Background

- NSF (DUE) funded grant on "Integrating Computing into the Statistics Curricula"
- Goals:
 - map syllabi and sequences of courses for modern stat. programs
 - Facilitate instructors to introduce and teach such classes, providing resources (lecture notes, syllabi, assignments, data sets) and support network.
- 4th of 4 workshops
 - Second one for teaching instructors to teach stat. computing.
 - 3rd discussed model syllabi for different types of students
 - 3rd develop case studies in stat. computing for use by the stat. community. (In preparation.)

State of affairs

- Computing is a very large part of a data analysts daily task, yet remarkably small part of our educational programs
- We teach only enough computing to enable doing assignments, leaving students to learn on their own by mimicking and adjusting existing templates.
- Results are not good.

Importance of Computing

- Computing is as fundamental to statistics education as mathematics.
- We need to make the students facile with computing so they can transparently use it to express ideas.
 - Compute correctly and efficiently
- As long as computing is a difficulty, it is a distraction from one’s primary focus.
 - We must reduce it from being an obstacle or focus when performing analyses.
 - Need to enable them to reason about computations.
Critical point in statistics.

- Statistical computing is much broader than traditional material we have taught
 - Need different topics for different types of students.
- Computing is becoming increasingly vital part of statistical education in this era of
 - the Web
 - Ubiquitous data availability & sources.
 - Increased volume and complexity of data.
 - New and ever-evolving Web technologies.
 - Increased relevance of data analysis in all fields, done by non-statisticians
 - Communicating results in new ways (e.g. Web graphics)
- If we can’t compute the right answer, others will be involved to compute another answer.
- And computing the answer means dealing with increasingly complex computations and technologies.

Focus

- Computing is typically just one missing dimension of our programs
 - Exposure to modern statistical methods.
 - Actual solving of scientific/data problems with statistical approaches.
- We tend to use a computing class to address both of these, as well as computing/programming topics.

- We need to teach it early in the students program.
- Integrate it properly into a program
 - Teach it an intellectually rich level so students learn to reason about computation, not just “trial and error”.
 - Leverage it as an alternative medium for learning statistical concepts.
Challenges

- Students today are very familiar with computers, phones, etc.
- But not with scientific computing
 - Vocabulary, computational reasoning, programming
- We have to get them past “this is too hard to use”, “why can’t I click on a button”, ...
 - Need to learn grammar and computational model to express themselves, both to the computer and to humans.
- Compare with how we teach stat. concepts, or to write essays
- GUIs are convenient, but imply that the ability to compute is of secondary importance and that the computations are generic/templates.

Organizational Challenges

- We also have to get our colleagues on board
 - Difficult since few of us have been trained in computing.
- Fit more into already crammd curricula, and room for few additional classes.
- Computing requires regular, repeated exposure to internalize concepts, vocabulary and “grammar”.

Format

- Hopefully, very interactive with questions, comments, etc. from everybody.
- Please let us know if you want us to schedule discussion on a topic not in the “schedule”.
- Notes will be available on the Web site after the conference and will be updated as comments/questions are received.
- Goal is to make these materials available to you and others to facilitate teaching stat. computing classes.

“Rules of engagement”

- When speaking, please identify yourself to everyone and let us know your institution.
- We hope in the coffee/food breaks you’ll interact and build connections.
Schedule

• During the day, we’ll have a mix of discussions and tutorials
• We have asked some people to give short presentations on what they are doing.
• Everyone else, please participate throughout.
• Each topic will be a mix of
 — Big picture reason about why the topic is important
 — Technical details about the material – tutorial
 — Ways we teach this material
• Introduce some material about R that is less familiar to most people, with the hope of it helping you to teach computing.

Emphasis on R

• We will be talking a great deal about R and numerous “modern” technologies.
• We hope to be discussing computing & programming at a level that is general and abstracts to other programming languages, e.g. MATLAB, Python.
• Some will expect material on SAS perfectly reasonable.

SAS, etc.

• Firstly, we are much more familiar with R and other technologies.
• Focus is on general, complete programming languages and modern technologies students are likely to encounter over the years.
• Fundamentals of programming are transferable to other languages.
• R is free, easy to deploy and widely used in stat. departments
 — For both teaching and research.
• Increasingly widely used in industry.

• In our courses, we teach 5 languages
 — R and 4 DSLs – Domain Specific Languages
 • Regular expressions for patterns in text
 • XML/HTML/KML/SVG & XPath
 • SQL – database query language
 • (Unix) shell
• Key is to learn how to learn new languages and technologies.
What to teach - Themes & Topics

Leave it to Computer Science?

- It may seem reasonable to have stat. students take computer science classes. Is this good?
- Students would benefit from such classes, but only in addition to an solid statistical computing class.
- The skills are different –
 - programming for data analysis versus many data structures, programming languages, software design, efficiency in run-time
- Vectorized computations on sample observations versus focus on individual elements.
- Text manipulation & data input
- Graphics & information visualization versus low-level graphics.

Summary

- We have to stop thinking of computing as an optional add-on within the study of statistics that students pick up in an ad hoc manner by themselves.
- Computing is an essential, foundational skill for modern data analysis and without such skills, our students are missing at least half of the essential knowledge.
- It is at least time for stat. instructors to learn modern stat. computing & to enhance their programs with computing & data analysis classes.

• If we want statistics to thrive and play an important role in the data-centric world, we need to
 - Teach computing
 - Do research in the next generation of computing technologies for statistics.
 - And the only way to do the latter, is to do the former!