . . . ,xN ∈ Z (note that we do not impose any
ordering here) is N!. This is done by expanding each determinant as a sum of
N! terms, multiplying two sums and then summing each product over xi using
(21.13).

For the case m = N − 1, using the already proven m = N case, we need to
compute the following sum (in which we set ui = xi, i = 1, . . . ,N −1, to match
(21.14)):

∑
xN∈Z

det
[
K(xi,x j)

]N
i, j=1 (21.17)

The definition of the kernel K(x,y) implies the reproducing properties:4

∑
x∈Z

K(x,x) = N, ∑
x∈Z

K(y,x)K(x,z) = K(y,z). (21.18)

Expanding the determinant in (21.17) over the last row and column and using
(21.18) to compute the sum over xN , we get

N det
[
K(xi,x j)

]N−1
i, j=1 +

N−1

∑
a=1

N−1

∑
b=1

(−1)a+bK(xa,xB)det
[
K(xi,x j)

]
i̸=a; j ̸=b.

The double sum is (minus) the sum of N −1 expansions of det
[
K(xi,x j)

]N−1
i, j=1

over N − 1 possible columns. Therefore, (21.17) equals the desired
det
[
K(xi,x j)

]N−1
i, j=1.

The general 1 < m < N case is similarly obtained by exploiting the orthog-
onality relations between polynomials and we leave it to the reader as an ex-
ercise. The details are, e.g., in [Mehta04, Section 5.8], [Deift00, Section 5.4],
[BorodinGorin12, Section 3].

Let us remark that the particular choice of the lattice Z to which the points
xi belong in Theorem 21.11 is not important and the statement remains valid
for the orthogonal polynomials on any set. On the other hand, the fact that the
interaction is ∏i< j |xi − x j|2 rather than ∏i< j |xi − x j|β with general β > 0 is
crucial for the validity of this theorem.5

Theorem 21.11 reduces the asymptotic questions for β = 2 log-gases to

4 From the functional analysis point of view, these two properties arise because the operator
with matrix K(x,y) is an orthogonal projector on the N–dimensional space spanned by the first
N orthogonal polynomials. Hence, the trace of this operator is N and its square is equal to
itself.

5 Similar, yet slightly more complicated formulas also exist for β = 1,4, cf. [Mehta04, Section
5.7].
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those for the orthogonal polynomials. Given the importance of this idea, the
distribution (19.1) appearing in lozenge tilings of the hexagons is often called
the Hahn ensemble, the distribution (21.8) appearing in domino tilings is the
Krawtchouk ensemble, and the distribution (19.5) appearing in random Gaus-
sian Hermitian matrices is the Hermite ensemble. Each name is derived from
the name of the corresponding orthogonal polynomials, and in each case the
polynomials are quite special: they belong to the families of hypergeometric or-
thogonal polynomials, which can be expressed through hypergeometric func-
tions and possess various nice properties, see [KoekoekLeskySwarttouw10] for
the Askey scheme of such polynomials and their q–analogues. All the polyno-
mials in the Askey scheme are related by various degenerations, which are
reflected in limit relations between orthogonal polynomial ensembles. For in-
stance, by taking a limit from the Hahn ensemble one can get the Krawtchouk
ensemble, and the latter can be further degenerated into the Hermite ensemble
(in Proposition 19.8 we observed a direct limit from Hahn to Hermite ensem-
ble). [BorodinGorinRains09] found that the q–Racah ensemble (corresponding
orthogonal polynomials sit on the very top of the Askey scheme and are related
to the basic hypergeometic function 4φ3) can be still found in random tilings
of the hexagon in the situation when we deal with more complicated measures
than the uniform one.

The connections to classical orthogonal polynomials were exploited
in [Johansson00, BaikKriecherbauerMcLaughlinMiller03, Gorin08,
BorodinGorinRains09, BreuerDuits13] and applied to study various fea-
tures of random lozenge tilings of hexagons. The periodically-weighted
lozenge tilings (which we briefly mentioned at the end of Lecture 13) require
much more sophisticated orthogonal polynomials, and this case is not so well
developed, see [CharlierDuitsKuijlaarsLenells19] and references therein.

For general reviews of the appearances of orthogonal polynomial ensembles
in probability we refer to [Deift00, Konig04, BaikDeiftSuidan16].



Lecture 22: Plane partitions and Schur
functions

Lectures 22 and 23 of the class were given by Andrew Ahn.

At the end of the last lecture we sketched an approach to analysis of the
global fluctuations of random tilings based on the discrete loop equations.
When supplied with full details, the approach gives the convergence of fluctu-
ations of the height function of random tilings along a vertical section in the
hexagon towards a 1d section of the Gaussian Free Field.

The aim of the next two lectures, is to present another approach in a slightly
different setting of qVolume–weighted plane partitions which can be viewed as
random tilings of certain infinite domains. We are going to prove the full con-
vergence of the centered height function to the Gaussian Free Field in this
setting, thus checking one particular case of Conjecture 11.1.

22.1 Plane partitions

Fix a B×C rectangular table. A plane partition in B×C rectangle is a fill-
ing of the table with non-negative integers, such that the numbers are weakly
decreasing along the rows and columns, as in Figure 22.1.

Observe that a plane partition may be viewed as a stepped surface consisting
of unit cubes or as a tiling model with three types of lozenges formed by unions
of adjacent equilateral triangles. The surface is given by stacking cubes on a
plane to height given by entries in our B×C table. The lozenge tiling is given
by projecting such an image (diagonally) onto a plane, as in Figure 22.1. If
we know a priori that all the numbers in the plane partition are less or equal
than A, then the resulting tiling is non-trivial only inside a A×B×C hexagon.
However, we are more interested in the case of unbounded entries, in which
case the tiling might extend in a non-trivial way arbitrary far up. In any case,

191
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Figure 22.1 Left panel: A plane partition in 3× 3 rectangle. Right panel: corre-
sponding stepped surface, projected onto a 2D plane.

far down the tiling consists solely of horizontal lozenges, far up-right one
sees only lozenges and far up-left one sees only lozenges.

From now on in order to simplify the exposition we consider only the sym-
metric case B = C and deal with plane partitions in N ×N square (the same
methods work for B ̸= C as well). On the plane we use the coordinate system
shown in the right panel of Figure 22.1 with (0,0) placed at distance N in the
positive vertical direction from the bottom tip of the tiling.

We define a modified height function h : Z×Z→ Z≥0. We set h(x,−∞) = 0
and let h(x,y)−h(x,y−1) = 0 whenever the vector (x,y−1)− (x,y) crosses a
horizontal lozenge and h(x,y)−h(x,y−1) = 1 if the vector (x,y−1)−(x,y)
follows an edge of or lozenges. In other words, h(x,y) counts the total
number of non-intersecting paths (following , lozenges, see Figures 2.2 and
18.1) below (x,y). This height function differs from the one of Lecture 1 by an
affine transformation.

Exercise 22.1. Find explicitly the transformation which matches the modified
height function of this section with the one given by (1.3) in Lecture 1.

Unlike tilings of a given hexagon, the total number of plane partitions in
an N ×N square is infinite. Thus there is no uniform probability measure on
tilings. Instead, we study the following q–deformed version:
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Definition 22.2. Let Volume(π) be the volume of a plane partition π , which
is the sum of all N2 integers in the table. Given 0 < q < 1, define the qVolume

probability measure on plane partition in N ×N square through

PN,q(π) ∝ qVolume(π).

If the parameter q is small, then a typical PN,q–random partition has just a
few boxes. On the other hand, as q → 1, the number of boxes grows to infinity
and we can expect non-trivial asymptotic theory.

22.2 Schur polynomials

Our treatment of random plane partitions uses Schur polynomials and their
combinatorics. We refer to [Macdonald95, Chapter I] for the detailed treatment
of symmetric polynomials and only review the necessary facts here.

Let GTN denote the set of all N–tuples of integers λ1 ≥ λ2 ≥ ·· · ≥ λN . In
representation-theoretic context, elements of GTN are often called signatures
and the notation GT comes from the names of Gelfand and Tsetlin, who in-
troduced an important basis (parameterized by a sequence of signatures) in an
irreducible representation of unitary group U(N).

Definition 22.3. Given k⃗ = (k1, . . . ,kN) ∈ ZN , define

a⃗k(x1, . . . ,xN) = det


xk1

1 · · · xkN
1

...
. . .

...
xk1

N · · · xkN
N

= ∑
σ∈SN

sign(σ)x
kσ(1)
1 · · ·x

kσ(N)

N ,

where the sum is taken over all permutations. Given an λ ∈ GTN and setting
δ = (N − 1,N − 2, . . . ,0), define the Schur symmetric (Laurent) polynomials
through

sλ (x1, . . . ,xN) =
aλ+δ (x1, . . . ,xN)

aδ (x1, . . . ,xN)
.

Exercise 22.4. The denominator aδ is known as Vandermonde determinant.
Check that

aδ (x1, . . . ,xN) = ∏
1≤i< j≤N

(xi − x j).

In order to see that sλ (x1, . . . ,xN) is, indeed, a (Laurent) polynomial, no-
tice that a⃗k vanishes whenever xi = x j, hence, it must divisible by each factor
(xi − x j), 1 ≤ i < j ≤ N, and, therefore, also by their product.
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Two signatures λ ∈GTN and µ ∈GTN−1 interlace denoted µ ≺ λ if

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ ·· · ≥ µN−1 ≥ λN .

Lemma 22.5 (Branching Rule). For any λ ∈GTN , we have

sλ (x1, . . . ,xN) = ∑
µ∈GTN−1,µ≺λ

x|λ |−|µ|
1 sµ(x2, . . . ,xN), (22.1)

where |λ |= λ1 + · · ·+λN and |µ|= µ1 + · · ·+µN .

Proof If ℓ⃗= (λ1+N−1, . . . ,λN) and m⃗= (µ1+N−2, . . . ,µN−1), then µ ≺ λ

means that

ℓ1 > m1 ≥ ℓ2 > m2 ≥ ·· · ≥ ℓN .

Multiplying the right hand side of (22.1) by aδ (x1, . . . ,xN) gives

ℓ1−1

∑
m1=ℓ2

· · ·
ℓN−1−1

∑
mN−1=ℓN

x|λ |−|µ|
1 ∑

τ∈SN−1

sign(τ)xm1
τ(2) · · ·x

mN−1
τ(N)

N

∏
i=2

(x1 − xi),

where we consider the action of τ ∈ SN−1 on {2, . . . ,N}, so that 2 ≤ τ(i)≤ N
for i = 2,3, . . . ,N. Writing

|λ |− |µ|= (ℓ1 −m1 −1)+ · · ·(ℓN−1 −mN−1 −1)+ ℓN ,

the summation becomes

∑
τ∈SN−1

sign(τ)xℓN
1

ℓ1−1

∑
m1=ℓ2

xℓ1−m1−1
1 xm1

τ(2)(x1 − xτ(2))

· · ·
ℓN−1

∑
mN−1=ℓN

xℓN−1−mN−1−1
1 xmN

τ(N)
(x1 − xτ(N)).

Each interior summation telescopes, so we obtain

∑
τ∈SN−1

sign(τ)xℓN
1 (xℓ1−ℓ2

1 xℓ2
τ(2)− xℓ1

τ(2)) · · ·(x
ℓN−1−ℓN
1 xℓN

τ(N)
− xℓN−1

τ(N)
).

The last sum is the determinant of the following N ×N matrix:
0 xℓ1

2 − xℓ1−ℓ2
1 xℓ2

2 . . . xℓ1
N − xℓ1−ℓ2

1 xℓ2
N

...
0 xℓN−1

2 − xℓN−1−ℓN
1 xℓN

2 . . . xℓN−1
N − xℓN−1−ℓN

1 xℓN
N

xℓN
1 xℓN

2 . . . xℓN
N


We perform elementary manipulations preserving the determinant on the

last matrix. Adding to the (N − 1)st row the Nth row multiplied by xℓN−1−ℓN
1
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we bring the (N−1)st row to the form xℓN−1
j . Further adding to (N−2)nd row a

proper multiple of (N−1)st row we bring the (N−2)nd row to the form xℓN−2
j .

Further repeating this procedure, we bring the matrix to the form (xℓi
j )

N
i, j=1,

matching the left-hand side of (22.1).

Lemma 22.6 (Cauchy Identity). For |x1|, . . . , |xN |, |y1|, . . . , |yN |< 1, we have

N

∏
i, j=1

1
1− xiy j

= ∑
λ∈GTN ,λN≥0

sλ (x1, . . . ,xN)sλ (y1, . . . ,yN).

