8/22/10

Data Types, Control Flow,
Functions & Programming

Topics

¢ Data types
¢ Vectorization
* Missing values
* Function calls and semantics
— copying values, lazy evaluation, scope & symbol evaluation.
* Control flow
* Writing functions
— Mechanics, style
* Debugging
— Static & dynamic/run-time, tools
¢ Profiling
— Tools — Rprof(), summaryRprof().

Data Types

In comp. science, focus is often on many

different rich data types

— E.g. hash tables, hash algorithms, linked lists,
balanced trees, red-black trees, graphs, ...

In R/MATLAB/..., few primitive data types

— Logical, integer, numeric, complex,

— Character

— List

— Raw — for binary data.

Vectorization

* Critically, there are no scalars, i.e. individual
values in R/MATLAB, but vectors
— Ordered containers for zero or more values.
— Scalars are vectors of length 1.
— Everything has a length — length(obj) gives something

reasonable.

* The language is heavily oriented to vector

operations, and gets its efficiency from this

— i.e. if you don’t use vectorized computations, code
runs much slower than if you do

8/22/10

Vector operations

* Operatorssuchas+,-, &, |, !, ... are
vectorized
— x+1, x+y, Ix work element-wise and produce
a new object, derived from the inputs.
* Very different from
y=¢()
for(i in seq(along = x)) y = c(y, x[i] + 1)
* Ory = numeric(length(x))
for(i in seq(along = x)) y[i] = x[i] + 1

Subsetting

* Major part of the language, and
programmatically extensible.
vector[indices] — extract and also assign to sub-
elements
* Index by
— position,
— Named elements
— Logical vector (same length as vector)
— negative numeric index to exclude, i.e. complement of
— Empty index, i.e. x[]

Missing Values

* Important concept of “missing” represented
as the literal/constant NA

—is.na(x) — returns logical vector with TRUE where
value is NA.

* Whatis 1 + NA?

Coercion

* R will implicitly coerce objects to appropriate
type.

* Consider
— ¢(TRUE, 1L, 2, 3.14, “3.14")
— x+TRUE, x+1

* What type is NA?

8/22/10

Recycling rule

In many cases, R will perform an operation on 2 or
more vectors and work on them element-wise, i.e. the
i-th element of each of them.
Implicitly, the model is often

func(x[i], ylil, z[i], ...)
This implies the vectors have the same length
R makes this happen transparently using the recycling
rule.

— Makes the shorter ones longer to have the same length as
the longest one.

— If this is an integer multiple, no problem. If not, a warning.

Factors/Categorical Variables

* Need to represent data that can take on only a
finite set of values from a fixed set.

* factor() and ordered factors (ordered()) do
this.
— Vector of values, along with the “labels”
— Represented as
* an integer vector with an element for each observation,
* a “shorter” vector of labels

* The integers index the vector of labels to identify the
category of each element.

Factors

So a factor is a special integer vector.

Can use it to subset in very convenient and
powerful ways.

But prints and behaves differently from an
integer in other cases.

Ordered factors merely have an order
specified for the labels, e.g. A, B, C, D, F.

Higher-level types

* Data frames — a list of variables that act as
columns, but also second dimension giving
rows

— Data frame forces length of all columns to be the
same

— So special type of list.

8/22/10

When | teach,

— sometimes | start with primitive types and build
up to lists and data frames.

— Other times | start with a data frame that | give
the students, and work down to the primitive
vector types.

— The latter gets subsetting in early, and gives them
a real data set to explore.

Matrices

* Matrices — vectors with attribute giving dimensions as
a vector
— Rarely teach these in programming class as we use data
frames to represent data. Matrices arise in linear algebra
computations or output of pairwise distance calculations.
* Matrices are similar to 2-D data frames, but require all
elements to be of the same type, i.e. coerced to
common type. So cannot have numerics and strings
and factors.
* Reliance on matrices often suggests confusing
representation & implementation.

Parameter Matching

* R has a very different and flexible way of
passing arguments to functions
* by position
* by name
* by partial name

* Default values for some or all parameters

* And in some cases, even parameters that do
not have a default value do not need to be
specified.

Argument Matching

3 steps to argument matching.

* match all the named arguments that match a parameter
name exactly

(match & remove these)

match all the named arguments that partially match
ambiguous matches (matches 2 or more parameters) is
an error

(match & remove these)

match the remainder arguments to the unmatched
parameters by position

others picked up by ... if present
raise error if any left over

8/22/10

Argument Matching

Consider the function rnorm()

>rnorm
function (n, mean=0,sd =1)
rnorm(10) # mean, sd take default values

rnorm(10, 2) # mean =2, sd =1 - default
value rnorm(10,,2) # mean =0 (default
value), sd =2

rnorm(10, sd =2) # mean =0 (default value),
sd=2

rnorm(10, s =2) # partial matching—sd =2
rnorm(sd =2,10) #n=10, mean=0,sd=2

* Some functions have a parameter named "..."

