
8/22/10!

1!

Programming
Fundamentals!

   Programming concepts and understanding of the
essentials of programming languages form the basis of
computing.!

Goals!

   To outline what aspects of a language (specifically R)
you might want to teach your students!

   Discuss how to teach this effectively!
 concepts, examples, motivation, context!

   Discuss aspects of the language that not all users are
familiar with!
and to show the logic/simplicity of the language!

   Three aspects to statistical programming!

   interactive use for exploratory data analysis!

   programming numerically intensive tasks!

   writing functions/software for reuse!

   Obviously related, and there is a natural progression.!

8/22/10!

2!

   Some students won’t have seen a “programming
language” before!

   Some may have seen HTML - a declarative language
that has no control flow.!

   Many will be unfamiliar with the command-line!
REPL - Read-Eval-Print-Loop!

   Explain the difference between a spreadsheet and a
programming environment.!

   For some students, we have to get them past the “why
isn’t this like X? It’s so lame!”!

   So need to show them how it is useful, and how the
language constructs help them to do things.!

   So we have to get them to want to do something which
involves, e.g. a lot of repetition.!
 e.g. give them a corpus of e-mail messages, 1 per file,
or person per file and ask how many messages do we
have?!

   Get them to consider the language as a servant.!

What is a computation?!

•  Transformation from on or more inputs to an output!

•  Transition from old state to new state!

•  Algorithm set of directions for carrying out a
computation in terms of other simpler computations!

•  Examples!

•  Find the average annual rainfall at a weather station!

•  Crop a digital photo!

•  Sort the mail by sender in your mail program!

Language Model!

   Critical to teach the concepts, structure, logic and

design of the language!

   Students will often gravitate to “how to” and mimicking
rather than abstracting the specific to gain this “higher
understanding” of the language.!

   Syntax versus Semantics and computational model.!

   Getting past details allows them to !

   reason about problems!

   apply their knowledge of one language to another.!

8/22/10!

3!

   Most of the languages we will use are !

   interpreted!

   high-level!

   garbage collected!

   “interactive”!

   & have large libraries!

   R, MATLAB, ... - triple of!

   language!

   interpreter!

   environment (packages)!

Getting Started!

•  Get students familiar with the basics of the
environment. Do this with an interactive demo. Place
online after class a transcript of session (with
comments).!

•  How to start (command line or GUI) and quit q()!

•  How to use R as a calculator!

•  Show them the continuation prompt!
 > 2 *!
 + 3 !

Terminology!

•  Invoke a computation with an expression!

•  Pass the expression off to the computer to evaluate!

•  Return a value or output of the expression!

Syntax!

•  Do arithmetic - 1 + pi!

•  Order of operations – log(100) + sin(pi/2) * 15
(log(100) + sin(pi/2)) * 15!

•  Simple plots - curve(sin, -pi, pi)!

•  Assign results to variables!
 x = 1 + pi !
 print(x)!
 x result of evaluating a non-assignment => print!

8/22/10!

4!

Transcript!
> 1 + pi!
[1] 4.141593!

> log(100) + sin(pi/2) * 15 #multiplication first, log base e!
[1] 19.60517!

> (log(100) + sin(pi/2)) * 15 #parentheses modify order!
[1] 84.07755!

> (log(100, base = 10) + sin(pi/2)) * 15 #change parameter
called base!

[1] 45!

Transcript!
> curve(sin, -pi, pi) #curve function called, 3 arguments!

> x = 1 + pi!
> print(x)!
[1] 4.141593!
> x!
[1] 4.141593!

> x = rnorm(100)!
> mean(x) !
[1] 0.02533064!

•  Parsing: break down expression – !

•  white space, !

•  digits 2x vs 2*x, !

•  naming conventions!

•  No declarations of variables needed!
or type information!

•  Explore assignments!

•  stored in session area - global environment!

•  see names of existing variables - objects()!

•  where does curve() come from?!

•  find(“curve”)!

•  search() and the concept of the search path!

•  how does R use this !
> pi= 3!
> find("pi")!
[1] ".GlobalEnv" "package:base"!

8/22/10!

5!

•  Remove one or more objects – rm(x, pi)!

•  Save variables for future use –
save(x, z, file =“myvars.rda”)!

•  Restore – load(“myfile.rda”) (Where are these?)!

•  Keep track of code – history()!

•  What about ‘+’ in 1 + 2? !
Does R just know about that?!

•  find(“+”)!
 “package:base”!

•  1 + 2 is actually a function call!
 `+`(1, 2)!

•  In fact, everything in R is a function call!
 simple, single concept that makes lots of things easy
to reason about, and several computational tasks
feasible. (infix vs function style)!

•  Notion of function call is similar to other languages!
e.g. shell - find . -name '*.R'!

Everything's an Object!

•  If we can see 'x', can we see '+'?!

•  Print the value of + - poor choice!!
 `+` !
 sin!

•  We can pass a function as an argument to a function!
 curve(sin)!

•  So functions are first class values.!

•  In fact, every value is a first class object.!

Function Calls!

•  What's a function?!

•  for now, a black box that takes zero or more inputs,
and returns a value, an object.!

•  leads to 2 issues:!

•  how do we specify the inputs!
 parameter matching!

•  what sort of values can we pass in and get out?!
 data structures!

8/22/10!

6!

Getting Help!
•  How to get help (help.start)!

•  It is useful to show them the elements of a help page
and how to read them, !
 interpret some of the "ambiguous" content, !
 explain some of the terms!
 follow the See Also!
 connect to the manuals which give some more details!

Help Page!
help(mean)!

Description - what the
function does!
Usage – definition/how to
call the function!
Arguments - purpose of
each argument!
Value – return value from
function!
References - !
See Also – related functions!
Examples -!

Work environment!
•  Where do you write your code? Not in a Word document!

•  Text editors – the GUI’s editor, eMacs & ESS !

•  How do you find your data, code?!

•  File system – trees!

•  Simple shell commands – cd, ls, pwd, cp, mv, rm,
mkdir, rmdir !

•  Can you use a faster computer? – ssh, scp!