Proof The Cauchy determinant formula of (20.7) reads

det
[

1
ui − v j

]N

i, j=1
=

∏
1≤i< j≤N

(ui −u j)(v j − vi)

N
∏

i, j=1
(ui − v j)

which implies

det
[

1
1− xiy j

]N

i, j=1
=

∏
1≤i< j≤N

(xi − x j)(yi − y j)

N
∏

i, j=1
(1− xiy j)

= aδ (⃗x)aδ (⃗y)
N

∏
i, j=1

(1−xiy j)
−1.

On the other hand,

det
[

1
1− xiy j

]N

i, j=1
= det

[
∞

∑
n=0

(xiy j)
n

]N

i, j=1

=
∞

∑
α1=0

· · ·
∞

∑
αN=0

det
[
x

α j
i y

α j
j

]N

i, j=1

=
∞

∑
α1=0

· · ·
∞

∑
αN=0

aα (⃗x)y
α1
1 · · ·yαN

N = ∑
λ∈GTN ,λN≥0

aλ+δ (⃗x)aλ+δ (⃗y). (22.2)

Dividing by aδ (⃗x), aδ (⃗y) completes the proof.

22.3 Expectations of observables

We do not have direct access to the distribution of the value of the height func-
tion of random plane partitions at a particular point. However, we can produce
contour integral formulas for the expectations of certain polynomial sums in
these values, which we call observables. They are rich enough to fully charac-
terize the distribution and therefore are useful for the asymptotic analysis.

The main purpose of this section is to obtain the following formula for the
expectations of observables of the random height function distributed accord-
ing to PN,q.
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Theorem 22.7. Let −N < x1 ≤ ·· · ≤ xk < N and 0 < t1, . . . , tk < 1. Then

E

[
k

∏
i=1

∑
y∈Z

h(xi,y)t
y
i

]

=
1

(2πi)k

˛
· · ·

˛
∏

1≤i< j≤k

(z j − ti
t j

zi)(z j − zi)

(z j − tizi)(z j − 1
t j

zi)

k

∏
i=1

Gxi(zi; ti)
dzi

(t−1
i −1)(1− ti)zi

,

(22.3)

where

Gx(z; t) = tmin(0,x)
∏

i∈Z+ 1
2

−N<i<min(0,x)

1− t−1q−iz−1

1−q−iz−1 ∏
i∈Z+ 1

2
max(0,x)<i<N

1−qiz
1− tqiz

.

(Note that the sum ∑y∈Z h(xi,y)t
y
i is infinite only in the positive y direction,

as h(xi,y) vanishes for sufficiently small y.) The contours satisfy the following
properties:

• the zi-contour includes the poles at 0,qN− 1
2 ,qN− 3

2 , . . . ,q−min(0,xi)− 1
2 ,

but does not contain any of the poles at
t−1
i q−max(0,xi)− 1

2 ,t−1
i q−max(0,xi)− 3

2 ,. . . , t−1
i q−N+ 1

2 ,
• for 1 ≤ i < j ≤ k we have |zi|< |t jz j| (implying also |tizi|< |z j|) everywhere

on the contours.

Exercise 22.8. Assume x1 = x2 = · · · = xk. Show that the residue of the inte-
grand in (22.3) at zi = t jz j, 1 ≤ i < j ≤ k (but not for i > j) vanishes. In other
words, it does not matter whether the integration contours are nested in such
a way that |zi|< |t jz j| or |zi|> |t jz j|, 1 ≤ i < j ≤ k, — the integral is the same
for both choices. (You should still have |tizi|< |z j|, though.)

Remark 22.9. A skew plane partition is a generalization in which we place
integers not in a rectangular table, but in a difference between a rectangle and
a Young diagram. Theorem 22.7 has an extension to qVolume–weighted skew
plane partitions, see [Ahn18] for the details.

In the rest of the lecture we outline the main ideas for the proof of the theo-
rem.

We first observe that a plane partition π in the N ×N square grid may be
viewed as a sequence of interlacing signatures

( /0)= π
−N ≺ π

−N+1 ≺ ·· · ≺ π
−1 ≺ π

0 ≻ π
1 ≻ ·· · ≻ π

N−1 ≻ π
N =( /0). (22.4)

In the notations of the left panel of Figure 22.1, each signature represents a
vertical slice of the picture, so that π−N+1 ∈ GT1, . . . ,π

0 ∈ GTN , . . . ,π
N−1 ∈
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GT1. The slices are read from left to the right. In particular, the plane partition
of Figure 22.1 corresponds to the sequence

( /0)≺ (2)≺ (3,0)≺ (3,1,0)≻ (2,1)≻ (1)≻ ( /0).

In what follows, we often treat a signature λ ∈GTN (with non-negative coor-
dinates) as a signature µ ∈GTM with M > N by adding sufficiently many zero
last coordinates. For instance, (2,1)∈GT2 can be treated as (2,1,0)∈GT3 or
as (2,1,0,0) ∈GT4.

Lemma 22.10. Fix x ∈ {−N +1,−N +2, . . . ,N −1} and take arbitrary M ≥
N −|x|. Let λ ∈GTM be the signature encoding the vertical slice of the plane
partition at abscissa x, i.e. λ is πx with M−N + |x| additional zeros. For any
0 < t < 1, we have

∑
y∈Z

h(x,y)ty =
tmin(0,x)

1− t

(
M

∑
i=1

tλi−i+1 − t−M+1

1− t

)
.

Proof The appearance of min(0,x) in the formulas is related to our particular
choice of the coordinate system, as in the right panel of Figure 22.1. The ith
from top horizontal lozenge in the vertical section of the tilings at abscissa x
has top and bottom coordinates πx

i − i+ 1+min(0,x) and πx
i − i+min(0,x),

respectively. With this in mind and using that h(x,y)−h(x,y−1) = 1 unless y
corresponds to the top of a horizontal lozenge, we compute

∑
y∈Z

h(x,y)ty =
1

1− t ∑
y∈Z

h(x,y)(ty − ty+1)

=
1

1− t ∑
y∈Z

(h(x,y)−h(x,y−1))ty

=
1

1− t ∑
y∈Z

(1−1[y ∈ {π
x
i − i+1+min(0,x)}∞

i=1])t
y

=
1

1− t ∑
y>−M+min(0,x)

(1−1[y ∈ {π
x
i − i+1+min(0,x)}M

i=1])t
y

=
1

1− t

(
−

M

∑
i=1

tπx
i −i+1+min(0,x)+

t−M+1+min(0,x)

1− t

)
,

where in the third line πx is extended to have infinitely many coordinates by
adding (infinitely many) zeros, in the fourth line πx is extended to an element
of GTM (by adding M −N + |x| zeros), and the last line is obtained from the
fourth by summing ones and indicators 1 separately.
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In view of the previous lemma, set

℘t(λ ) =
M

∑
i=1

tλi−i+1 − t−M+1

1− t
, λ ∈GTM, λM ≥ 0.

Note that if we increase M and simultaneously extend λ by adding zeros, then
℘t(λ ) is unchanged.

Our plan is to compute expectations of products of ℘t(π
x), and then use the

previous lemma to obtain Theorem 22.7. This is achieved using the following
family of difference operators.

Definition 22.11. The first Macdonald operator D{x1,...,xn}
t is defined by

D{x1,...,xn}
t =

n

∑
i=1

[
∏
j ̸=i

xi − t−1x j

xi − x j

]
Tt,xi −

t−n+1

1− t

where Tt,xi is the t–shift operator which maps

F(x1, . . . ,xi−1,xi,xi+1, . . . ,xN) 7→ F(x1, . . . ,xi−1, txi,xi+1, . . . ,xN).

Remark 22.12. The operators D{x1,...,xn}
t are q= t versions of the difference op-

erators used by Ian Macdonald in his study of the (q, t)–deformation of Schur
polynomials bearing his name, see [Macdonald95, Chapter VI].

Lemma 22.13. The operator D{x1,...,xn}
t is diagonalized by the Schur functions

sλ (x1, . . . ,xn), λ ∈GTn. We have

D{x1,...,xn}
t sλ (x1, . . . ,xn) =℘t(λ )sλ (x1, . . . ,xn).

Proof Observe that(
Dx⃗

t +
t−n+1

1− t

)
sλ (⃗x)= t−n+1

n

∑
i=1

[
∏
j ̸=i

txi − x j

xi − x j

]
Tt,xiaλ+δ (⃗x)

Tt,xiaδ (⃗x)
=

n

∑
i=1

Tt,xiaλ+δ (⃗x)
aδ (⃗x)

where the second equality uses that the txi−x j
xi−x j

terms replace the t-shifted fac-
tors in Tt,xiaδ (⃗x) with the corresponding ordinary factors in aδ (⃗x). Writing the
alternant as

aλ+δ (⃗x) = ∑
σ∈Sn

sgn(σ)
n

∏
j=1

x
λσ( j)+n−σ( j)
j

we have that
n

∑
i=1

Tt,xiaλ+δ (⃗x) =

(
n

∑
i=1

tλi+n−i

)
aλ+δ (⃗x)

which implies the statement of the lemma.
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We are able to produce a contour integral representation for the action of
these operators on multiplicative functions ∏

n
i=1 f (xi):

Lemma 22.14 ([BorodinCorwin11]). Let f (z) be analytic and q ∈C such that
f (qz)
f (z) has no singularities in a neighborhood of {0}∪{xi}n

i=1. Then

Dx⃗
t

n

∏
i=1

f (xi) =
n

∏
i=1

f (xi)

˛ n

∏
j=1

z− t−1x j

z− x j
· f (tz)

f (z)
dz

(1− t−1)z
,

where the contour contains 0 and {xi}n
i=1 and no other singularities of the

integrand.

Proof This follows from the residue theorem and the definition of the opera-
tor Dx⃗

t .

The idea of the proof of Theorem 22.7 is to use the Dt operators to extract
the volume information relying on the following lemma:

Lemma 22.15. Let F denote a function of 2N variables a1, . . . ,aN , b1, . . .bN

given by

F =
N

∏
i, j=1

1
1−aib j

. (22.5)

Then for qVolume random plane partitions identified with interlacing
sequences of signatures through (22.4), any −N < x1 ≤ ·· · ≤ xk ≤ 0,
N > x′1 ≥ ·· · ≥ x′k′ ≥ 0, and any 0 < ti, t ′i < 1, we have

E
[
℘t1(π

x1) · · ·℘tk(π
xk) ·℘t1(π

x′1) · · ·℘t ′k
(πx′k′ )

]
=

[
F−1D

{aN ,...,aN+x1}
t1 · · ·D

{aN ,...,aN+xk}
tk D

{bN ,...,bx′1−1}

t ′1
· · ·

· · ·D
{bN ,...,bx′k−1}

t ′k
F
]

ai=bi=qi−1/2, i=1,...,N
. (22.6)

Exercise 22.16. Given Lemma 22.15, prove Theorem 22.7 by a recursive ap-
plication of Lemma 22.14 to convert the right-hand side (22.6) into contour
integrals.

Let us present a historic overview for Lemma 22.15. Connection be-
tween plane partitions and Schur polynomials was first exploited in prob-
abilistic context in [OkounkovReshetikhin01]. The use of the differential
operators for the case k′ = 0 and x1 = x2 = · · · = xk was introduced in
[BorodinCorwin11]. The extension to arbitrary xi (still k′ = 0) was pre-
sented in [BorodinCorwinGorinShakirov13, Section 4]. An observation that
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k′ > 0 is also possible can be found in [BufetovGorin17, Section 3]. Also
[BorodinCorwinGorinShakirov13, Section 3] presents another way to reach
Theorem 22.14 avoiding k′ > 0 case, and [Aggarwal14, Proposition 2.2.4] is
a generalization of Theorem 22.14 obtained by this method. We also refer to
[Ahn18] where another set of difference operators is used to extract observ-
ables of plane partitions.

We only present the k = 1, k′ = 0 case of Lemma 22.15; general case is an
extension of the arguments below and details can be found in the aforemen-
tioned references.

Proof of k = 1, k′ = 0 case of Lemma 22.15 The first observation is that with
the notation |π i|= π i

1 +π i
2 + . . . , we have

qVolume(π) = q
1
2 (|π0|−|π1|)q

3
2 (|π1|−|π2|) · · ·q(N− 1

2 )|πN−1|

×q
1
2 (|π0|−|π−1|)q

3
2 (|π−1|−|π−2|) · · ·q(N− 1

2 )|π−N+1|.

Hence, if we take an expression

∑
λ∈GTN λN≥0

sλ

(
qN− 1

2 ,qN− 3
2 , . . . ,q1/2

)
sλ

(
qN− 1

2 ,qN− 3
2 , . . . ,q1/2

)
and expand both sλ factors into sums of monomials by recursively using the
branching rule of Lemma 22.5, then each term in the expanded sum corre-
sponds to a plane partition as in (22.4) and the value of such term is precisely
qVolume(π).

