Authoring Integrated, Dynamic Statistical Documents

S.E. Buttrey D. Nolan D. Temple Lang
Naval Postgraduate UC Berkeley Bell Labs

April, 2001

http://www.stat.berkeley.edu/~statdocs
The Web

- Fantastic growth, acceptance, pervasive
- Simplicity
 - HTML
- Interactivity
 - Java and JavaScript
 - Multimedia plug-ins
- Applications
 - Web-based reporting
 - Electronic journals
 - On-line courses
Publishing Challenges

- Lack of statistical libraries and software
- Integration
 - text
 - numeric output
 - figures
 - code
- Reproducible results
 - track the analysis process
- Maintenance of templates
 - periodic or repeated reports
Application: Indoor Air Environment

- Goal – Public information on radon in homes
- Data – EPA survey of homes in the US
- Question – Should I remediate my home?
- Report
 - State report
 - General recommendations
 - State specific input – map, data, cost
- Interactive additions
 - Home owner – action level, family size
 - Risk analyst – cost function, parameters
Report Generation

- Author creates report template in XML:
 - contains text and code fragments.
 - state independent

- Transform to HTML document via XSL
 - state specific text, numbers and graphics

- XSL transformer calls embedded R directly.
Why XML and XSL?

- **XML** - eXtensible Markup Language
 - Generalization of HTML
 - Extensible - define new tags
 - Tags describe content

- **XSL** - eXtensible Stylesheet Language
 - Filter: rules for transforming XML tags
 - Apply multiple XSL templates
 - Different style sheets give different views

- **XSL Translator** - Embedded R interpreter (Omegahat)
Author writes XML

<h1> <state/> </h1>

...of the <code lang="S">nrow(statdata)</code> counties

<countymap/>

<histogram variable="gmean"/>
XSL rules

<xsl:template match="state">
 <xsl:value-of select="$state" />
</xsl:template>

<xsl:template match="code[@lang='S']">
 <xsl:value-of select="r:eval(string(.))" />
</xsl:template>

<xsl:template match="histogram">
 <xsl:element name="img">
 <xsl:attribute name="src">
 <xsl:value-of select="r:histogram(@variable)"/>
 </xsl:attribute>
 </xsl:element>
</xsl:template>
Sources of Interactivity

- Forms – content computed for specific county
- Java – slider for changing action level
- JavaScript – handles events
- S plug-in – statistical computations (Omegahat)
- S graphics device – display plots (Omegahat)
- Other plug-ins – Tcl/Tk, Flash
Advantages of this approach

- Integrate text with numeric content
- Easy to tailor application – modular
- Reformat text w/out reformatting statistical content
- Link pieces of document sliders, plots, tables
- Decomposable programs – Not black box applets
- Commands are function calls, not catenated strings
Result – Authors

- Developers program in *their* language of choice
 Users invoke those functions in *their* language of choice.

- *Develop once, invoke anywhere.*

- Use the appropriate tool for the job
 access functionality in others.

- At times better for other applications to be in control.

- Part of general inter-system interface project of Omegahat.
Result – Readers

• Large audience of non-statisticians and researchers.

• Many using low-quality statistical methodology.

• Too complex to
 – learn other language
 – switch between applications synchronize data.
 – minor part of overall task.

• Allow us to our use tools in other applications.
Application: Chip Manufacturing

- Goal– Provide engineers with information to easily monitor manufacturing process.

- Data – Multiple lots per day.
 ≈ 50 wafers per lot.
 Multiple chips on each wafer.

- Question – What is the yield or proportion of acceptable chips?

- Report – Daily report on process

- Interactive additions
 - Different failure types for chips.
 - Spatial patterns of failures.
 - Generate plots/reports as they are needed
Application: Teaching the CLT

- Goal– Students learn basic CLT in familiar browser
 Teacher adapts according to level of student
- Data – Simulated on the fly
- Question – How big does n need to be?
- Interactive
 - Vary the distribution sampled
 - Vary the statistic computed
- Animation
 - Uncover the process
 - Use the same components
Embedded Graphics

- Use `<EMBED>` for graphics devices.

```html
<EMBED TYPE="app/x-sgraphics"
       WIDTH=300 HEIGHT=300 NAME="distPlot">
```

- Treat device as JavaScript object self-activating.

- Provides plotting methods as JavaScript methods.

```javascript
distPlot.call("showPopulation", args);
```
Authoring Tools

- Add dynamic components to document
- Connect components to each other
- Connect components to statistical system
- Add dynamic feedback to document
- Add GUI components to document
Authoring Process

- Write text
 - Netscape composer
 - psgml mode for emacs
 - Frame Maker

- Edit text - tree of XML nodes

- R commands
 - XML representation of R commands
 - Edit an R session

- R output
 - XML representation of R output
 - Merge R with document
Plans

- Develop XSL templates
 - Consultants
 - Research Papers
 - Education

- Build GUI component library based on S

- Provide prototype documents

- Design Authoring tools

- Direct Manipulation graphics