
Alternative Graphics
System
Lattice

Lattice/trellis is another high-level graphics system that
makes many complex things easy, but annotating plots
can be initially complex.

This material is “optional”. Feel free to use it but don’t
feel you have to.

Consider the following (simulated) data

we have 3 groups of 100, 150 and 175 people

we measure their blood pressure

Hard to put into a data frame or matrix because the
groups are of different size.

So hard to use matplot().

x

D
e
n
s
it
y

0.0

0.1

0.2

0.3

-4 -2 0 2 4

Draw density of the first

plot(density(bp [[“A”]]))

Then add the other densities

lines(density(bp[[“B”]]))
lines(density(bp[[“C”]]))

Have to compute the xlim and ylim to handle all 3 groups

Distance

A
rr
D
e
la
y

0

200

400

600

0 500 1000 1500 2000 2500

Jul

0 500 1000 1500 2000 2500

Mar

0 500 1000 1500 2000 2500

Oct

lattice is an R package and provides many functions for
creating high-level plots

library(lattice)

xyplot(Arr ~ x, data)

Note that we are using a formula to specify the
variables for the horizontal and vertical axes.

We are specify the data frame in which these are found.

(Or if the variables are in the workspace, we don’t have
to specify the data.)

Plot types & Functions
histogram(), densityplot(), bwplot(), barchart()

stripplot(), dotplot()

qq(), qqmath()

bwplot()

xyplot()

splom()

contourplot() & levelplot()

cloud() & wireframe()

parallel()

histogram(~ AirTime, sfo.origin)

densityplot(~ AirTime, sfo.origin, plot.points = FALSE)

bwplot(DayOfWeek ~ ArrDelay, air08)

splom(~ ArrDelay + DepDelay + Cancelled, sfo.origin)

You can use lattice as a replacement for many of the
“traditional” plots

easy to display different groups on the same plot (via
the groups argument.

easy to add legends

you get “better” default colors, etc.

Lattice functions accept common “traditional” arguments

xlab, ylab, main,

xlim, ylim

col, pch

Like the par() command, lattice has facilities for setting
global parameters for use in subsequent plots

We use trellis.par.set() and trellis.par.get()

Find the available settings with
 names(trellis.par.get())

show.settings()

Values are typically lists() with entries such as
 “alpha”, “cex”, “col”, “font”, “lineheight”

groups & superposition

Recall matplot(), or points(density(x2)), or
plot(x, y, col = type) ...
where we draw multiple variables/data on the same plot
in different colors.

Lattice makes this quite simple via the groups argument.

This takes a variable (in the data frame of the data
argument) and it separates the data based on the
“levels”of this. Then it draws the plot for each of these
subgroups.

densityplot(~ x, groups = type)

x

D
e
n
s
it
y

0.0

0.1

0.2

0.3

-4 -2 0 2 4

All data

Subgroups

The groups = var causes lattice to take care of collecting
the different subgroups, computing the appropriate xlim
and ylim and drawing the different pieces of the display.

If we use
 xyplot(y ~ x, data, groups = var)
we will get different colored points corresponding to the
different levels of ‘var’.

Of course, we need a legend to map the colors to the
values of var....

Legends/keys
Lattice provides very simple and also very advanced
facilities for adding legends.

It can take care of adding space to the plot, laying it out
and filling in the pieces as part of a regular top-level
plot.

Use the auto.key parameter.

densityplot(~ x, groups = type, auto.key = TRUE)

densityplot(~ x, groups = type,
 auto.key = list(columns = length(levels(type)),
 title = “Type”, space = “right”))

Separate plots - conditioning

Instead of using groups to put different sub-groups in
the same display, we might have multiple different &
separate panels showing different subsets.

We do this with “conditional” plots.

We divide the data into subgroups, but then we draw
separate displays for each of these subgroups.

densityplot(~ x | type, D)

All data

Subgroups

x

D
e
n
s
it
y

0.0

0.1

0.2

0.3

0.4

-4 -2 0 2 4 6

A

-4 -2 0 2 4 6

B

-4 -2 0 2 4 6

C

Multiple conditions
We can condition on more than one variable

xyplot(ArrDelay ~ DepDelay | DayOfWeek + holiday)

DepDelay

A
rr
D
e
la
y

0

200

400

600

800

1000

0 400800

Fri

none

Mon

none

0 400800

Sat

none

Sun

none

0 400800

Thu

none

Tue

none

0 400800

Wed

none

Fri

july4

Mon

july4

Sat

july4

Sun

july4

Thu

july4

Tue

july4

0

200

400

600

800

1000

Wed

july4

0

200

400

600

800

1000

Fri

thanksgiving

Mon

thanksgiving

Sat

thanksgiving

Sun

thanksgiving

Thu

thanksgiving

Tue

thanksgiving

Wed

thanksgiving

Fri

xmas

0 400800

Mon

xmas

Sat

xmas

0 400800

Sun

xmas

Thu

xmas

0 400800

Tue

xmas

0

200

400

600

800

1000

Wed

xmas

We can use both conditioning and groups simultaneously.

densityplot(~ ArrDelay | Month, sfo.origin,
 groups = UniqueCarrier)

Last (main) thing - layout

When we use a conditional component of our formula,
we end up with multiple panels.

Lattice arranges these on the screen (/device). But we
can control this with

 xyplot(y ~ x | a + b + ..., data, groups = w,
 layout = c(columns, rows))

One last thing - panel functions

How do we add text, lines, etc. to panels in our lattice
plot?

This is where lattice is a little more complex than
“traditional” graphics, but is actually quite simple.

We can draw all the panels and then go back to
individual panels and draw on them.

use trellis.focus() or panel.identify()
 trellis.focus(“panel”, 2, 1) # what, column and row
 panel.abline(v = 100, col = “red”)
 trellis.unfocus()

Instead of text(), abline(), points(), lines(), ...
we use panel.text(), panel.abline(), panel.points(),
panel.lines(), ...

Alternative is to annotate each panel as we are render it.

We do this by specifying our own panel function

Often this is relatively straightforward
xyplot(y ~ x | var1 + var2, data,
 panel = function(...) {
 panel.xyplot(...)
 panel.abline(v = 100, col = “red”)
 })

Our function calls the regular/default panel function for
the plot type, then adds its own content.

Often our annotations will access the data passed in the
arguments.

What does a lattice function do?
Examines the formula and identifies the conditional parts
(i.e. the parts after the ‘|’)

Separate the data into subsets based on the conditioning
combinations - for panels.

Determine the xlim and ylim for each subset.

Compute the common xlim, ylim

Create a panel for each subset, using common xlim,ylim.

If there is a groups argument, create subsets within this
subset. Draw elements within the panel.

print(xyplot(percent ~ percent | year,state.props.df,
 xlim = m$range[1:2], ylim = m$range[3:4],
 subscripts = TRUE,
 subset = year %in% seq(1992, by =4, len = 5),
 panel = function(x,y, ..., subscripts) {

 m = map('state', plot = FALSE, fill = TRUE)
 i = match(gsub(":.*", "", m$names),
 tolower(state.props.df
$state[subscripts]))
 col = rgb(1-x, 0, x)[i]
 col[is.na(col)] = "#000000" # black
 panel.polygon(cbind(mx, my), col = col)
 },
 strip = function(which.panel, ...) {
 year = c(1992, 1996, 2000, 2004, 2008)
[which.panel]
 grid.rect(gp = gpar(fill = "grey"))
 ltext(.5, .5, year)
 },
 scales = list(draw = FALSE), aspect = "iso"))