We can also first expand

∑
λ∈GTN ,λN≥0

sλ (a1, . . . ,aN)sλ (b1, . . . ,bN) (22.7)

into monomials in ai, bi, getting a sum over plane partitions and substitute
ai = bi = qi−1/2 later on. Note that (22.7) evaluates to the function F of (22.5)
by Lemma 22.6. In particular, we get

[F ]ai=bi=qi−1/1 = ∑
π

qVolume(π). (22.8)

Assume without loss of generality that x1 ≤ 0. Let us expand (22.7) into
monomials corresponding to plane partitions π , then fix πx1 ,πx1+1, . . . ,πN−1

and make a summation over π1−N ,π2−N , . . . ,πx1−1. We claim that the result
has the form

sπ
x1 (aN ,aN−1, . . . ,a1−x1)× (terms depending on a−x1 , . . . ,a1, b1, . . . ,bN).

(22.9)
Indeed, the summation goes over interlacing signatures, hence, we can again
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use Lemma 22.5 to turn the result into the Schur function. We can now act
with D

{aN ,aN−1,...,a1−x1}
t on F , by using (22.9) and eigenrelation of Lemma

22.13. The factor ℘t(π
x1) pops out, and afterwards we can again expand

sπ
x1 (aN ,aN−1, . . . ,a1−x1) into monomials. The conclusion is that[

D
{aN ,aN−1,...,a1−x1}
t F

]
ai=bi=qi−1/2

= ∑
π

℘t(π
x1)qVolume(π).

Dividing by F and using (22.8) we get the desired evaluation of E℘t(π
x1).

Exercise 22.17. Using (22.8) compute the partition function of qVolume–
weighted plane partitions, that is, show that1

∑
plane partitions

qVolume =
∞

∏
n=1

(1−qn)−n, (22.10)

where the sum is taken over all plane partitions, which is the N = ∞ version of
the ones in Definition 22.2.

1 Similarly to (1.1), this formula also bears the name of MacMahon and has been known for
more than 100 years, although the first proofs were not using Schur polynomials.



Lecture 23: Limit shape and fluctuations
for plane partitions

In this lecture we use Theorem 22.7 to analyze global asymptotics (LLN and
CLT) for random qVolume–weighted plane partitions.

In what follows we fix N̂ > 0 and set q = e−ε , N = ⌊N̂/ε⌋ for a small pa-
rameter ε > 0.

Our goal is to show that for the random height function h(x,y) of plane
partitions in N ×N rectangle and distributed according toPN,q of Definition
22.2, we have as ε → 0

εh
(

x̂
ε
,

ŷ
ε

)
→ h∞(x̂, ŷ)

h
(

x̂
ε
,

ŷ
ε

)
−Eh

(
x̂
ε
,

ŷ
ε

)
→ GFF

where h∞ is a deterministic limit shape, and GFF is the Gaussian Free Field
governing fluctuations, as in Lectures 11 and 12.

23.1 Law of Large Numbers

Our first result is the limit shape theorem for the height function of the qVolume–
weighted random plane partitions in N ×N rectangle.

Theorem 23.1. For any x̂ ∈ [−N̂, N̂] and c > 0, we have

lim
ε→0

E

[
∑

ŷ∈εZ
ε

2h
(

x̂
ε
,

ŷ
ε

)
e−cŷ

]
=

ˆ
h∞(x̂, ŷ)e−cŷ dŷ, (23.1)

where h∞ is an explicit function described in Theorem 23.5 below.
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Remark 23.2. In the next section we show that the variance of the height func-
tion decays, which automatically upgrades the convergence of expectations in
(23.1) to convergence in probability.

Remark 23.3. Formally, the height function h(x,y) is defined only at integer
points (x,y), and therefore, we should write h

(⌊ x̂
ε

⌋
,
⌊

ŷ
ε

⌋)
, where ⌊·⌋ is the

integer part. However, we are going to omit the integer part in order to simplify
the notations.

The proof of Theorem 23.1 starts by expressing (23.1) as a contour integral.

Lemma 23.4. For any c > 0 we have

lim
ε→0

E

[
∑

ŷ∈εZ
ε

2h
(

x̂
ε
,

ŷ
ε

)
e−cŷ

]
=

1
2πi

˛
0
Gx̂(z)c dz

c2z
, (23.2)

where

Gx̂(z) =
1− z

e−N̂ − z
· e−x̂ − z−1

e−N̂ − z−1
, (23.3)

the branch for raising to the cth power is the one giving positive real values
to z = 0 and z = ∞, and integration goes over a positively oriented contour
enclosing 0 and [e−N̂ ,emin(0,x̂)], but not [emax(0,x̂),eN̂ ].

Proof The k = 1 case of Theorem 22.7 reads

E

[
∑
y∈Z

h(x,y)ty

]
=

1
2πi

˛
Gx(z; i)

dz
(t−1 −1)(1− t)z

, (23.4)

where

Gx(z; t) = tmin(0,x)
∏

i∈Z+ 1
2

−N<i<min(0,x)

1− t−1q−iz−1

1−q−iz−1 ∏
i∈Z+ 1

2
max(0,x)<i<N

1−qiz
1− tqiz

,

and the integration contour includes the poles at 0,qN− 1
2 ,qN− 3

2 , . . . ,qmin(0,x)− 1
2 .

We set

t = exp(−cε), q = exp(−ε), x =
x̂
ε
, y =

ŷ
ε
, N =

N̂
ε

and send ε → 0. Let us analyze the asymptotic behavior of Gx(z; t). Clearly,
tmin(0,x) → e−cmin(0,x̂). Using the asymptotic expansion ln(1+ u) = u+ o(u),



204 Lecture 23: Limit shape and fluctuations for plane partitions

the logarithm of the first product in Gx(z, t) behaves as:

∑
i∈Z+ 1

2
−N̂/ε<i<min(0,x̂/ε)

ln
(

1− t−1q−iz−1

1−q−iz−1

)

= ∑
i∈Z+ 1

2
−N̂/ε<i<min(0,x̂/ε)

(1− t−1)
q−iz−1

1−q−iz−1 +o(1)

=
1− t−1

1−q ∑
i∈Z+ 1

2
−N̂/ε<i<min(0,x̂/ε)

(q−i −q−i+1)
z−1

1−q−iz−1 +o(1)

=−c
ˆ emin(0,x̂)

e−N̂

z−1

1−uz−1 du+o(1) = c
ˆ emin(0,x̂)

e−N̂

1
u− z

du+o(1)

= c ln

(
emin(0,x̂)− z

e−N̂ − z

)
+o(1).

Note that the logarithm of complex argument is a multivalued function and
here we mean the branch which gives 0 for z = ∞ in the last formula (and a
real number at z = 0). The convergence is uniform over z in compact subsets
of C\ [exp(−N̂),exp(min(0, x̂))].

Similarly, the asymptotic behavior of the logarithm of the second product in
Gx(z, t) is

c ln

(
e−max(0,x̂)− z−1

e−N̂ − z−1

)

with uniform convergence on compact subsets of C \ [emax(0,x̂),eN̂ ] and the
branch of logarithm, which gives 0 at z = 0 in the last formula (and a real
number at z = ∞). Combining the factors, we get

lim
ε→0

Gx̃/ε(z; t) =

(
e−min(0,x̂) emin(0,x̂)− z

e−N̂ − z
· e−max(0,x̂)− z−1

e−N̂ − z−1

)c

, (23.5)

where the convergence is uniform over compact subsets of
C \ [exp(−N̂),exp(min(0, x̂))] \ [emax(0,x̂),eN̂ ] and the branch for the c-th
power is the one giving positive real values for z = 0 and z = ∞. Checking
separately cases x̂ ≤ 0 and x̂ ≥ 0, one sees that (23.5) is the same expression as(

1− z

e−N̂ − z
· e−x̂ − z−1

e−N̂ − z−1

)c

.
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Passing to the limit ε → 0 in the integrand of the contour integral (23.4), we
get the result.

The next step is to show that the right-hand side of (23.2) as a function of c
is the Laplace transform of a function; that is, there exists h∞(x̂, ŷ) such that

ˆ
∞

−∞

h∞(x̂, ŷ)e−cŷ dŷ =
1

2πi

˛
Gx̂(z)c dz

c2z
.

This function h∞(x̂, ŷ) can be described quite exactly. Let us outline the com-
putation of its derivative, for a more detailed argument see [Ahn18, Proof of
Corollary 6.3]. We begin by integrating by parts:

ˆ
∞

−∞

∂ŷh∞(x̂, ŷ)e−cŷ dŷ = c
ˆ

∞

−∞

h∞(x̂, ŷ)e−cŷ dŷ =
1

2πi

˛
Gx̂(z)c dz

cz
. (23.6)

Define

µx̂(u) := ∂ŷh∞(x̂, ŷ)|e−ŷ=u.

The left-hand side of (23.6) can be rewritten as
ˆ

∞

−∞

∂ŷh∞(x,y)e−cŷ dŷ =
ˆ

∞

0
µx̂(u)uc du

u
.

Information on the moments of the measure µx̂(u)du allows us to write down
its Stieltjes transform:

Sµx̂(w) :=
ˆ

∞

0

µx̂(u)du
w−u

=
∞

∑
c=1

w−c
ˆ

∞

0
µx̂(u)uc du

u

=
∞

∑
c=1

w−c 1
2πi

˛
Gx̂(z)c dz

cz
=

1
2πi

˛
ln
(

1− Gx̂(z)
w

)
dz
z
. (23.7)

Here, the fourth equality is obtained by interchanging the sum and integral,
and recognizing the internal expression as the power series expansion of the
logarithm. The parameter w should be chosen to be very large to guarantee the
convergence of the sums, and the contour in the integral is as in Lemma 23.4,
i.e. it encloses 0 and e−N̂ , but not eN̂ .

The integrand has two singularities inside the integration contour: simple
pole at z = 0 and a more complicated singularity at the root of the equation
Gx̂(z) = w close to e−N̂ (since Gx̂(z) has a simple pole at e−N̂ , such root exists
and is unique for large w). Let us denote this root through z0 and let γ be a
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contour enclosing z0. Integrating by parts, we have

Sµx̂(w) = ln
(

1− Gx̂(0)
w

)
+

1
2πi

˛
γ

ln
(

1− Gx̂(z)
w

)
dz
z

= ln
(

1− Gx̂(0)
w

)
+

1
2πi

˛
γ

G ′
x̂(z)

Gx̂(z)−w
ln(z)dz. (23.8)

The last integral has a simple pole at z0 with residue ln(z0). Using also the
explicit value for Gx̂(0), we conclude that

Sµx̂(w) = ln

(
1− eN̂

w

)
+ ln(z0), (23.9)

where z0 is still the root of the equation

w = Gx̂(z) (23.10)

in a neighborhood of e−N̂ .
By its definition, the Stieltjes transform Sµx̂(w) is a complex analytic func-

tion of w outside of the (real) support of µx̂. Hence, we can analytically con-
tinue the formula (23.9) from large w to arbitrary w; the formula will remain
the same, with the only difference being in the choice of the root of (23.10) —
we no longer can guarantee that the desired root is the one closest to e−N̂ .

After we figure out the Stieltjes transform, we can reconstruct the measures
µx̂(u)du itself. For that note that when w crosses the real axis at a real point
u, the imaginary part of Sx̂ makes a jump1 by 2πµx̂(u). We conclude that
2π∂ŷh∞(x̂, ŷ) is the jump of the imaginary part of (23.9) at the point w = e−ŷ.
Note that we expect the limit shape h∞(x̂, ŷ) to be identical 0 for ŷ ≤ −N̂ be-
cause of our choice of definition of the height function (alternatively, this can
also be shown by analyzing the function Sµx̂(w)). Thus, we can further consider

only ŷ > −N̂. Then for the first term in (23.9) we notice that eN̂

w = eN̂+ŷ > 1.
Hence, imaginary part of the logarithm makes a jump by 2π .

For the second term in (23.9), note that upon substitution w = e−ŷ and def-
inition of Gx̂(z) from (23.3), we transform (23.10) into a quadratic equation
in z with real coefficients. It either has real roots (in which case, there is no
interesting jump for ln(z0)), or complex conjugate roots. One can check that
the jump of ln(z0) comes precisely from the choice of the root in the upper
half-plane changing to the choice of the one in the lower half-plane. Hence,
the jump of the imaginary part of ln(z0) is twice the argument of z0. Let us
record our findings in the theorem.

1 For simplicity, assume that u is a point of continuity of µx̂. Then this fact is proven by direct
computation of the imaginary part as we approach u from the upper and lower halfplanes.