* This means zero or more arguments which do not
match any of the other parameters.

* Two purposes for ...

* collect arbitrary number of arguments together to be
processed together,

* e.g. sum(..., na.rm = FALSE)
elements are collected into a vector and added
(compare with sum(x) or sum(x, y))

arguments that are passed directly to other functions
called by this function

e.g. used a lot in graphics functions to pass common
named arguments like col, pch to lower-level
functions.

Or
lapply(1:3, rnorm, sd = 3)

lapply accepts additional arguments via its ...
parameter, and passes them in the call to
FUN(x[i], ...)

Rinlines the ... in the call to the function, with the
names and all.

Argument Matching

* arguments that do not match by name or
position are collected into the ... "list".

* In most languages, ... must come last.
But in R, some functions have additional
parameters after the ...

* users must specify values for these parameters
by using the fully specified parameter name
name, e.g.
cat(..., file="",sep="")

non

cat("some text", " to display", file = "myFile", sep ="")

8/22/10

Copying Objects

Create a collection of 10 random normal values
X = rnorm(10)

Assign x to new variable y

y=X

This is a copy of x

(actually both x and y initially point to a single
shared array in memory)

But if we change x, e.g.

x[1] = 100

y retains its current value and x and y are
different.

Copying Arguments

* When x[1] = 100 is evaluated, R recognizes
that the data elements are shared by two or
more variables and so makes a copy of it and
then modifies the first element of the copy.
Then it assigns the result to 'x'.

* The original shared copy of the vector
remains unchanged and is tied to y.

Computational Model

So the computational model is that assignments (almost always)
appear to make a copy of their data.

So in a function call,
foo(x, y)
we create a new frame
evaluate x in the caller's frame
assign the value to the first parameter
Hence we are making a copy of that value.

Any changes made to the first parameter within the body of the
function will have no effect on the variables in the caller's frame.

All changes of interest to the caller must be explicitly returned by
the function.

Lazy Evaluation

* In many languages, f(x, y+2, z+3) would first get
X, y+2, z+3 and then pass those in the function call.

¢ Unusual feature of R is that expressions passed to a
function are not evaluated until the parameter is
actually used - lazy evaluation.

* Avoids unnecessary computations and copies of
data.

* Has implications for writing code

if expression has side effects, not certain when or if
it will occur

¢ and implications for writing functions

8/22/10

Control Flow

Apply functions

» Before teaching for() loops, etc., focus on

— Vectorized computations

— Family of apply() functions

Apply functions
loop over elements of a vector,
apply the function to that element,
place result in a new vector,
Return new vector with all of the results in order.

Apply functions are terse

— Compare with
ans = list()
for(i in seq(along = x))
ans[i] = func(x[[i]])

Much easier to read and reason about

Explicitly indicate that the order of processing is
not important
— Useful for parallel computing.

Sometimes more efficient

* lapply(), sapply() & vapply().

* apply() for matrices and multi-dimensional
arrays

* tapply() — groups observations by one or more
factors and applies function to subsets
— See by() and aggregate()

* mapply() -

8/22/10

* Control flow relates to language constructs that
determine which commands are executed next.

* Theiif() ... else ... construct is for conditional
branching, i.e. running one set of expressions or
another.

* while(condition) { ... }
— Code in ... may change condition for next iteration.
— repeat() is do-while loop.

* next & break for skipping or ending iterations.

for(varin obj) { ... }

— var is assigned each element of obj in turn

— Where possible, use apply() functions (sapply(),
lapply(), apply(), tapply()) rather than loops

« Difficult to get students to use these, but important
step to have them think about good programming.

Issues with if()

* The condition in the if() should return something
that can be treated as a “scalar” logical.

* Ifitis of length 0, bad things will happen.
X =logical()
Error in if (x) cat("Hi\n") else cat("Bye\n") :
argument is of length zero
* If it evaluates to NA, bad things will happen.
x=NA
if(x) cat("Hi\n") else cat("Bye\n”)
Error in if (x) cat("Hi\n") else cat("Bye\n") :
missing value where TRUE/FALSE needed

Writing Functions

Challenge to move students from commands to

reusable functions.

Want to map complete task into sub-tasks that

correspond to natural level of granularity.

— Sub-tasks correspond to functions

— Functions can be called with different inputs and so reused
within the current top-level task, tested separately,
optimized and replaced easily.

— Can be reused in other projects.

Designing functions is an iterative process and one that

benefits greatly from experience built by doing it and

reusing the functions.

8/22/10

 function(x, y, myParam = 2) {
code that process inputs
creates intermediate temporary variables
returns single object as a result
can be a list with multiple objects

}
Functions are top-level objects
Assign them to variables if you want.

Default values

* If a call to a function doesn’t specify a value for a

parameter, then its value is “missing”
— Can test in the function body with, e.g.
missing(y)

* A missing parameter will take on the value given by

evaluating the expression for its default value in the
definition of the function.

