8/22/10

Web Technologies
Accessing Data

Topics

HTML pages
XPath

HTML forms
REST

SOAP

¢ XML-RPC

(You don’t have to teach them all, but there
are interesting aspects to all.)

Consumer Price Index

* Suppose we have a financial time series and
need to adjust for inflation.
We need the CPI values for the relevant
period.

* We can look this up on the Web, e.g.

e 2009 211.143 212.193 212.709 213.24 213,856 215.693 215351 215.834 215.969 216,177 21633 215949 214537
. . Lo Livation 40+ 2008 21108 211693 213.528 214.823 216,632 218,815 219.964 219.086 218.783 216,573 212.425 210.228 215.303
- http://www.rate|nﬂat'lon.com/consumer-prlce-lndexg usa- feds, Centralized 2007 202.416 203.499 205.352 206.686 207.949 208352 208.299 207.917 208.49 208.936 210.177 210.036 207.342
. . . olden Copy 2006 198.3 1987 199.8 2015 2025 2029 2035 203.9 2029 201.8 2015 201.8 2016
historical-cpi.php
Jorphine
nomics
istory of China's
omic fall ls Historical CPI Index For USA
I merica making
me mistakes?
from o
ice Index CPI data for the USA is available from 1913 onward, CPl numbers are used to calculate Inflation Rates over a period of time e USA Histori

[T~ & oo -

e R e e e oo e e |

PEERLECE

tion Rates: @B 1.0533% (un 2010) 48\ 0.9557% (un 2010) @B 3.0539% (un 2010) G 3.2432%(un 2010) | @ ~0.6972% (un 2010)

i

flation Rate
|nart
ind more
purces/options for
tion Rate
art
bmebersercom

ricing & Market
ata

fomplex

®= SA - Consumer Price Index (CPI) History

Inflation Rates

‘Ads by Google cel PriceIndex nfiation Data _ Rate Inflation

B subscribe to our RSS feed and get USA CPI updates sent to you automatically!

Recent Consumer Price Index For USA (CPI-U)

Year Jan Feb Mar Apr May Jun Ju Aug Sep Ot Nov Dec Annual
2010 216,687 216.741 217.631 218.009 218.178 217.965

8/22/10

* The data for the most recent 5 years is in the
main table.

* There is also an HTML form that allows the

reader to specify the interval of interest.
We’'ll return to this.

How to read the data for the 5 years for each
month?

Simple answer: readHTMLTable() in the XML
package.

tbls = readHTM LTable(”ht‘tp://www.rateinﬂation.com/consumer—

price-index/usa-historical»cpi.php")
length(tbls)
sapply(tbls, nrow)

We want the last one — 6 rows, including the
header.

. Cp| =rea d HTMLTa b Ie(IIhttp://www.rateinﬂat‘ion.com/consumer-price-

index/usa-historical-cpi,php",
which = 11, header = TRUE)

* Fix up the types of each column, converting from
a factor to a number.
e cpi= as.data.frame(
lapply(cpi,
function(x)
as.numeric(as.character(x)))

Details

Interesting answer is how that function is implemented
Examine the HTML
— find all <table> elements
— process each of these to convert to a data frame

« find <tr> elements for each row

* recognize <th> elements or <thead> for header

« <td> for data value

* Unravel into data.frame
Details in the XML package and readHTMLTable()
But general concepts in Xpath and finding <table>
nodes.

8/22/10

XPath

* Xpath is yet another DSL — domain specific language

* XML documents are trees and Xpath is a mechanism
for finding nodes anywhere within the tree based on a
“pattern”

* Pattern is a path that identifies sequence of nodes by

— direction or “axis” (parent, child, ancestor, descendant,
sideways (<- ->))

— node test —i.e. the name (e.g. table, thead, tr, td)

— predicate test (has an attribute href, has an attribute href =
“00”)

* Parse the XML/HTML document
— doc = htmParse (“np://www.rateinfiation.comye
h\slorlcal-cpl.php")
* Find the <table> elements
tbls = getNodeSet(doc, “//table”)

» getNodeSet() takes a document or a node and
searches through the sub-tree using a

language for describing how to find the nodes
of interest.

¢ //is srt-hand for “/descendant::table”,
/ is the top-level/root node
descendant is an “axis”
table is the node-test

 |If the <table> of interest had an id attribute,
we could add a predicate, e.g.
— getNodeSet(doc, “//table[@id="cpi’]”)

» getNodeSet() returns a list of matching nodes.

* We can then recursively extract the nodes of
interest, e.g. the <tr> and the <td> elements
— can walk the tree ourselves if shallow
— or use getNodeSet() to query the subtree easily

* Convert the values in these sub-nodes to R
values and combine into data structure.

8/22/10

Walking the tree

A node has a name
— xmIName(node)
Attributes

— xmlAttrs(node),
xmlGetAttr(node, “attrName”)

Children

— xmlChildren(node) — list of child nodes

Parent node
— xmlParent(node)

* rows = getNodeSet(tbl, “.//tr”)
do.call(“rbind”, lapply(rows, getRowValues))

» getRowValues gets all the <td> within a <tr>
xpathSApply(row, “.//td”, xmlValue)

Xpath is similar to regular expressions

— It is a way of expressing complex patters very tersely
and having the Xpath engine implement the search.

Works for any XML document, so very general.
Can build up very precise or general queries

— contextual knowledge important to catch all the
nodes we want, but no more.

We use Xpath for processing XML from many
different sources.

Back to the HTML form

* What if we want more or different years?
— Use the HTML form?

* But how can we mimic selecting the Start and
End years from within R, i.e. programmatically?