207

Theorem 23.5. Let ζ (x̃, ỹ) be a root of the quadratic equation

1− z

e−N̂ − z
· e−x̂ − z−1

e−N̂ − z−1
= e−ŷ (23.11)

chosen so that ζ (x̂, ŷ) is continuous in (x̂, ŷ) and ζ is in the upper half-plane
H, if (23.11) has two complex conjugate roots. Then

∂ŷh∞(x̂, ŷ) = 1− argζ (x̂, ŷ)
π

.

Remark 23.6. Notice that if ζ (x̃, ỹ) is real, then ∂ŷh∞(x̂, ŷ) = 0 or 1. This cor-
responds to the frozen region, either beneath the plane partition (where h is
not changing) or above the plane partition (where the sufrace is vertical, and h
increases with ŷ). For (x̂, ŷ) such that ζ (x̂, ŷ) ∈H, we have

0 < ∂ŷh∞(x̂, ŷ)< 1.

This corresponds exactly to the liquid region D. Therefore, the liquid region
may be alternatively defined as the set of (x̃, ỹ) ∈ R2 such that (23.11) has a
pair of complex conjugate roots.

Remark 23.7. Let us match the result of Theorem 23.5 with Kenyon-Okounkov
theory developed in Lectures 9 and 10. We define a complex number z, so that

ζ (x̂, ŷ) = ex̂(1− z(x̂, ŷ)).

Note that since ζ is in the upper half-plane, so is z. Conjugating the equation
(23.11) and rewriting it in terms of z, we get

Q(zey,(1− z)ex) = 0, Q(u,v) = u(1− v)− (e−N̂ − v)(1− ve−N̂).

This is precisely the equation of the form appearing in Theorems 9.8, 10.1 and
giving solutions to the complex Burgers equation for the limit shape. Indeed,
the parameter c appearing in those theorems is −1 in our setting, see Corollary
9.6 and identify ε with 1/L. Note also that arg(ζ ) is computing the density
of horizontal . Hence, this density is also computed by −arg(1− z), which
matches Figure 9.1. With a bit more care, one can show that z(x̂, ŷ) is precisely
Kenyon–Okounkov’s complex slope.

Exercise 23.8. Extend Theorems 23.1 and 23.5 to qVolume–weighted plane par-
titions in N ×⌊αN⌋ rectangle, α > 0, as N → ∞.

Exercise 23.9. Sending N̂ → ∞ in the result of Theorem 23.5 we get the limit
shape for the plane partitions without bounding rectangle. Find explicitly the
formula for the boundary of the frozen region in this situation. The answer
(drawn on the plane of the right panel of Figure 22.1) should be invariant
under rotations by 120 degrees.
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The limit shape theorem for the qVolume–weighted plane partitions (with-
out bounding rectangle) was addressed by several authors some of whom
did not know about the existence of others. We refer to [BloteHilhorst82],
[NienhuisHilhorstBlote84], [Vershik97] for the first appearances and to
[CerfKenyon01], [OkounkovReshetikhin01] for later treatments in the math-
ematical literature.

23.2 Central Limit Theorem

Our next aim is to show that the centered height function

√
π

[
h
(

x̂
ε
,

ŷ
ε

)
−Eh

(
x̂
ε
,

ŷ
ε

)]
converges to the pullback of the Gaussian free field (GFF) under the map
ζ (x̂, ŷ) from Theorem 23.5.

We briefly recall the definition of the GFF, see Lecture 11 for more details.

Definition 23.10. The Gaussian Free Field on the upper half-plane H= {z ∈
C | ℑ(z)> 0} is a random generalized centered Gaussian function GFF on H
with covariance

EGFF(z)GFF(w) =− 1
2π

ln
∣∣∣∣ z−w
z− w̄

∣∣∣∣ .
Given a bijection ζ : D →H, where D ⊂ R2, we define the GFF pullback.

Definition 23.11. The ζ -pullback of the GFF is a random distribution GFF ◦ζ

such that

E[GFF ◦ζ (x1,y1) ·GFF ◦ζ (x2,y2)] =− 1
2π

ln
∣∣∣∣ζ (x1,y1)−ζ (x2,y2)

ζ (x1,y1)− ζ̄ (x2,y2)

∣∣∣∣ .
Theorem 23.12. For the height functions of qVolume–weighted plane partitions,
we have{

√
π ∑

y∈εZ
ε

(
h
(

x̂
ε
,

ŷ
ε

)
−Eh

(
x̂
ε
,

ŷ
ε

))
e−cŷ

}
c>0,−N̂≤x̂≤N̂

→
{ˆ

Dx̂

H ◦ζ (x̂, ŷ)e−cy
}

c>0,−N≤x≤N
(23.12)

in the sense of convergence of finite dimensional distributions as ε → 0. Here
ζ (x̂, ŷ) is as in Theorem 23.5, D is the liquid region (which can be defined as



209

those (x̂, ŷ), for which ζ is non-real), and Dx̂ is the section of D by the vertical
line with abscissa x̂.

Remark 23.13. By Remark 23.7, ζ = ex(1 − z), where z is the Kenyon–
Okounkov’s complex slope. Because Q(eyz,ex(1− z)) = 0 for an analytic Q,
the complex structure of ζ is the same as the one of eyz. Noting also that the
Laplacian in the definition of the GFF is unchanged under the complex con-
jugation of the complex structure, we conclude that Theorem 23.12 proves a
particular case of Conjecture 11.1.

Exercise 23.14. Show that ζ : D→H is a homeomorphism from D to H, which
maps sets of the form {(x,y) ∈ D : y ∈ R} for fixed x to half circles in H with
real center points.

The convergence in the sense of finite dimensional distributions in Theorem
23.12 means that if we take any finite collection

c1, . . . ,ck, −N̂ ≤ x̂1, . . . , x̂k ≤ N̂,

then we have the convergence in distribution for random vectors

lim
ε→0

(
∑

ŷ∈εZ
ε

(
h
(

x̂i

ε
,

ŷ
ε

)
−Eh

(
x̂i

ε
,

ŷ
ε

))
e−ci ŷ

)k

i=1

=

(ˆ
Dx̂i

H ◦ζ (x̂, ŷ)e−ci ŷdŷ

)k

i=1

. (23.13)

We can prove such a statement by showing that the random vectors above
converge to a Gaussian limit and then matching their covariance. We outline
some of the ideas of the proof here and refer to [Ahn18] for more details.

Definition 23.15. Given random variables X1, . . . ,Xn, their joint mixed cumu-
lant κ(X1, . . . ,Xn) is defined as

κ(X1, . . . ,Xn) =
∂ n

∂ t1 . . .∂ tn
lnE

[
exp

(
i

N

∑
i=1

tiXi

)]∣∣∣∣∣
t1=t2=···=tn=0

.

If we fix random variables Y1, . . . ,Yk, then its family of cumulants are defined
as all possible κ(X1, . . . ,Xn), n = 1,2, . . . , where Xi coincide with various Yj

with possible repetitions. n is then the order of the cumulant. For instance, if
we have one random variable Y1 = Y , then its first cumulant is κ(Y ) = EY ,
and the second cumulant κ(Y,Y ) = EY 2 − (EY )2. For two random variables
the second order cumulant is the covariance, κ(X1,X2) = cov(X1,X2).
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For a Gaussian vector (Y1, . . . ,Yk), the logarithm of its characteristic function
is a second degree polynomial. This leads to the following statement:

Exercise 23.16. A random vector (Y1, . . . ,Yk) has Gaussian distribution if and
only if all joint cumulants of its coordinates of order ≥ 3 vanish.

In principle, one can express joint cumulants through joint moments. In this
way, vanishing of the higher-order cumulants is equivalent to the Wick’s for-
mula for the computation of joint moments for Gaussian vector as a combina-
torial sum involving perfect matchings.

Hence, in order to prove Theorem 23.12 we need two steps:

1 Compute the covariance for random variables ∑y∈εZ ε

(
h
(

x̂i
ε
, ŷ

ε

))
e−ci ŷ us-

ing Theorem 22.7 and show that it converges to the covariance of the vectors
in the right-hand side of (23.13).

2 Compute higher order cumulants for the same random variables and show
that they converge to 0.

We only outline the first step. The asymptotic vanishing of the higher or-
der cumulants for the second step holds in much greater generality for random
variables, whose joint moments are given by contour integrals as in Theorem
22.7. We refer to [BorodinGorin13, Section 4.3], [GorinZhang16, Section 6.2],
[Ahn18, Section 5.3] for such arguments. For the identification of the covari-
ance structure, take c1,c2 > 0 and −N̂ ≤ x̂1, x̂2 ≤ N̂. Then

Cov

(
∑

ŷ∈εZ
ε

(
h
(

x̂1

ε
,

ŷ
ε

)
−Eh

(
x̂1

ε
,

ŷ
ε

))
e−c1 ŷ,

∑
ŷ∈εZ

ε

(
h
(

x̂2

ε
,

ŷ
ε

)
−Eh

(
x̂2

ε
,

ŷ
ε

))
e−c2 ŷ

)

= E

[
2

∏
i=1

∑
ŷ∈εZ

εh
(

x̂i

ε
,

ŷ
ε

)
e−ci ŷ

]
−

2

∏
i=1

E

[
ε ∑

ŷ∈εZ
h
(

x̂i

ε
,

ŷ
ε

)
e−ci ŷ

]
.

By Theorem 22.7, the above is

1
(2πi)2

˛ ˛ ( (z2 − t1
t2

z1)(z2 − z1)

(z2 − t1z1)(z2 − 1
t2

z1)
−1

)
2

∏
i=1

[
Gxi(zi; ti)

εdzi

(t−1
i −1)(1− ti)zi

]
,

where ti = e−ciε , xi =
x̃i
ε

. Since

(z2 − t1
t2

z1)(z2 − z1)

(z2 − t1z1)(z2 − 1
t2

z1)
−1 =

(1− t1)( 1
t2
−1)z1z2

(z2 − t1z1)(z2 − 1
t2

z1)
,
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the ε factors balance out with 1− ti to give us an overall 1/(c1c2) factor. By
(23.5), we obtain

1
c1c2

· 1
(2πi)2

˛ ˛
Gx̂1(z1)

c1Gx̂2(z2)
c2

(z2 − z1)2 dz1 dz2. (23.14)

It remains to show that (23.14) is the covariance of the GFF paired with expo-
nential test functions on the sections.

Let Ci be a closed contour symmetric with respect to the x-axis, and the
part of Ci in H is the half circle which is ζ –image of the vertical section of
the liquid region with abscissa x̂i, i.e., the set {ζ (x̂i, ŷ) | y ∈ Dx̂i}. We deform
the integration contours in (23.5) to Ci and then split Ci = C+

i ∪C−
i , where

C+
i = Ci ∩H. Changing variables via ζ (x,y) 7→ (x,y) and using (23.11), we

rewrite (23.14) as

− 1
4π2c1c2

ˆ
Dx̂2

ˆ
Dx̂1

e−c1 ŷ1e−c2 ŷ2

(ζ (x̂1, ŷ1)−ζ (x̂2, ŷ2))2
∂ζ

∂ ŷ1
(x̂1, ŷ1)

∂ζ

∂ ŷ2
(x̂2, ŷ2)dŷ1 dŷ2

+
1

4π2c1c2

ˆ
Dx̂2

ˆ
Dx̂1

e−c1 ŷ1e−c2 ŷ2

(ζ (x̂1, ŷ1)−ζ (x̂2, ŷ2))2

∂ζ

∂ ŷ1
(x̂1, ŷ1)

∂ζ

∂ ŷ2
(x̂2, ŷ2)dŷ1 dŷ2

+
1

4π2c1c2

ˆ
Dx̂2

ˆ
Dx̂1

e−c1 ŷ1e−c2 ŷ2

(ζ (x̂1, ŷ1)−ζ (x̂2, ŷ2))2

∂ζ

∂ ŷ1
(x̂1, ŷ1)

∂ζ

∂ ŷ2
(x̂2, ŷ2)dŷ1 dŷ2

− 1
4π2c1c2

ˆ
Dx̂2

ˆ
Dx̂1

e−c1 ŷ1e−c2 ŷ2

(ζ (x̂1, ŷ1)−ζ (x̂2, ŷ2))2

∂ζ

∂ ŷ1
(x̂1, ŷ1)

∂ζ

∂ ŷ2
(x̂2, ŷ2)dŷ1 dŷ2.

