Alternative Graphics
System
Lattice

@ Lattice/trellis is another high-level graphics system that
makes many complex things easy, but annotating plots
can be initially complex.

@ This material is “optional”. Feel free to use it but dont
feel you have fto.

@ Consider the following (simulated) data
@ we have 3 groups of 100, 150 and 175 people
@ we measure their blood pressure

@ Hard to put into a data frame or matrix because the
groups are of different size.

@ So hard to use matplot().

@ Draw density of the first
@ plot(density(bp [["A" 1]))

® Then add the other densities

@ lines(density(bp[["B“]]))
lines(density(bp[[“C"1]))

@ Have to compute the xlim and ylim to handle all 3 groups

0 500 1000 150020002500

Distance

o
o
Te]
N
o
o
o
N
o
o
0
—
o
o
o
—
o
o
0
o

0 500 1000 15002000 2500

Aejequy

@ lattice is an R package and provides many functions for
creating high-level plots

@ library(lattice)
@ xyplot(Arr ~ x, data)

@ Note that we are using a formula to specify the
variables for the horizontal and vertical axes.

@ We are specify the data frame in which these are found.

@ (Or if the variables are in the workspace, we dont have
to specify the data.)

Plot types & Functions

@ histogram(), densityplot(), bwplot(), barchart()
@ stripplot(), dotplot()

@ qq(), ggmath()
@ bwplot()

@ xyplot()

@ splom()

@ contourplot() & levelplot()
@ cloud() & wireframe()

@ parallel()

@ histogram(~ AirTime, sfo.origin)

@ densityplot(~ AirTime, sfo.origin, plot.points = FALSE)

@ bwplot(DayOfWeek ~ ArrDelay, air08)

@ splom(™ ArrDelay + DepDelay + Cancelled, sfo.origin)

@ You can use lattice as a replacement for many of the
“traditional” plots

@ easy to display different groups on the same plot (via
the groups argument.

@ easy to add legends

@ you get "better” default colors, etc.

@ Lattice functions accept common “traditional” arguments

@ xlab, ylab, main,
@ xlim, ylim

@ col, pch

@ Like the par() command, lattice has facilities for setting
global parameters for use in subsequent plots

@ We use trellis.par.set() and trellis.par.get()

@ Find the available settings with
names(trellis.par.get())

@ show.settings()

@ Values are ’rypically lists() with entries such as
"alpha”, “cex”, "col”, “font”, “lineheight”

groups & superposition

@ Recall matplot(), or points(density(x2)), or
plot(x, vy, col = type) ..
where we draw multiple variables/data on the same plot
in different colors.

@ Lattice makes this quite simple via the groups argument.

® This takes a variable (in the data frame of the data
argument) and it separates the data based on the
"levels“of this. Then it draws the plot for each of these
subgroups.

densityplot(~ x, groups = type)

Subgroups

e ——

All data

g

@ The groups = var causes lattice to take care of collecting
the different subgroups, computing the appropriate xlim
and ylim and drawing the different pieces of the display.

@ If we use
xyplot(y ~ x, data, groups = var)
we will get different colored points corresponding fo the
different levels of ‘var'.

@ Of course, we need a legend to map the colors to the
values of var...

Legends/keys

@ Lattice provides very simple and also very advanced
facilities for adding legends.

@ It can take care of adding space to the plof, laying it out
and filling in the pieces as part of a regular top-level
plot.

@ Use the auto.key parameter.
@ densityplot(~ x, groups = type, auto.key = TRUE)

@ densityplot(~ x, groups = type,
auto.key = list(columns = length(levels(type)),
title = "Type”, space = "right”))

Separate plots - conditioning

@ Instead of using groups to put different sub-groups in
the same display, we might have multiple different &
separate panels showing different subsets.

@ We do this with “conditional” plots.

@ We divide the data into subgroups, but then we draw
separate displays for each of these subgroups.

densityplot(~ x | type, D)

Subgroups

e ——

All data

Multiple conditions

® We can condition on more than one variable

@ xyplot(ArrDelay ~ DepDelay | DayOfWeek + holiday)

0 400800 0 400800 0 400800

0 400800 0 400800 0 400800 0 400800

@ We can use both conditioning and groups simultaneously.

@ densityplot(~ ArrDelay | Month, sfo.origin,
groups = UniqueCarrier)

Last (main) thing - layout

@ When we use a conditional component of our formula,
we end up with multiple panels.

@ Lattice arranges these on the screen (/device). But we
can control this with

o xyplotly “ x| a + b + .., data, groups = w,

)

One last thing - panel functions

@ How do we add text, lines, efc. to panels in our lattice
plot?

@ This is where lattice is a little more complex than
“traditional” graphics, but is actually quite simple.

@ We can draw all the panels and then go back to
individual panels and draw on them.

@ use trellis.focus() or panel.identify()
trellis.focus(“panel”, 2, 1) # what, column and row
panel.abline(v = 100, col = "red”)
trellis.unfocus()

@ Instead of text(), abline(), points(), lines(), ...
we use panel.text(), panel.abline(), panel.points(),
panel.lines(), ..

@ Alternative is to annotate each panel as we are render it.

@ We do this by specifying our own panel function

@ Often this is relatively straightforward
xyplot(y ~ x | varl + var2, data,
panel = function(...) {

panel.xyplot(...)
panel.abline(v = 100, col = "red”)

7)

@ Our function calls the regular/default panel function for
the plot type, then adds its own content.

@ Often our annotations will access the data passed in the
arguments.

What does a lattice function do?

@ Examines the formula and identifies the conditional parts
(i.e. the parts after the '[')

@ Separate the data into subsets based on the conditioning
combinations - for panels.

@ Determine the xlim and ylim for each subset.
@ Compute the common xlim, ylim
@ Create a panel for each subsef, using common xlim,ylim.

@ If there is a groups argument, create subsets within this
subset. Draw elements within the panel.

print (xyplot (percent ~ percent | year,state.props.df,

xlim = mSrange[1l:2], yvIiilmsSEeT meies S 445
subsSCrip et mlRE,

subset = year %1n% seq(1992, by =4, len = 5),
panel =#funct on (X, e Serosci tp sy

m mapX.. skakel Plrolt = FAkSE, il 1l a=""TRUE)

i Hettehtgsub e~ =t el o mon ame =),

g lower (stEte. props .df
Sstate[subscCript s

coldwm gy (1 =X 0, 0]
col[1gina (col). s tBRt@Uit “werytack

panel .polygon (cbind (m$x, mSy), col = col)
Yo

4

scales = WYisttdeam=EAT] SE), Yaspect —=""1s0"))