¢ An HTML form is like an R function
— takes inputs, returns an result —an HTML document

* Need to mimic a Web browser to pass arguments
to Web server.

8/22/10

RCurl

* The RCurl package provides an R interface to a
very general and powerful library that can
perform Web queries programmatically and

that are very customizable.
* 3 main functions:

— getURLContent()

— getForm()

— postForm()

* Similar functionality to download.url(), but

much more customizable and general
Can handle

— Secure HTTP — https

— cookies, passwords

— many additional important options

— maintain state across requests

— multiple concurrent requests

* Examine HTML document and look for the
<form>.
Find the parameter names and use these as
named parameters in getForm()
* x = postForm(") sisto 5
form ="usacpi",
fromYear = "1945",
toYear = "1965",
" submit_check ="1")
* Then pass this to readHTMLTable(), which =

REST

Representational State Transfer
URL represents a state which can be queried or even
updated via remote calls/queries.
Send parameterized Web query via getForm()
— specify URL
— name value pairs for parameters
Get back a “document”
— may be
* raw text
© XML
+ JSONIO
* binary data

8/22/10

Process result

Raw text — use text manipulation, regular
expressions, connections to read into R object
JSON — JavaScript Object Notation

— use RISONIO or rjson

XML — parseXML() and Xpath (getNodeSet())

Binary data —treat as is, or if compressed,
uncompress in-memory via Rcompression

Zillow

* Zillow provides information and price
estimates of homes

* REST APl info at

http://www.zillow.com/howto/api/APIOverview.htm

* Register to get a Zillow Web Service ID
(ZWSID) that you pass in each call to a Zillow
APl method

* Call GetZEstimate for a property giving street

address

- getForm("http://wwwAziIlow.com/webservice/

GetSearchResults.htm",
“zws-id" = ZWSID,
address = “1292 Monterey Ave”,
citystatezip = “Berkeley, CA”)
Result is a text string which contains an XML document

Getting the Result Info

* XML contains <request>, <message>,
<response>

* Extract property id, price estimate, lat./long.,
comparables link, etc.

* Use Xpath and xmlValue().
* doc = xmlParse(txt, asText = TRUE)
* est = doc[[“//result/zestimate”]]

* as.numeric(xmlValue(est[[“amount”]]))

8/22/10

* R package Zillow provides functions for several
of the APl methods and hides all the details.

Yahoo Search

* Yahoo Web Search Service

— http://developer.yahoo.com/search/web/V1/
webSearch.html

* out = getForm("http://search.yahooapis.com/

WebSearchService/V1/webSearch",
appid = yahooAppldString,
query = "REST XML Yahoo",
results = 100,
output = "json")

* library(RJSONIO)

* ans = fromJSON(out)

* ansis a list with 1 element named ResultSet

* length(ansSResultSet) # 6

* names(ansSResultSet)

e [1] "type" "totalResultsAvailable"
[3] "totalResultsReturned" "firstResultPosition"
[5] "moreSearch" "Result"

Individual Search Result Item

* names(ans$ResultSetSResult[[1]])

[1] "Title" "Summary" "Url"
[4] "ClickUr]l” "DisplayUrl" "ModificationDate"
[7] "MimeType” "Cache"

8/22/10

REST

* Pros:
— simple and easy to get started
— natural exploitation of URLs as resources
* Cons:
— cannot send or retrieved complex/hierarchical data
structures
— have to process result manually
— have to find methods and inputs manually by reading
documentation.
* Do this once and build R functions to hide the details.

GoogleDocs
EBI

Flickr

Twitter

Zillow

NY Times
Google Trends
MusicBrainz
LastFM

R packages for several of these

SOAP

* Simple Object Access Protocol
* Richer and more complex than REST

— can send highly structured data via XML
— Send request in an Envelope containing a request
to invoke a method in the server’s object
» Send arguments as self-describing objects
* SOAP allows us to define new data types and
structures
— application specific data types

SOAP

Would have to construct the SOAP request

— the envelop and the message

— Too many details to do manually.

Instead, SOAP service publishes a description of
its methods and data types

— WSDL document — Web Service Description Language
Code reads this and generates R functions to
invoke each of the methods, coercing the R
arguments to their XML representation and
converting the XML result to an R object.

Transparent to user

8/22/10

KEGG APT

KeGG FTP

KegTools

Genomenet
DBGET/LINkDS

Feadback

KEGG KEGG2 PATHWAY BRITE DISEASE DRUG

KEGG API

SOAP/WSDL interface for the KEGG system

¥ Documents

 KEGG API reference manual (i English / Japanese)

© WSDL file

« KeGG.wsd

‘These files are automatically generated by WSDL2J2va. Consult the manual for the
Instructions to use

© Version

Current version of the KEGG AP s v6.2 released on August 17, 2007, (Changelog)

Kyoto Encyclopedia of Genes and
Genomes provides a SOAP

Web Service (among other
services) to access its system
functionality (API)

http://www.genome.jp/kegg/soap/

From R

library(SSOAP)
u = “http://soap.genome.jp/KEGG.wsdl”

kegg.wsdl = processWSDL(u)
kegg.iface = genSOAPClientInterface(, kegg.wsdl)

Now we have an S$4 object containing class
definitions and a list of functions

names(kegg.iface@functions)

* Invoke the list_databases method
— kegg.iface@functionsSlist databases()

— returns a list of S4 Definition objects

— e.g. An object of class "Definition”

Slot "entry_id”:
[1] "nt”
Slot "definition”:

[1] "Non-redundant nucleic acid sequence

database"

* Get enzymes for a specific gene id
- iface@functions$get_enzymes_by_gene('eco:b0002")

—[1] "ec:1.1.1.3" "ec:2.7.2.4"