(23.15)

Integrate by parts on ŷ1 and ŷ2 for each summand, observing that the boundary
terms cancel since the value of ζ (x, ·) at the end points of Dx is real, to obtain

−1
4π2

ˆ

Dx̂2

ˆ

Dx̂1

e−c1 ŷ1−c2 ŷ1

[
ln
(
ζ (x1,y1)−ζ (x2,y1)

)
− ln

(
ζ (x1,y1)−ζ (x2,y1)

)
− ln

(
ζ (x1,y1)−ζ (x2,y1)

)
+ ln

(
ζ (x1,y1)−ζ (x2,y1)

)]
dy1 dy1

=− 1
2π2

ˆ
Dx̂2

ˆ
Dx̂1

e−c1 ŷ1e−c2 ŷ1 ln

∣∣∣∣∣ζ (x̂1, ŷ1)−ζ (x̂2, ŷ1)

ζ (x̂1, ŷ1)−ζ (x̂2, ŷ1)

∣∣∣∣∣ dŷ1 dŷ2.

This is precisely the desired formula for the covariance of the integrals of the
GFF against exponential test functions. The prefactor 1

2π2 matches the one in
Conjecture 11.1; it also mathes the ratio of 1

2π
in Definition 23.11 and (

√
π)2

coming from the prefactor in (23.12).



Lecture 24: Discrete Gaussian compo-
nent in fluctuations

24.1 Random heights of holes

There are two frameworks for picking a uniformly random tiling:

1 Fix a domain, pick a tiling of this domain uniformly at random.

2 Fix a domain and a height function on the boundary, pick a height func-
tion inside the domain extending the boundary height function uniformly at
random.

For simply connected domains, the two points of view are equivalent. For do-
mains with holes, the two might not be equivalent, as the height of holes are
fixed in (2), but there can be multiple possibilities for the heights of the holes in
(1). So in (1), the height of a hole is in general a nonconstant random variable.
In expectation, the height of a hole grows linearly with the size of the domain.
In this lecture, we are interested in determining the order of fluctuations of
the height around its expectation. It turns out that the perspective that leads
to the correct answer is thinking of these as global fluctuations, and expecting
the fluctuations to have finite order, as the GFF heuristic predicts (cf. Lectures
11,12, 21, and 23). The limit is a discrete random variable, and we will present
two approaches to finding it. The first is entirely heuristic, but applies to very
general of domains. The second approach can be carried out rigorously (al-
though our exposition here will still involve some heuristic steps), but only
applies to a specific class of domains.
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Figure 24.1 A hexagon with a rhombic hole.

24.2 Discrete fluctuations of heights through GFF
heuristics.

In this section, we are going to work with an arbitrary domain with a single hole
(which can be of any shape), and a reader can take a hexagon with a rhombic
hole in Figures 24.1, 24.2 as a running example. Let h be the centered height
function on the domain. By this we mean that at each point, h is the difference
between the height function and the expected height at that point. Throughout
this section we work with a modified version of the height function of (9.3),
(9.4). This means that h(x,y) can be thought of as the (centered) total number
of horizontal lozenges in the tiling situated on the same vertical line as (x,y)
below (x,y).

We start with the GFF heuristic – see Lectures 11-12 for the derivation. For
large domains, the distribution of the centered height function (or rather its
density) can be approximated as

P(h)≈ exp
(
−π

2

¨
∥∇h∥2

)
.

The above integral is taken in the complex coordinates related to the Gaussian
Free Field asymptotics; the integration domain is in bijection with the liquid
region.

Outside the liquid region, the lozenges are deterministic with overwhelming
probability. This means that for a typical tiling, the height increment between
any two points in a frozen region is deterministic and equal to the increment
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Figure 24.2 A typical tiling of a hexagon with a hole. Simulation by Leonid
Petrov.

in expectation. Hence, the centered height function is the same at all points of
a frozen region. Thus, picking a point on the outer boundary of the domain
to have zero centered height, we have that the centered height function on the
outer frozen region is zero, and the centered height on the frozen region around
the hole is δ , which is the same as the fluctuation h(B)1 of the height of the
hole. Using our GFF heuristic,

P(h(B) = δ )≈
ˆ

Ωδ

exp
(
−π

2

¨
∥∇h∥2

)
, (24.1)

1 h(B) stays for “Height of Boundary”.



215

where Ωδ is the subset of height functions for which the height of the inner
frozen region is δ .

We would like to understand how (24.1) changes as we vary δ . For that we
take a (unique) harmonic function gδ on the liquid region that satisfies gδ = 0
boundary condition on the outer boundary and gδ = δ boundary condition on
the internal boundary surrounding the hole. The harmonicity is with respect to
the local coordinates of the GFF complex structure. Then for h ∈ Ωδ we can
define h̃ = h−gδ , and notice that h̃ is 0 on all boundaries of the liquid region.
This takes us a step closer to evaluating the integral:

h = h̃+gδ

¨
∥∇h∥2 =

¨
∥∇h̃+∇gδ∥2 =

¨
∥∇h̃∥2 +

¨
∥∇gδ∥2 +2

¨
⟨∇h̃,∇gδ ⟩

We can integrate the last summand by parts:
¨

⟨∇h̃,∇gδ ⟩= boundary term−
¨

h̃∇
2gδ .

The boundary term is 0 since h̃ is 0 on the boundary, and the other term is 0
since ∇2gδ = 0 as gδ is harmonic.

Hence, we can write the probability we are interested in as

P(h(B) = δ )≈
ˆ

Ωδ

exp
(
−π

2

¨
∥∇h̃∥2 +

¨
∥∇gδ∥2

)
.

Notice that for any δ , δg1 is harmonic and satisfies the same boundary condi-
tions as gδ , so gδ = δg1. Hence, we can write

P(h(B) = δ )≈
ˆ

Ωδ

exp
(
−π

2

¨
∥∇h̃∥2

)
· exp

(
−π

2
δ

2
¨

∥∇g1∥2
)

= exp(−Cδ
2)

ˆ
Ωδ

exp
(
−π

2

¨
∥∇h̃∥2

)
.

Note that h̃ in the last integral is an element of Ω0 and therefore is independent
of δ . Hence, the integral evaluates to a δ–independent constant. Therefore, we
have provided a heuristic argument for the following conjecture.

Conjecture 24.1. As the linear size of the domain L → ∞, the height H of a
hole is an integer random variable that becomes arbitrarily close in distribu-
tion to the discrete Gaussian Distribution

const · exp(−C(H −m)2), (24.2)
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Figure 24.3 A domain with multiple holes

where m is a certain (unknown at this point) shift and the scaling factor C can
be computed as the Dirichlet energy

C =
π

2

¨
∥∇g1∥2,

and g1 is the harmonic function in the liquid region (with respect to the
Kenyon-Okounkov’s complex structure) with g1 = 0 on the external boundary
and g1 = 1 on the internal boundary.

The same heuristic argument can also be given for domains with multiple
holes, as in Figure 24.3, leading us to the following conjecture, which the au-
thor learned from Slava Rychkov.

Conjecture 24.2. For a domain with an arbitrary collection of K holes, the
asymptotic distribution of the hole heights is a K-dimensional discrete Gaus-
sian vector with scale matrix given by the quadratic form

˜
⟨∇ f ,∇g⟩ of har-

monic functions in the liquid region with Kenyon-Okounkov complex structure
and with prescribed boundary conditions.

We are not aware of any nice formula for the shifts m and this is an interest-
ing open question.
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N1

N2

Figure 24.4 A hexagon with a symmetric rhombic hole, with the vertical line and
some horizontal lozenges.

24.3 Approach through log-gases

In this section we consider the case of a regular hexagon with side length N+D
with a rhombic hole with side length D in the middle. We will make some
heuristic steps, although the arguments can be carried out rigorously with more
efforts.

The height of the hole is determined by the lozenges on the vertical line that
goes through the middle of the hexagon. Specifically, the height is determined
by the number of horizontal lozenges that lie on the vertical line below the
hole. Let this number be N1, and the number of horizontal lozenges on this
line above the hole be N2. Note that the geometry of the hexagon (the height
function on the boundary) dictates that the total number of horizontal lozenges
on this vertical line is N. So N1 +N2 = N. The fluctuation of the height of the
hole is the same as the fluctuation of N1.

As we are looking for the distribution of N1, it would be great to know the
probability distribution for the positions of these horizontal lozenges. Fortu-
nately, this was found in Lecture 19 for the hexagon, and essentially the same
argument (which is omitted) also works for the hexagon with a hole. With
x1 < x2 < .. . < xN being the vertical coordinates of the N horizontal lozenges,

P(x1,x2, . . . ,xN) ∝ ∏
i< j

(xi − x j)
2

N

∏
i=1

w(xi). (24.3)
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In our case, w is the product of several Pochhammer symbols, cf.
[BorodinGorinGuionnet15, Section 9.2].

Exercise 24.3. Extending the argument which produced (19.1), compute w
explicitly.

Now, let us define a ’potential’ V by

w(x) = exp
(
−NV

( x
N

))
.

Given a position vector xxx = (x1,x2, . . . ,xN), we also define the following prob-
ability measure:

µN =
1
N

N

∑
i=1

δxi/N . (24.4)

As xxx is a random variable, µN is a random distribution. In the limit N → ∞,
µN becomes a continuous probability measure (note that since adjacent xi are
separated at least by distance 1, the density of the limiting measure is upper-
bounded by 1). With this notation, we can rewrite

P(xxx) ∝ exp
(
N2I[µN ]

)
,

where

I[µN ] =

¨
x ̸=y

ln |x− y|µN(dx)µN(dy)−
ˆ

V (x)µN(dx).

As N → ∞, the measure µN concentrates near the maximizer of I[·] —
this is another face of the limit shape theorem for random tilings, cf.
[BorodinGorinGuionnet15].

Letting µ be the probability measure of density at most 1 that maximizes
I[·], we can consider a deviation 1

N gN from the maximum (here, 1
N gN is the

difference of two probability measures, i.e. has total mass zero), and expand:

I[µN ] = I
[
µ + 1

N gN
]
= I[µ]

+
1
N

(
2
¨

ln |x− y|µ(dy)gN(dx)−
ˆ

V (x)gN(dx)
)

+
1

N2 ln |x− y|gN(dx)gN(dy).

Since µ is a maximizer and the middle term is a derivative of I[·] at µ (in the
gN direction), it is zero. So plugging back into the equation for P(xxx), we get
the following proposition.
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Proposition 24.4. The law of fluctuations gN as N → ∞ becomes

P(gN) ∝ exp
(¨

ln |x− y|gN(dx)gN(dy)
)
.

This is an exponential of a quadratic integral, so we get a Gaussian law.

The above proposition can be proved rigorously using loop
(Nekrasov) equations of Lecture 21, see [BorodinGorinGuionnet15] and
[BorotGuionnet11], [Johansson98] for a continuous space version.

We now understand the distribution of the fluctuations gN . Note that the
support of gN is the part of the vertical line in the liquid regions, that is, a pair
of intervals [a,b]∪ [c,d], as in Figure 24.5. We would like to also understand
the fluctuation of the height of the hole, which is equal to the fluctuation of
gN [a,b] =−gN [c,d]. The distribution of the latter is

P(gN [a,b] =−gN [c,d] = δ ) ∝

ˆ
Ωδ

exp
(¨

ln |x− y|gN(dx)gN(dy)
)
.

(24.5)
Here, Ωδ is the subset of all gN with gN [a,b] =−gN [c,d] = δ .

Lemma 24.5. The expression in (24.5) is the same as

P(gN [a,b] =−gN [c,d] = δ )

∝ exp
(

max
gN such that gN [a,b]=δ

¨
ln |x− y|gN(dx)gN(dy)

)
= exp

(¨
ln |x− y|gδ (dx)gδ (dy)

)
,

where gδ is defined to be the maximizer.

Proof This is a general statement about Gaussian vectors, which we leave
as an exercise: the density of projection of a large–dimensional vector onto a
smaller subspace can be found through the maximization procedure.

In analogy with the argument from before, we again have gδ = δg1, so we
conclude with the following result.

Conjecture 24.6. The height of a hole is asymptotically a discrete Gaussian
(integer-valued) random variable, i.e. it has distribution

const · exp(−C(H −m)2),

where m is a certain shift and the scale parameter C is given by the extremum
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a

b

c

d

Figure 24.5 The dotted lines are boundaries of frozen regions, and the dashed
segments are the support of gN

of the logarithmic energy:

C =−max
¨

ln |x− y|gN(dx)gN(dy),

with the maximum taken over all gN on [a,b]∪ [c,d], such that gN [a,b] = 1,
gN [c,d] =−1.

Conjecture 24.6 can be proven rigorously, although with significant tech-
nical effort, see [BorotGorinGuionnet20+]. The same argument can also be
carried out for multiple symmetric holes on a vertical line.

24.4 2d Dirichlet energy and 1d logarithmic energy

The material of this subsection is based on private communications of the au-
thor with Alexei Borodin, Slava Rychkov, and Sylvia Serfaty.