— This is evaluated in the call frame of the function.

— Can refer to other parameters in the function.

* Sensible default values are very powerful

— Allow advanced caller to control more details, but regular
usage to be simple.

Designing Functions

» Keep functions short and focused on one task

* As one writes 2 or 3 expressions to do
something within a function, think whether it
is best to make that a function.

* Can one replace the 2-3 expressions with a
verb with a suitable name.

* Have functions avoid side effects.

— Functional programming languages.

Finding scoping problems

* Consider a simple function

myFun =
function() {
if(x)
10
else
21

8/22/10

* What will myFun() do & return? * The element “variables” in the result is a
character vector giving the names of the variables

* If we are lucky, an error; if not, the wrong which are referenced but not defined in the

answer, or worse still coincidentally the parameters or local variables of the function.
correct answer for this one call. * We can use this to perform basic tests on
* We can find references to non-local/global students code.
variables with * Students should do it themselves as a way to
library(codetools) check their code and save time.
findGlobals(myFun, FALSE) * This is the type of issue a compiler would catch,

but since we are not using a compiler ...

Scope, Call Frame Stack, Environments Debugging Code

* Inside or outside of functions, students should learn to use
the tools that trap errors when the occur and allow the
user to examine the state of the computations - the call
stack, the value of variables in the different call frames.

* Randomly changing code, or not reading error messages is
very natural, but a terrible habit to get into.

* Many students don’t think it is worth the time to learn how
to debug efficiently, assuming that each bug will be the one
and only and last one they will encounter.

¢ |tis also vital that they know how to debug other people’s
code, not just their own, as errors will occur in these other
functions because of inputs they provide.

10

8/22/10

Debugging Tools

* There are two styles of debugging —
preemptive and “post mortem”.

By preemptive, we mean that we want to stop
at a particular point before an error occurs
and control when & how each expression is
evaluated. So we can go step-by-step and look
at the current values at each step.
Post-mortem means stopping only when there
is an error (or warning if desired).

Preemptive Debugging

* This is quite common in many languages using
a debugger to explicitly stop at a given
expression, or when a particular condition is
true when a given expression is about to be
evaluated.

* There are graphical interfaces for debugging R

code, but the standard tools are “functional”
in nature.

We can debug() or trace() a function.
debug(myOtherFun)

myFun(10) # which calls myOtherFun

When myOtherFun is called — directly or indirectly — R
will stop the evaluation and allow us to look around
using the “debugger” tools.

This is like a regular R prompt, but we are now “in” the
call frame of the function be debugged and not the
global environment.

R commands we evaluate will be local to this call
frame.

We can even change values before proceeding.

* To evaluate the next expression, use n’.
* To just continue as normal with all the

expressions, ‘c’.

* Problems when trying to see a variable named

n or c or any of the reserved control “words”.

* Use get(“n”).

11

8/22/10

* To turn off debugging a function, use
undebug(myFunc)

Post-mortem debugging

* Arrange to enter the debugger when an error
occurs

* Can do this by calling traceback() after the error
occurs and back at the top-level R prompt.

* Alternatively, stop when the error occurs

* The primary functions are browser() and
recover()
— options(error = recover)

— | set this in my .Rprofile, read when the R session
starts.;

Efficiency — timing code

* system.time(expression) returns the amount
of time it took to evaluate the expression
* 3 measurements (or 5 if sub-processes)

— User, system and total elapsed time.

— Want user + system = total, or else something else
consuming the machine so problematic
measurement.

* Students should explore how time changes
with size of the inputs.

* Issues with resolution and measuring time for
small increments.

* Plot time versus input size and see if algorithm
is linear, polynomial, exponential
— Empirical algorithmic complexity

12

8/22/10

To improve speed, use different algorithm.

Or refine code
— move expressions within loops that are invariant
to compute just once and assigned to variable
— Avoid concatenating vectors, but pre-allocate and
assign to i-th element.
« i.e. x = ¢(); for(i in seq(along = y)) x = c(x, g(ylil))

Profiling

Identify bottlenecks by measuring what functions
are called the most often and take the most time.
Rprof() function turns on measuring in the
evaluator, producing data about function calls.
Rprof(“myProfilingData”)

Evaluate expressions

Rprof(NULL)

Data is now available in the file myProfilingData.

Analyzing profiling data

Read profiling data into R via summaryRprof()
prof = summaryRprof(“myProfilingData”)
List with 3 elements
— Look at profSby.self
— self.time self.pct total.time total.pct
“sample" 0.94 52.2 1.06 58.9
"rw2d1" 0.70 389 1.80 100.0
"length" 0.08 44 0.08 4.4
"==" 0.04 22 0.04 2.2
"y 0.02 1.1 0.02 1.1
" 002 1.1 0.02 1.1

* Focus energy on improving the calls to the

functions in the first rows of this data frame.

* Rewrite algorithm, adjust expressions.

13