We have seen in the previous two sections two approaches which both gave
discrete Gaussian distributions for the height function of the hole. However,
the constants C in the exponents in Conjectures 24.1 and 24.6 have different
expressions. For the former, C is given as the Dirichlet energy of a harmonic
function with prescribed boundary conditions, which is equal to the minimal
Dirichlet energy with these boundary conditions. For the latter, C is given by
a log energy minimization on the line. The two visually different expressions
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have to be equivalent, and in this section we provide a mathematical explana-
tion for this.

We start by repeating and extending the statements of Conjectures 24.1, 24.6
for the setting of k ≥ 1 holes in the domain.

Recall that we would like to understand the discrete component of the global
fluctuations in uniformly random tilings of the domains with k holes. Figure
24.2 shows a sample of lozenge tilings in the one-hole situation and Figure
24.6 shows a sample of domino tiling in the two-holes situation. Asymptot-
ically the discrete component should be given by discrete Gaussian random
variables, which are random variables on Zk−1 depending on two sets of pa-
rameters: shift and scale matrix (“covariance”, although the exact covariance
of the coordinates is slightly different). In the case of one hole this random
variable is one dimensional, has the weight

1
Z

exp
(
− (x−m)2

2s2

)
, x ∈ Z. (24.6)

We would like to compare two different ways of computing s2 (and more gen-
erally, the scale matrix): the first one proceeds through the 2d variational prin-
ciple and its approximation by the Dirichlet energy in the appropriate coor-
dinate system; the second one relies on the identification of a section of the
tilings with 1d–log gas and variational principle for the latter. The two ways
generalize those in the previous subsections.

Let us start from the first approach.
We know from the variational principle that the number of tilings with a

height approximating a height profile h(x,y) can be approximately computed
as

exp
(

L2
ˆ ˆ

S(∇h)dxdy+o(L2)

)
, (24.7)

where L is the linear size of the system and the integration goes over the tiled
domain (rescaled to be finite). As in Lecture 12, (24.7) can be used to give a
quadratic approximation of the energy near the maximizer of (24.7) known as
the limit shape. Denoting h̃ = h−Eh, we get the law

exp
(
−π

2

ˆ ˆ ∣∣∇Ω(h̃)
∣∣2dz

)
. (24.8)

The integral in (24.8) goes over the liquid region in (x,y)–coordinates, as there
are no fluctuations outside. The map Ω transforms the liquid region into a
certain Riemann surface of the same topology; in the applications this surface
can be taken to be a domain in C through the Riemann Uniformization, as in
Theorem 11.13. The meaning of (24.8) is that we need to introduce a map or
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change of coordinates (x,y) 7→ Ω(x,y) in order to turn the quadratic variation
of (24.7) near its maximum into the Dirichlet energy. For our purposes, the
map Ω(x,y) is defined only up to compositions with conformal functions, as
the latter leaves the Dirichlet energy invariant.

The discrete Gaussian component arises as the integral of (24.8) over vary-
ing boundary conditions. A basic property of the Dirichlet energy in a domain
is that for the sum of two functions f = u+v, such that v is harmonic in the do-
main and u vanishes on the boundary of the domain, the Dirichlet energy of f is
the sum of Dirichlet energies of u and v. Hence, we can identify the integrals of
(24.8) with different boundary conditions. Therefore, the scale of the Gaussian
component can be now reconstructed through the computation of the Dirichlet
energy of the harmonic functions (in the liquid region, in Ω–coordinate) with
appropriate boundary conditions reflecting the height differences on different
connected components of the boundary. E.g. for the holey hexagon of Figure
24.4 there are two connected components of the boundary, and therefore, there
are two heights. By recentering, we can assume that the height of the outer
component is zero and, therefore, only one variable remains.

It is shown in [BufetovGorin17] that for a class of domains (gluing of trape-
zoids in the lozenge case and gluings of Aztec rectangles in the domino case)
the map Ω(x,y) can be chosen so that it maps the liquid region into the com-
plex plane with cuts. For instance, in the holey hexagon case of Figure 24.4,
the cuts can be identified with intervals on the vertical symmetry axis on the
picture; their endpoints coincide with intersection of the frozen boundary of
the liquid region with the symmetry axis, these are [a,b] and [c,d] in Figure
24.5. In the Aztec diamond with two holes of Figure 24.6 the cuts are on the
horizontal axis going through the centers of the holes; again end-points of the
cuts lie on the frozen boundary.

We thus are led to the problem of finding the Dirichlet energy of harmonic
functions in a domain with cut. Let us now formulate the setting of the last
problem in a self-contained form.

Take 2k real numbers a1 < b1 < a2 < · · · < ak < bk. We refer to intervals
[ak,bk] as cuts. Let H denote the (open) upper half-plane and H̄ denote the
lower half-plane. Set D=H∪ H̄∪k

i=1 (ai,bi).
Fix k real numbers n1, . . . ,nk subject to the condition n1+ · · ·+nk = 0. These

numbers are fluctuations of the height function in the setting of the previous
text: they are increments of the height as we cross a connected component of
the liquid region (cf. N1 and N2 in Figure 24.4) with subtracted expectations.
The zero sum condition corresponds to the deterministic full increment of the
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Figure 24.6 Domino tiling of Aztec diamond with two holes; there are two types
of horizontal and vertical lozenges (due to checkerboard coloring), hence 4 colors
on the picture. Drawing by Sevak Mkrtchyan

height function between the points of the outer boundary. In particular, k = 2
in Figures 24.2 and 24.4, and k = 3 in Figure 24.6.

We consider continuous functions h(z), z = x+ iy, in C, differentiable in D,
and subject to the following boundary conditions on the real axis:

h(−∞) = h(+∞) = 0, (24.9)
∂

∂x
h(x) = 0 on [−∞,a1]∪ [b1,a2]∪·· ·∪ [bk−1,ak]∪ [bk,+∞], (24.10)

h(bi)−h(ai) = ni, i = 1, . . . ,k. (24.11)
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We are interested in the Dirichlet energy of such functions,

E (h) =
¨

D
|∇h|2dxdy =

¨
D
[(hx)

2 +(hy)
2]dxdy.

We further define a quadratic form C through

C : (n1, . . . ,nk)→
π

2
min

h
E (h), subject to (24.9), (24.10), (24.11). (24.12)

Note that by the Dirichlet principle, the minimizer in (24.12) is a harmonic
function in D.

Claim 24.7. The quadratic form C is precisely the quadratic form for the dis-
crete Gaussian component of the fluctuations of the height function in random
tilings in Conjecture 24.1.

From the second perspective, we saw in the previous section that the sec-
tion of a random tiling along a singled out axis gives rise to a discrete log-
gas. This axis is the vertical symmetry axis in Figures 24.2, 24.4 and hor-
izontal axis going through the centers of the holes in Figure 24.6. Other
examples can be found in [BorodinGorinGuionnet15], [BufetovGorin17],
[BorotGorinGuionnet20+]. Clearly, it is enough to study what is happening
on such axis in order to find the desired discrete Gaussian component of the
fluctuation.

In more details, in Figure 24.4 the distribution of the horizontal lozenges on
the vertical section of the tiling by the symmetry axis of the domain has the
form of the log-gas. The particles xi in (24.3) belong to two segments – below
and above the hole. We are, thus, interested in fluctuations of the number of
particles in one of the segments. For a large class of tilings we will have a
generalisation of (24.3) with particles now confined to k segments instead of 2.

If we denote through µN the empirical measure of the particles as in (24.4),
then (24.3) can rewritten (ignoring the diagonal) as

exp
[

N2
(¨

ln |x− y|µN(dx)µN(dy)+
ˆ

lnw(Nx)µ(dx)
)]

(24.13)

The maximizer of the functional in the exponent of (24.13) is the equilib-
rium measure. The fluctuations of the numbers of particles (called filling
fractions in this context) can be thus obtained by varying this functional
near its extremum. Rigorous justification of this procedure is the subject or
[BorotGorinGuionnet20+]. In the continuous setting (when xi in (24.3) are real
numbers rather than integers), the detailed rigorous analysis for arbitrary num-
ber of cuts k was done in [BorotGuionnet11].
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Let us describe how the approximation of the functional near the equilibrium
measure looks like. We assume that the bands of the equilibrium measure are k
intervals [a1,b1],. . . , [ak,bk]. Recall that bands are regions where the density is
not zero and not one as in the liquid region for tilings (i.e., not frozen/saturated,
the latter corresponding to the areas in Figures 24.2 and 24.4 densely packed
with particles).

Given n1, . . . ,nk with n1 + · · ·+ nk = 0, we are led to consider signed mea-
sures ν on the union of the intervals [ai,bi] subject to filling fractions:

ν([ai,bi]) = ni, i = 1, . . . ,k. (24.14)

We consider the logarithmic energy of such measure given by

Ẽ =−
ˆ ˆ

ln |x− y|ν(dx)ν(dy). (24.15)

Define a quadratic functional C̃ through

C̃ : (n1, . . . ,nk)→ min
ν

Ẽ (ν) subject to (24.14). (24.16)

Claim 24.8. The quadratic form C̃ is precisely the quadratic form for the dis-
crete Gaussian component of the fluctuations of the height function in random
tilings, as in Conjecture 24.6.

Of course, both Claim 24.7 and Claim 24.8 describe the same object.
The advantage of Claim 24.8 is that we are actually able to prove it in
[BorotGorinGuionnet20+]. Nevertheless, the answers in these claims also look
visually different. Hence, we are led to proving the following statement.

Proposition 24.9. Quadratic forms (24.12) and (24.16) are the same.

Proof The key idea is to split the minimization procedure in (24.12) into two
steps. First, we will fix the values of h on the real axis in arbitrary way subject
to (24.9), (24.10), (24.11) and minimize over all such functions. The minimizer
is then a harmonic function separately in the upper half–plane and in the lower
half–plane; by symmetry, the values differ by conjugation of the arguments.
By the Schwarz integral formula (i.e. Poisson kernel), this harmonic function
can be expressed as an integral over the real axis

h(z) = ℜ

[
1
πi

ˆ
∞

−∞

h(ζ )
ζ − z

dζ

]
, z ∈H, (24.17)

and by a similar expression with changed sign in the lower halfplane H̄.
In the second step we minimize the Dirichlet energy over the choices of the

values of h on the real axis. We claim that the latter optimization is the same
as the log-energy optimization of (24.16). Let us explain this.



226 Lecture 24: Discrete Gaussian component in fluctuations

We identify a function on the real axis h(x) with a signed measure ν through
h(y)− h(x) = ν([x,y]). Although, a priori the functions do not have to be
differentiable and the signed measures do not have to be absolutely continu-
ous, however, the minimum in (24.12) and (24.16) is attained on differentiable
functions and measures with densities, respectively. Thus, we can restrict our-
selves to the latter, in which case the derivative hx(x) becomes the density of ν .
Clearly, under such identification, conditions on h (24.9)-(24.11) become con-
ditions on ν (24.14). It thus remains to show that the functional (24.12) turns
into (24.16).

Let us compute the Dirichlet energy of h(x + iy) given by (24.17) in the
domain y ≥ ε > 0. Integrating by parts, we get
¨

y≥ε

[
(hx)

2 +(hy)
2]dxdy

=

ˆ +∞

ε

dy
[
(hhx)(+∞+ iy)− (hhx)(−∞+ iy)−

ˆ
∞

−∞

hhxxdx
]

+

ˆ
∞

−∞

dx
[
(hhy)(x+ i∞)− (hhy)(x+ iε)−

ˆ
∞

ε

hhyydy
]
. (24.18)

Further, note that since h(x) has a compact support on the real axis, h(z)
given by (24.17) decays as O(1/|z|) when z → ∞ and its derivatives decay
as O(1/|z|2). Hence, all the boundary terms at the infinity in (24.18) vanish.
Moreover, since h is harmonic, hhxx+hhyy = 0 and the double integral vanishes
as well. We conclude that (24.18) is

−
ˆ

∞

−∞

(hhy)(x+ iε)dx =−
ˆ

∞

−∞

dxh(x+ iε)ℜ
[

1
π

ˆ
∞

−∞

h(ζ )
−(ζ − (x+ iε))2 dζ

]
We integrate by parts both in x and in ζ to get

− 1
π

ˆ
∞

−∞

dxhx(x+ iε)ℜ
[ˆ

∞

−∞

hx(ζ ) ln(ζ − (x+ iε))dζ

]
.

Note that we need to choose some branch of the logarithm here, but it does not
matter, because we will get the logarithm of the absolute value when comput-
ing the real part anyway.

At this point it remains to send ε → 0 (the integrand is singular and we also
have hx rather than h itself; hence, the limit needs some justifications, which
we omit) and to add the same contribution from the lower half-plane to get the
desired ¨

D
|∇h|2dxdy =− 2

π

ˆ
∞

−∞

ˆ
∞

−∞

hx(x)hx(ζ ) ln |ζ − x|dxdζ ,

which matches (24.16).
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Remark 24.10. Although we were only concentrating on the discrete compo-
nent, but essentially the same arguments explain the link between covariance
structures for the entire field of fluctuations: Gaussian Free Field in the 2d pic-
ture and universal covariance of random matrix theory and log-gases on the 1d
section. This covariance coincidence is also discussed (through other tools) in
[BufetovGorin17], [BorodinGorinGuionnet15].

Remark 24.11. It is interesting to also try to do similar identification for the
shifts — m in (24.6). This involves computing the second order expansion of
the logarithm of the partition function — we need O(N) rather than O(N2)

terms. On the side of log-gases there is a certain understanding of how this can
be done (at least for continuous log–gases). On the other hand, the author is not
aware of approaches to the computation of this second term in the 2d setting
of random tilings.

24.5 Discrete component in tilings on Riemann surfaces

There is another natural situation in which the height function of lozenge
tilings asymptotically develops a discrete Gaussian component.

Let us give an example by looking at lozenge tilings of a torus, as we did
in Lectures 3, 4, and 6. The height function does not make sense on torus as a
single-valued function: we define the heights by local rules and typically these
rules result in a non-trivial increment as we loop around the torus and come
back to the same point.

There are two closely related ways to deal with this difficulty. We could
either split the height function into two components: affine multivalued part
(sometimes called the instanton part) keeping track of the height change as we
loop around the torus, and a scalar single-valued part. Alternatively, we can
define the height function as a 1–form, so that it is a not function of the point,
but rather of a path on the torus, and therefore is allowed to have different
values on paths representing different homotopy classes. In both ways, one
can single out the component which asymptotically converges to a discrete
Gaussian random variable: in the first approach this is the instanton part, and
in the second approach these are the values of the 1–form on closed loops.

More generally, a similar component can be singled out whenever we deal
with tilings of domains embedded into Riemann surfaces of higher genus. We
deal with random functions of homotopy classes of closed loops and we can
ask about the asymptotic of such functions as the mesh size goes to zero.

In several situations the convergence of the discrete component of the
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tilings on Riemann surfaces to discrete Gaussian random variables was rig-
orously proved, see [BoutillierDeTiliere06, Dubedat11, KenyonSunWilson13,
DubedatGheissari14, BerestyckiLaslierRay19].



Lecture 25: Sampling random tilings

In this lecture we are interested in algorithms for sampling a random lozenge
tiling. Fix a tileable domain R. We consider the cases in which the probability
of a particular tiling of R is either uniform or proportional to qVolume, where
Volume is the number of cubes which one needs to add to the minimal tiling
of R in order to obtain a given tiling.

We are interested in reasonably fast algorithms for sampling a tiling. The
trivial algorithm – generating the set of all tilings of R and picking a tiling
from this set according to some probability measure – is in general very slow
in the size of R. Indeed, we saw in previous lectures that for a domain of linear
size L, the number of tilings is exp(L2 . . .), cf. Theorem 5.15. Fortunately, there
are other sampling algorithms that do not require generating a list of all tilings.
We will discuss a few algorithms that are based on Markov chains.

One practical reason for wanting fast ways to sample tilings from a distri-
bution sufficiently close to the desired distribution is so that one can guess the
peculiar features of the tiling model (L1/3 behaviour, Tracy-Widom distribu-
tions, Gaussian Free Field, etc.) from looking at some sampled tilings.

25.1 Markov Chain Monte-Carlo

We start from a general theorem, see, e.g., [Shiryaev16, Theorem 1 in §1.12].

Theorem 25.1. Take a (time-homogeneous discrete time) Markov chain with
finite state space [n] and transition matrix P. That is, the matrix entry Pi j is the
probability of transitioning from state i to state j in one time step. Suppose that
there exists an integer k, such that for all pairs of states (i, j), (Pk)i j > 0.

Then P has a unique invariant distribution πππ (i.e. a distribution vector πππ for
which πππP = πππ). Furthermore, for any distribution vector xxx,

lim
t→∞

xxxPt = πππ.

229
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add cube

remove cube

m
m

Figure 25.1 Adding/removing a cube at the vertex m

This theorem motivates the following general idea for a sampling algorithm.
Design a Markov chain such that the assumptions of the above theorem are
satisfied. Pick your favorite start state (the corresponding distribution vector xxx
has a 1 in the corresponding location and 0’s elsewhere), and perform random
transitions on it for long enough (so as to make the distribution of the end state
as close to uniform as desired). Output the end state.

All Markov chains we consider in this lecture are going to have state space
equal to the set of all tilings of our domain R. On each step, the Markov chain
will either add a cube to the tiling or remove a cube from the tiling. For our
Markov chains, we want the assumptions of Theorem 25.1 to be satisfied. In
particular, we want any tiling to be reachable from any other tiling by a se-
quence of cube addition/removal moves. This condition is guaranteed to hold
when the domain R is a simply connected region of the plane, but it might fail to
hold for domains with holes, since adding or removing cubes does not change
the height function on the hole boundaries, while in general there are multiple
possibilities for the height of a hole. However, for fixed height functions of the
holes, any tiling is reachable from any other by a sequence of such moves, and
the rest of the discussion in this lecture notes applies to that case (with appro-
priate modifications). So for domains which are subsets of the plane that are
not simply connected but for which the distribution of the height function on
the holes is known, one can still sample a random tiling by first sampling the
heights of the holes from the known distribution, and then sampling a random
tiling, given these heights for the holes. But for clarity, we will from now on
only consider the case in which R is a simply connected region of the plane.

Consider the Markov chain given by the following step.

Chain 25.2. Choose a vertex m of R uniformly at random, and flip a coin. With
probability 1/2, add a cube at m (if possible; otherwise do nothing), and with
probability 1/2, remove a cube at m (if possible; otherwise do nothing). The
possible moves are shown in Figure 25.1.

When running this chain in practice, one can of course restrict to only pick-
ing vertices m at which it is possible to either add or remove a cube. However,
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the above formulation is what we will use formally, because it has a number
of nice properties. Note that Chain 25.2 satisfies the assumption of Theorem
25.1, as any tiling can be reached from any other and there is always a nonzero
probability of not changing the tiling, from which the assumption of the theo-
rem follows. Hence, this chain has a unique invariant distribution, and we have
the following proposition.

Proposition 25.3. The uniform distribution is the invariant distribution of
Chain 25.2.

Proof For a general Markov chain, to show that πππ is an invariant distribution,
it suffices to show reversibility, that is πiPi j = π jPji. Indeed, if this holds, then

(πππP) j = ∑
i

πiPi j = ∑
i

π jPji = π j ∑
i

Pji = π j =⇒ πππP = πππ.

So it remains to show that for our cube switching Markov chain, πππ = the uni-
form distribution satisfies πiPi j = π jPji. This is just a case check:

1 If i = j, then this is trivially true.
2 If tilings i and j are different, but do not differ by adding/removing a single

cube, then Pi j = Pji = 0, so we are done.
3 If tilings i and j differ by adding/removing a single cube, then both Pi j and

Pji are 1
2 ·

1
number of vertices , so we are done since for the uniform distribution

πi = π j. Note that it is crucial here that our Markov chain step involves
picking a random vertex regardless of whether a cube flip can be performed
there.

As for the qVolume distribution, consider the following Markov chain that is
the same as Chain 25.2, except with different probabilities for adding/removing
cubes.

Chain 25.4. Choose a vertex m of R uniformly at random, and flip a biased
coin. With probability q

1+q , add a cube at m (if possible; otherwise do noth-
ing), and with probability 1

1+q , remove a cube at m (if possible; otherwise do
nothing).

As argued before, Chain 25.4 also has a unique invariant distribution. We
have the following proposition.

Proposition 25.5. The qVolume distribution is the invariant distribution of
Chain 25.4.

Proof As in the proof of Proposition 25.3, it suffices to show reversibility, i.e.
that πiPi j = π jPji. This is just a case check:
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1 If i = j, then this is trivially true.

2 If tilings i and j are different but do not differ by adding/removing a single
cube, then Pi j = Pji = 0, so we are done.

3 If tilings i and j differ by adding/removing a single cube, with WLOG tiling
j having 1 cube more than tiling i, then for the qVolume distribution πππ , π j

πi
= q,

and with our transition probabilities, Pi j
Pji

=
q

1+q
1

1+q
= q. The desired equality

πiPi j = π jPji follows.

So we have the following algorithm for sampling a random tiling.

Algorithm 25.6. Pick your favorite tiling. Run either Chain 25.2 (for the uni-
form distribution) or Chain 25.4 (for the qVolume distribution) long enough, and
output the result.

Of course, this does not give exactly the distribution we are interested in
for any finite time, but by Theorem 25.1, as the time goes to infinity, it gives
an arbitrarily good approximation. One may ask what the runtime should be
for the approximation to be ’sufficiently good’. To be more rigorous, define
the total variation distance between two distributions µ1,µ2 on a finite space
X to be ∑x∈X |µ1(x)− µ2(x)|. Define the mixing time of this Markov chain
to be the minimal amount of time t the above algorithm needs to run (from
any start state), so that for all t ′ ≥ t, the variation distance between the in-
duced distribution and the desired distribution is at most some fixed constant
ε . In [RandallTetali00] an upper bound O(L8 lnL) for the mixing time in the
domain of linear size L was obtained. For a slightly different Markov chain
(which allows addition/removal of 1×1× k stacks of cubes; it was introduced
in [LubyRandallSinclair95]), the mixing time was shown to be O(L4 lnL)
in [Wilson01] and for hexagons this bound is tight up to a constant factor.
[Wilson01, Section 5.6] discusses that the mixing time for our chain (adding
only one cube at a time) is expected to be of the same order for “good” do-
mains. This prediction (which also agrees with expectations from the the-
oretical physics literature) matches more recent results on the mixing time
for our chain in specific classes of domains [CaputoMartinelliToninelli11],
[LaslierToninelli13].

A general behaviour (cf. [LevinPeresWilmer17]) is that before some time
the chain is not mixed at all, and after that time it is mixed very well. To get
an idea of what the above estimates mean in practice, for instance, when our
domain is a hexagon of side length 1000, one should run the Markov chain on
a personal computer for about an entire day to get a good approximation.
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25.2 Coupling from the past [ProppWilson96]

In any finite amount of time, the previous algorithm only gives a sample from
an approximation of the desired distribution. This is often inconvenient, as
we would like to look at very delicate features of the tilings, and therefore,
knowing that our sample is exact rather than approximate becomes important.
With an upgrade known as coupling from the past, we can sample from the
desired distribution without any error.

Let us first discuss some ideas that will eventually lead us to the coupling
from the past algorithm. Suppose we can run our Markov chain in a coupled
way from all states, i.e. picking a sequence of transitions (which we think of
as transitions from any state via some canonical identification, and not just
transitions from some fixed state) and applying this same sequence to all start
states. Further suppose that at some time t, we notice that we have reached the
same final state from all start states. Suppose we output this final state. Since
this state is independent from the initial configuration, one might expect that it
is a sample from the invariant distribution, as we can imagine starting from the
invariant distribution originally. However, there are a few issues here.

First, with the algorithm as stated, we still run into our original problem – the
total number of states is huge, so it would take a huge amount of time to simul-
taneously run this procedure from all start states. It turns out that this problem
can be fixed, due to the fact that transitions preserve the height poset structure
on tilings. This will be explained in more detail in the next few paragraphs.

The second issue is that there is no way to choose the desired time t deter-
ministically, while if t is random (e.g. we choose it as the first time when all
initial states lead to the same current state), then it becomes unclear whether
the distribution of the output of such an algorithm is the invariant distribution
of the Markov chain. Unfortunately, this turns out to be false in general, as
the following counterexample shows. Suppose we have a Markov chain that
satisfies the assumptions of Theorem 25.1 with more than one state, and with
a state into which one can transition from exactly one state (also counting the
state itself). It is not hard to see that such Markov chains exist. Then the prob-
ability of outputting this state at first time t is clearly zero. However, (under
assumptions of Theorem 25.1), the invariant distribution can not assign zero
probability to some state. So the distribution of the output of our algorithm is
not the invariant distribution.

Let us first explain how to work around the issue of not being able to run the
Markov chain from all initial states.

Proposition 25.7. Suppose we have two tilings A0 and B0, such that at each
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Figure 25.2 The configuration and height function around m in Ai−1 and Ai

grid vertex m, the height of A0 is at most the height of B0. Suppose we have a
sequence of transitions T1,T2, . . . ,Tt . That is, each transition is a specification
of a vertex m at which to perform an operation and whether this operation
is adding or removing a cube. Let At and Bt be the tilings we obtain after
performing this sequence of operations on A0 and B0, respectively. Then at
every grid point m, the height of At is at most the height of Bt .

Proof Say for a contradiction that there is a vertex at which the height of At

is greater than the height of Bt . Then there must be a first transition after which
there exists such a vertex, let it be Ti. This means that at all grid vertices, the
height of the tiling Ai−1 was at most that of the tiling Bi−1, but there exists a
vertex m at which the height of Ai is greater than the height of Bi. Our oper-
ations only change the height at one vertex – the vertex at which we add or
remove a cube. So in our situation, we must have added or removed a cube at
the vertex m, and at all neighboring vertices, the height of Ai is still at most the
height of Bi. Let us consider the case in which we added a cube to Ai−1 at m.
The case of removing a cube from Bi−1 at m is completely analogous. Since
the height of Ai became greater than that of Bi at m, we must have not added a
cube to Bi, so Bi = Bi−1. As we know the local configuration of the tilings Ai−1

and Ai around the vertex m and that the heights of other vertices are preserved,
we can write out the height functions in terms of the height H of m in Ai−1.
These are shown in Figure 25.2.

Note that in Bi−1, m has height at most H + 2 by our assumption about the
height function of Ai becoming larger than that of Bi. Also note that the vertices
adjacent to m in the three negative coordinate directions have heights at least
H +2 in Bi−1 (see Figure 25.2), so in particular they have heights greater than
the height of m. Hence, the edges between m and these three vertices must be
diagonals of lozenges in Bi−1. But this implies that we could have also added
a cube to Bi−1, a contradiction.

Recall from the first lecture that for any simply connected domain R, there



235

MIN MAX

Figure 25.3 MIN and MAX tilings for the hexagon

is a minimal tiling (for the hexagon, this is the hollowed out cube as in Figure
25.3) which has height function at most that of any other tiling at all points.
Also notice that there is a maximal tiling (for the hexagon, this is the filled
in cube as in Figure 25.3) which has height function at least that of any other
tiling at all points. Let us call these tilings MIN and MAX. By Proposition
25.7, if a sequence of transitions leads to the same tiling X from both MIN and
MAX, then this sequence must lead to X from all initial tilings, as the height
function of any final state is both lower bounded and upper bounded by the
height function of X at all points. So this solves the issue of having to run the
Markov chain from all states – now we just need to run it from MIN and MAX
to be able to tell when all branches coalesce.

We still have the problem that the above algorithm of applying successive
transitions might give the wrong distribution because of the randomness of t.
It turns out that this is not the case if instead of applying successive transitions
to the end state, one applies all transitions in the opposite order instead, i.e.
starting from the transition that was chosen last. We consider the following
algorithm.

Algorithm 25.8. (Coupling from the Past) Successively generate random tran-
sitions T−1,T−2, . . .. That is, each transition is a specification of a vertex m at
which to perform an operation and whether this operation is adding or re-
moving a cube, generated at random with the same probability distribution as
before (in either Chain 25.2 or Chain 25.4). After generating each new transi-
tion T−t , apply the same sequence of transitions T−t ◦T−(t−1) ◦ . . .◦T−1 to both
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MIN and MAX. If the two tilings obtained from both start states are the same,
output this tiling (and halt).

In practice, it is more efficient to only apply the transitions to MIN and MAX
after generating t = 1,2,4,8, . . . of them. It is easy to see that this algorithm
halts almost surely. Let us now prove that this algorithm generates samples
from exactly the desired distribution.

Proposition 25.9. The distribution of the output of Algorithm 25.8 is precisely
the invariant distribution of the corresponding tiling Markov chain (uniform
or qVolume).

Proof If T−t ◦T−(t−1) ◦ . . . ◦T−1 takes both MIN and MAX to the same end
state i, then it also does so for any other state (by Proposition 25.7). The
crucial observation is that if T−t ◦ T−(t−1) ◦ . . . ◦ T−1 takes all initial states to
i, then for t ′ > t, T−t ′ ◦ T−(t ′−1) ◦ . . . ◦ T−1 =

(
T−t ′ ◦T−(t ′−1) ◦ . . .◦T−(t+1)

)
◦(

T−t ◦T−(t ′−1) ◦ . . .◦T−1
)

also takes any initial state to i. Starting from any start
state (i.e. a distribution vector xxx with a 1 in the corresponding location and 0’s
elsewhere), Theorem 25.1 gives that xxxPt approaches the invariant distribution
as t → ∞. Since for any particular sequence of transitions . . . ,T−2,T−1, there
almost surely exists a time t after which the end state is unchanged by adding
transitions to the beginning, the limiting distribution (formally, the limiting
distribution starting from some fixed start state – although it does not matter,
as the result is the same for all start states) is also equal to the distribution of
the end states generated by our algorithm. Hence, the distribution of these end
states is equal to the invariant distribution of the Markov chain. This is what
we wanted to show.

To recap, one advantage Algorithm 25.8 has is that it allows sampling from
the exact distribution we desire, whereas the simple Markov chain Monte-
Carlo algorithm considered before only samples from a good approximation
of this distribution. The runtime is unbounded, but the algorithm almost surely
stops in finite time. For the hexagon, the expected runtime is of the same or-
der as the mixing time. Perfect sampling of random lozenge tilings was one
of the important initial motivations for developing coupling from the past in
[ProppWilson96], yet is also useful for sampling from other large systems, e.g.
the six-vertex model.

Although coupling from the past is a powerful and simple to implement
method, it is by no means a unique way to sample random tilings. In the next
sections we briefly mention other approaches.
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25.3 Sampling through counting

[JerrumValiantVazirani86] popularized a powerful idea: counting and sam-
pling are closely related to each other. In our context, imagine that we could
quickly compute a probability that a given position in the domain is occupied
by the lozenge of a fixed type. Then we could flip a three-sided coin to choose
between , , and for this position, and continue afterwards for the smaller
domain.

We learned in Lectures 2 and 3 that the required probabilities can be com-
puted either by inverting the Kasteleyn matrix, or through evaluation of the
determinants of matrices build out of the binomial coefficients. Thus, the sam-
pling now reduces to the well-studied linear algebra problems of fast compu-
tations for the determinants and inverse matrices. These ideas were turned into
sampling algorithms in [ColbournMyrvoldNeufeld96] for spanning trees and
in [Wilson97] for tilings.

A fast recursive algorithm for computing the same probabilities which works
for very general weights is further discussed in [Propp01].

25.4 Sampling through bijections

Here is another idea. In many situations the total number of tilings (or weighted
sum over tilings) is given by a simple product formula as in Theorem 1.1 of
Lecture 1 or (22.8) in Lecture 22. If we can turn the enumeration identity into
a bijection between tilings and some simpler objects enumerated by the same
product, then as soon as we manage to sample these objects, we get access to
random tilings as well.

Perhaps, the most famous of such bijections is the Robinson–Schensted–
Knuth (RSK) correspondence between rectangular matrices filled with in-
tegers and pairs of semistandard Young tableaux, see e.g. [Romik15, Sec-
tion 5.3], [BaikDeiftSuidan16, Section 10.2] for the reviews in probabilis-
tic context and [Sagan01] for connections to representation theory and sym-
metric functions. It is straightforward to sample a rectangular matrix with
independent matrix elements, and using RSK we immediately get ran-
dom pairs of Young tableaux, which, in turn, can be identified with plane
partitions. This approach can be used for sampling of qVolume–weighted
plane partitions of Lecture 22. For the Schur processes, which generalize
plane partitions, the detailed exposition of the approach can be found in
[BetaBoutillierBouttierChapuyCorteelVuletic14].

More delicate bijections were used in [BodiniFusiPivoteau07] for sampling
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random plane partitions with fixed volume and in [Krattenthaler98] for sam-
pling random lozenge tilings of hexagons.

25.5 Sampling through transformations of domains

There are specific domains, for which the number of tilings is small and sam-
pling is easy. This could be either because the domain itself is very small, or
because the height function is extremal along the boundary. For instance, the
A×B×0 hexagon has a unique tiling.

A central idea for a class of algorithms is to introduce a Markov chain (with
local transition rules), which takes a uniformly random tiling of a domain as
an input and gives a uniformly random tiling of a slightly more complicated
domain as an output. In this way, we can start from a domain with a single
tiling and reach much more complicated regions in several steps. The main
difficulty in this approach is to design such a Markov chain, as there is no
universal recipe to produce it.

The first example of such a chain is known as the shuffling algorithm for
the Aztec diamond [ElkiesKuperbergLarsenPropp92] . It works with tilings of
rhombuses drawn on the square grid (“diamonds”) with 2× 1 dominos, as in
Figure 1.10 of Lecture 1. Starting from 2×2 square, which has two tilings, it
grows the size of the domain, ultimately getting to huge rhombuses.

There are several different points of view on the shuffling algorithm which
lead to different generalizations. The first point of view is that it provides a
stochastic version of a deterministic operation which modifies a bipartite graph
through a sequence of local moves (known as urban renewal or spider move)
with explicitly controlled change of the (weighted) count of all perfect match-
ings. It is explained in [Propp01] how this can be used for sampling random
domino tilings with quite generic weights. Since the admissible weights in this
procedure are essentially arbitrary, it is is very flexible: by various degener-
ations one can get all kinds of complicated domains, tilings on other lattices
(including lozenge tilings), etc. Extending beyond the probabilistic context,
urban renewal is studied as an abstract algebraic operation on weighted bi-
partite graphs in [GoncharovKenyon11]; it was further linked to the Miquel
move on cycle patterns (arrangements of intersecting circles on the plane) in
[Affolter18, KenyonLamRamassamyRusskikh18].

Another point of view exploits the connections of the domino tilings to
Schur polynomials (which is similar to the lozenge tilings case we saw in
Proposition 19.3 and Lecture 22, see also [BufetovKnizel16]). Along these
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3×6×0 3×5×1 3×4×2 3×3×3

3×2×4 3×1×5 3×0×6 empty

Figure 25.4 Steps of the shuffling algorithm for lozenge tilings of hexagons.

lines [Borodin10] constructed an efficient sampler for qVolume-weighted plane
partitions which we discussed in Lectures 22-23 and their skew versions.

The third point of view treats domino tilings as orthogonal polyno-
mial ensembles, cf. footnote to Exercise 21.7 and see [CohnElkiesPropp96,
Johansson05]. Along these lines [BorodinGorin08], [BorodinGorinRains09]
designed a Markov chain on random lozenge tilings of the hexagon, which
changes the side lengths, thus allowing to reach A×B×C hexagon starting
from the degenerate A× (B+C)×0 hexagon, see Figure 25.4.

The above points of view and generalizations of the shuffling algorithm
share one feature: if we restrict our attention to a subset of tiles, then the time
evolution turns into a one-dimensional interacting particle system, which is a
suitable discrete version of the Totally Asymmetric Simple Exclusion Process
(TASEP). The TASEP itself is a prominent continuous time dynamics on par-
ticle configurations on the integer lattice Z: each particle has an independent
exponential clock (Poisson point process) and whenever the clock rings the
particle jumps one step to the right unless that spot is occupied (“exclusion”);
then the clock is restarted and the process continues in the same way.

The link between shuffling algorithm for the domino tilings of the Aztec
diamond and a discrete time TASEP was noticed and exploited for the iden-
tification of the boundary of the frozen region in [JockushProppShor95]. For
lozenge tilings (of unbounded domains) a direct link to the continuous time
TASEP was developed in [BorodinFerrari08]. These results connect the edge
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limit theorems for tilings of Lecture 18 to the appearance of the t1/3 scaling
and Tracy-Widom distribution in the large time asymptotic of TASEP1.

The connection between statistical mechanics models (such as random
tilings) and interacting particle systems is a fruitful topic and we refer to
[BorodinGorin12, BorodinPetrov13, BorodinPetrov16] for further reviews.

1 The Tracy-Widom fluctuations for TASEP were first established by [Johansson00].
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monotonicity, 46, 229
perturbations, 48

Hermite ensemble, 162, 164, 187

Ising model, 9
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double contour integral, 119
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Lindstrom lemma, 26
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log-gas, 159, 176–187

Macdonald operator, 195, 196
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plane partition, 188
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Schur function, see Schur polynomial
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semiclassical limit, 157
shuffling algorithms, 234–235
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sine process, 112, 136
six-vertex model, 10, 47, 171, 232
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smooth phase, see gas phase
square ice model, 10
steepest descent method, 123–136
surface tension, 50, 54, 56, 60, 69, 76, 102

Tacnode process, 157
Tracy-Widom distribution, 15, 152, 157, 235
trapezoid, tilings of, 86, 116–122, 138, 158,

159, 219
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